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Abstract
Herbivory tolerance can offset the negative effects of herbivory on plants and plays 
an important role in both immigration and population establishment. Biomass real‐
location is an important potential mechanism of herbivory tolerance. To understand 
how biomass allocation affects plant herbivory tolerance, it is necessary to distin‐
guish the biomass allocations resulting from environmental gradients or plant growth. 
There is generally a tight balance between the amounts of biomass invested in differ‐
ent organs, which must be analyzed by means of an allometric model. The allometric 
exponent is not affected by individual growth and can reflect the changes in biomass 
allocation patterns of different parts. Therefore, the allometric exponent was chosen 
to study the relationship between biomass allocation pattern and herbivory toler‐
ance. We selected four species (Wedelia chinensis, Wedelia trilobata, Merremia hedera‐
cea, and Mikania micrantha), two of which are invasive species and two of which are 
accompanying native species, and established three herbivory levels (0%, 25% and 
50%) to compare differences in allometry. The biomass allocation in stems was nega‐
tively correlated with herbivory tolerance, while that in leaves was positively corre‐
lated with herbivory tolerance. Furthermore, the stability of the allometric exponent 
was related to tolerance, indicating that plants with the ability to maintain their bio‐
mass allocation patterns are more tolerant than those without this ability, and the 
tendency to allocate biomass to leaves rather than to stems or roots helps increase 
this tolerance. The allometric exponent was used to remove the effects of individual 
development on allocation pattern, allowing the relationship between biomass al‐
location and herbivory tolerance to be more accurately explored. This research used 
an allometric model to fit the nonlinear process of biomass partitioning during the 
growth and development of plants and provides a new understanding of the relation‐
ship between biomass allocation and herbivory tolerance.
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1  | INTRODUC TION

Herbivory typically has a negative effect on plant fitness, and plants 
are pressured to increase levels of defence (Strauss & Agrawal, 
1999). Tolerance is an important plant defence strategy in which 
plants compensate for tissue loss to counteract the negative effects 
of herbivory. The defence strategies of plants may change their 
ability to withstand herbivores (Anderson & Briske, 1995; Stowe, 
Marquis, Hochwender, & Simms, 2000). Tolerance also plays an im‐
portant role in community diversity and population establishment 
(Mariotte, Buttler, Kohler, Gilgen, & Spiegelberger, 2013), and in‐
creased herbivory tolerance is thought to be one of the reasons that 
some species have higher capacities to become invasive (Fornoni, 
2011; Wang et al., 2011; Zou, Siemann, Rogers, & DeWalt, 2008). 
Tolerance is related to biomass allocation pattern, but plants have a 
remarkable capacity to coordinate the growth of their organs, such 
that there is generally a tight balance between the amounts of bio‐
mass invested in different organs, which requires analysis by means 
of an allometric model. Therefore, additional research is needed to 
determine the mechanisms of allometric partitioning that enable 
plants to tolerate herbivory.

Much research has explored the mechanisms of plant tolerance 
(Rosenthal & Kotanen, 1994; Strauss & Agrawal, 1999; Tiffin, 2000). 
The mechanisms underlying tolerance are potentially complex and 
can involve numerous plant traits that facilitate recovery, such as 
an increase in the photosynthetic rate after herbivory (Stowe et al., 
2000; Trumble, Kolodny‐Hirsch, & Ting, 1993), apical meristem ac‐
tivity after damage (Suwa & Maherali, 2008; Wise & Abrahamson, 
2007), and plant phenological changes, such as delays in growth, 
flowering, and fruit production (Tiffin, 2000). The potential tolerance 
of plants is also affected by changes in their composition as well as 
stored resources, resource reallocation, and architecture (Moreira, 
Zas, & Sampedro, 2012; Stevens, Kruger, & Lindroth, 2008); all of 
these traits contribute to the tolerance of herbivores.

The key mechanism of herbivory tolerance in plants is the redis‐
tribution of resources, and biomass allocation is the central driver of 
plant life‐history strategies (Müller, Schmid, & Weiner, 2000; Weiner, 
2004) and the basis of the environmentally sensitive response strat‐
egy employed by plants. Research on the relationship between bio‐
mass allocation and herbivory tolerance has mainly focused on two 
aspects: (a) how biomass allocation patterns influence herbivory tol‐
erance and (b) how the capacity to alter biomass allocation patterns 
in response to herbivores influences herbivory tolerance. Some 
studies based on variation in biomass partitioning have shown that 
species with the ability to maintain similar root‐to‐shoot ratios after 
herbivory are more tolerant than those without this ability (Ashton 
& Lerdau, 2008; Lieurance & Cipollini, 2013). Additionally, plants 
with higher root‐to‐shoot ratios are more tolerant than those with 
lower root‐to‐shoot ratios (Barton, 2013; Hochwender, Marquis, 
& Stowe, 2000; Mabry & Wayne, 1997; Rivera et al., 2012), likely 
due to stored resources in roots and greater nutrient uptake, both 
of which are important to support the increase in growth following 
defoliation (Moreira et al., 2012).

Biomass allocation is an important mechanism of herbivory tol‐
erance (Gassmann, 2004), but there are disagreements related to the 
methods used to measure variation in biomass allocation. Many re‐
lated studies have used the biomass ratios of different plant parts to 
represent biomass allocation. However, it is difficult to distinguish the 
source of the variation: environmental impacts or ontogenetic drift 
(Huang et al., 2009; McConnaughay & Coleman, 1999; Moriuchi & 
Winn, 2005). Numerous studies have indicated that the biomass allo‐
cation patterns of plant organs are size‐dependent (McConnaughay 
& Coleman, 1999; Niinemets, 2004; Wright & McConnaughay, 2002). 
However, many other studies have used proportional changes to 
reflect herbivory tolerance or compare the tolerances of different 
species (Araminiene, Varnagiryte‐Kabašinskiene, & Stakenas, 2017; 
Lurie, Barton, & Daehler, 2017; Stevens et al., 2008; Wang, Bezemer, 
van der Putten, Brinkman, & Biere, 2018; Wang et al., 2017; Zvereva, 
Lanta, & Kozlov, 2010). The ratios used to test biological hypotheses 
may change with plant size and cannot accurately measure the rela‐
tionship between herbivory tolerance and biomass allocation. For ex‐
ample, the results of a previous study indicated that the tolerance and 
biomass allocation of seedlings were different from those of mature 
plants (Barton, 2013), probably because the ratio masked the differ‐
ence in biomass allocation patterns among plants of different sizes.

The relationships among the parts of an organism are often non‐
linear, and most organisms grow allometrically rather than isometri‐
cally over time (Jasienski & Bazzaz, 1999; Niklas & Enquist, 2002a, 
2002b; Sack, Marañón, & Grubb, 2002; Weiner, 2004; Weiner et al., 
2009). Weiner (2004) argued that the relationship between growth 
and allocation should be quantified by allometry and not by ratios 
or proportions. Metabolic theory provides a framework that focuses 
on the relationship between body size and growth‐related phenom‐
ena, including metabolic allocation and biomass partitioning (Enquist, 
Brown, & West, 1998; Enquist & Niklas, 2002; Enquist, West, 
Charnov, & Brown, 1999; Niklas & Enquist, 2002a, 2002b; West, 
Brown, & Enquist, 1997, 1999). According to the theory, the meta‐
bolic rate scales with body size based on a 3/4 scaling exponent in an‐
imals and plants, leading to the predictions that leaf biomass will scale 
as the 3/4 power of stem biomass and root biomass and that stem 
biomass and root biomass will scale isometrically with respect to each 
other. However, allometric exponents are not constant, instead vary‐
ing with different factors (Chen & Li, 2003; Chu et al., 2010; Enquist 
et al., 2007; Mori et al., 2010; Reich, Tjoelker, Machado, & Oleksyn, 
2006; Zhang, Wang, Ji, Fan, & Deng, 2011). Therefore, we used an 
allometric model to distinguish the roles of body size and different 
patterns in the allocation response to the environment, which fur‐
thers our understanding of the herbivory tolerance of plants.

An allometric model was used to study the relationship between 
biomass allocation patterns and herbivory tolerance. We selected 
four species from South China, including two common invasive spe‐
cies and two local species with similar growth forms. We aimed to 
determine whether plant biomass allocation patterns have effects 
on herbivory tolerance. Thus, the study focused on two aspects: 
whether partitioning pattern influences tolerance and whether vari‐
ation in biomass partitioning influences tolerance.
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2  | MATERIAL S AND METHODS

2.1 | Experimental design

A common garden was established for potted plants on the cam‐
pus of Sun Yat‐sen University, Guangzhou, China. The experiment 
included 12 combinations of three levels of defoliation (0%, 25% 
and 50%) and four species (Wedelia trilobata, Mikania micrantha, 
Wedelia chinensis, and Merremia hederacea) and was conducted 
with a split plot design to minimize asymmetric competition for 
light. The 12 combinations were replicated across 25 blocks for a 
total of 300 plants. Each pot contained only one plant, and pots 
were placed adjacent to each other with 0.5  m between pairs. 
Rhizomes were used in our experiments, and the 12 combinations 
were replicated across more than 25 rhizomes to ensure that we 
had sufficient plants. All of the plants were planted on September 
3, 2014, and harvested on December 25, 2014; we cut off shoots 
and then separated them into leaves and stems, and the roots 
were collected from the soil and rinsed. Plants were dried to a 
constant weight at 60°C.

Invasive plants may be more tolerant than native species to her‐
bivores (Ashton & Lerdau, 2008; Wang et al., 2011; Zou, Siemann, 
et al., 2008). Thus, four species of plants (W. chinensis, W. trilobata, 
M.  hederacea, and M.  micrantha) native or invasive to South China 
were selected. Wedelia trilobata and M. micrantha are invasive spe‐
cies that are widely distributed in disturbed areas. Mikania micrantha 
grows rapidly and reproduces by seed production and vegetative 
propagation. Wedelia chinensis and M. hederacea are native species 
that are mainly distributed throughout South China. Merremia hed‐
eracea and M.  micrantha are perennial herbaceous twisting vines, 
and M.  hederacea frequently appears with M.  micrantha. Wedelia 
chinensis and W.  trilobata are perennial herbs with creeping root‐
stocks, and they have low seed production and spread by vegetative 
propagation.

2.2 | Defoliation and tolerance measurements

We used jasmonic acid combined with clipping to simulate her‐
bivory. Two‐thirds of the plants were clipped, and one‐third was left 
as an undefoliated control. We removed 25% of 1/3 of the plants 
and 50% of the other 1/3, and all measurements of these samples 
were taken in October and November of 2014. Herbivory was 
simulated by using scissors, and 1 mmol/L jasmonic acid (M111207; 
Aladdin Chemical Co.) was sprayed onto the plants that were 
clipped (Baldwin, 1996). The plants that had not been clipped were 
sprayed until dripping with solvent (methanol and distilled water) 
instead of jasmonic acid. Jasmonic acid is a natural elicitor of her‐
bivory defences and induces an herbivory response (Thaler, Stout, 
Karban, & Duffey, 1996).

Tolerance was assessed by comparing the mean relative growth 
of the defoliated plants of a given species to that of the undefoliated 
plants of the same species (Stevens et al., 2008; Stowe et al., 2000; 
Strauss & Agrawal, 1999). Tolerance was defined as the growth 

difference between damaged and undamaged plants (Hochwender 
et al., 2000; Tiffin, Rausher, Associate Editors: Thomas, & Joy, 1999).

2.3 | Statistical analyses

We compared the herbivory tolerances of the different species and 
analyzed the allocation of plant biomass and the linear relationship 
between the allocation of plant biomass and herbivory tolerance of 
the plants. Tolerance was calculated as the biomass difference be‐
tween damaged and undamaged plants at the end of the experiment 
(Strauss & Agrawal, 1999). We compared the biomass of damaged 
plants to the average biomass of undamaged plants of the same spe‐
cies. The difference in tolerance was analyzed using a linear mixed 
model in which species and the degree of defoliation were consid‐
ered fixed effects and block was considered a random effect. We fit 
linear mixed‐effects models using the “Eigen” and S4 (lme4) pack‐
ages in R (R version 3.3.0; R Foundation for Statistical Computing).

A standardized major axis (SMA) regression analysis was used to 
test the log10Y‐log10X scaling relationship. The allometric exponent 
(b) was computed using the formula Y = aXb, where a is a normal‐
ization constant that varies with Y and the kind of organism, which 
was changed to log10Y = b•log10X + log10a. The SMA slope heteroge‐
neity for biomass allocation was determined using the Standardized 
Major Axis Estimation and Testing Routines (SMATR) package of R 
(Bates, Machler, Bolker, & Walker, 2015; Warton, Duursma, Falster, 
& Taskinen, 2012). SMA regression was used to explore the rela‐
tionships between different plant organs and whole plants, where 
different slopes represented the relationship between biomass allo‐
cation and herbivory. In this study, we wanted to test for variation 
in biomass allocation among species and within species exposed to 
different treatments. Different slopes indicate that the relationship 
between the given variable and biomass allocation is influenced by 
herbivory. Equal slopes among treatments indicate that the relation‐
ship between the given variable and biomass allocation remains the 
same at different herbivory levels, that is, biomass allocation is a 
function of only plant size.

To assess the relationship between tolerance and biomass allo‐
cation, we analyzed the relationships between tolerance score and 
the slope of the allometric relationship of plant organs and whole 
plants and calculated the correlation coefficients between them. To 
compare the biomass ratio with the allometric index, we analyzed 
variation in the ratios of plant‐part biomass to whole‐plant biomass 
and used linear regression to determine the relationships between 
tolerance score and the ratios.

3  | RESULTS

3.1 | Tolerance

The two invasive plants were more tolerant than the native plants, 
and the vines were more tolerant than the plants with creeping root‐
stocks (Figure 1). Among the four species, M. hederacea had the high‐
est tolerance score, and W. chinensis showed the lowest tolerance 
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score. There was no significant difference between the two invasive 
plants, namely, M. micrantha and W. trilobata. In terms of life form, 
the tolerance scores of the vines were approximately 38% higher 
than those of the plants with creeping rootstocks. Our results sup‐
ported the idea that invasive species are not always more tolerant 
than native species to herbivory (Ashton & Lerdau, 2008; Wang et 
al., 2011; Zou, Siemann, et al., 2008). The tolerance of W. trilobata 
was higher than that of W.  chinensis (by approximately 40%), but 
for the vines, the tolerance of the native species M. micrantha was 
higher than that of the invasive species (by 26%).

3.2 | Allometric exponent

We compared the allometric exponents of different organs to those 
of the whole plant for the four species, and the exponents ranged 
widely from 0.79 to 1.4 (Table 1). The largest allometric exponent 
for leaves occurred in M. hederacea, while the smallest occurred in 
W. chinensis. Conversely, the largest allometric exponent for stems 
occurred in W. chinensis, while the smallest occurred in W. chinensis. 
The largest allometric exponent for roots occurred in M. micrantha, 
while the smallest occurred in W. trilobata. The allometric relation‐
ships between leaves and whole plants differed markedly between 
all species pairs except M. micrantha and M. hederacea. Similarly, the 
stem exhibited similar trends in all four species except M.  micran‐
tha and W. trilobata. Conversely, the allometric relationship between 
roots and whole plants differed only between M.  micrantha and 
W. chinensis.

In terms of life form, there were no significant differences be‐
tween the two vine plants, but the allometry of biomass allocation 
to leaves, stems, and roots by the plants with creeping rootstocks 
was affected by the treatment (Figure 2). The allometry of biomass 
allocation to leaves and stems differed between the treatment and 
the control for W. chinensis. For the invasive plants, the allocation to 
leaves and stems in W. trilobata was not affected by the treatment, 

F I G U R E  1  Comparison of the tolerance scores for four species; 
each bar represents the average tolerance score of two levels for 
one species. A two‐factor linear mixed model was used to assess 
the species and herbivore levels (95% confidence interval)
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but the allocation to roots differed between the treatment and the 
control, with less biomass allocated to roots as herbivory increased. 
In the two vine plants, there were no significant differences be‐
tween the treatment and the control.

3.3 | Relationship between tolerance and the 
allometric exponent

The relationship between the allometry of biomass allocation and 
tolerance was regressed for the four species and two treatments. 
The allometric exponent of biomass allocation to leaves was posi‐
tively correlated with the tolerance score, but that to stems was 
negatively correlated with tolerance. There was no significant rela‐
tionship between root biomass allocation and tolerance. The ratio 
and tolerance results were similar, but none of the relationships were 
significant (Figure 3).

4  | DISCUSSION

According to our results, the allometric scaling relationship is related 
to the herbivory tolerance score, and there is no correlation between 

the partitioning ratio and herbivory tolerance (Figure 3). Different 
parts have distinct effects on tolerance. Herbivory tolerance is posi‐
tively correlated with leaf mass allocation and negatively correlated 
with stem mass allocation but is not related to root biomass. The 
partitioning of biomass in roots is related to the herbivory tolerance 
of herbs (Hochwender et al., 2000; Moreira et al., 2012); however, 
tolerance is also related to stems and leaves (Pratt, Rayamajhi, Van, 
Center, & Tipping, 2005; Stevens et al., 2008). Stevens et al. (2008) 
showed that herbivory tolerance was positively correlated with stem 
biomass allocation and negatively correlated with root biomass allo‐
cation in woody plants. Our results are different from the results of 
research on herbs and woody plants, and the possible causes of this 
difference are that the previous studies ignored the effects of body 
size on the biomass partitioning ratio and mainly focused on woody 
plants and herbs, whereas little such research has been conducted 
on vines. The mechanisms used to tolerate herbivore damage in‐
clude photosynthetic activity (Gassmann, 2004; Li, Luo, Tian, Peng, 
& Zhou, 2012; Li, Tian, Luo, Dai, & Peng, 2012) and stored reserves 
(Boege, 2005; Newingham, Callaway, & BassiriRad, 2007; Thomas, 
Abbott, & Moloney, 2017; Wang et al., 2018, 2017). In response to 
herbivore damage, plants allocate more resources to photosynthe‐
sis, which leads to greater biomass allocation to leaves, indicating 

F I G U R E  2  Values of allometric exponent and slope in different defoliation level. Bars represent the allometric exponent (slope)/ratio for 
the parts and whole plants to leaves, roots, and stems between damaged and undamaged groups for four species
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that vines tend to improve their photosynthetic activities to enhance 
herbivory tolerance. Stems are thought to be the primary source of 
nonstructural carbohydrates (TNCs) in plants (Barton, 2016; Myers 
& Kitajima, 2007; Willaume & Pagès, 2011). Less partitioning to 
stems indicates the utilization of TNCs (Chapin & McNaughton, 
1989; Van Der Heyden & Stock, 1996) and reduces the limitation 
caused by transfer of resources from undamaged areas to damaged 
areas in longer stems. Divergence in the relationship between bio‐
mass partitioning and herbivory tolerance is also due to differences 
in environmental factors, life forms, conditions, and indicators.

Herbivores influence plant biomass partitioning to various de‐
grees. Niklas and Enquist (2002a, 2002b) used allometric theory to 
predict that the scaling relationship of three organic growth rates 
was isometric, and an allometric scaling relationship was used to 
describe the biomass partitioning for these three parts. Many en‐
vironmental factors, including biological factors and nonbiological 
factors, can influence the allometric exponent (Chu et al., 2010; 
Deng et al., 2008; Lin, Berger, Grimm, Huth, & Weiner, 2013), and 
the allometric scaling relationship between body size and metabolic 
rate is not fixed (Chu et al., 2010; Glazier, 2010). Variation in the 
allometric relationships between the three parts and plant biomass 
can reflect variation in patterns of biomass allocation under chang‐
ing conditions. Thus, our results (Figure 2) indicated that plants 
with less allometric exponent variation after damage exhibited less 
variation in their biomass allocation pattern; these plants also had 
higher tolerance than those with more allometric exponent varia‐
tion. A change in the allometry of biomass allocation to leaves and 

stems occurred in W. chinensis, but the biomass allocation to roots in 
W. trilobata differed between treatments. The allometric exponent 
of the vines was not influenced by herbivory, potentially because 
species with higher tolerance scores often have stronger abilities to 
transfer resources from undamaged areas to damaged areas (Irwin, 
Galen, Rabenold, Kaczorowski, & McCutcheon, 2008) and recover 
their original allocation pattern (Ashton & Lerdau, 2008; Lieurance & 
Cipollini, 2013). Our results confirm the hypothesis in which species 
(except W. chinensis) reallocate biomass to different parts to main‐
tain a similar structure after damage, and W. chinensis has a lower 
tolerance than the other species. The results of the regression re‐
vealed no relationship between root partitioning and tolerance. The 
root biomass of W. trilobata was also affected by herbivory, but this 
species has a relatively high tolerance score, which also illustrates 
that herbivore tolerance is not influenced by variation in the parti‐
tioning pattern of roots.

Our results suggested that the allometric exponent reflects the 
relationship between biomass allocation pattern and herbivory tol‐
erance better than does the biomass ratio. Allocation is size‐depen‐
dent, and allocation patterns can be thought of in an allometric way 
and are a function of body size (Price et al., 2012; Sibly, Brown, & 
Kodric‐Brown, 2012). Ratios were used to reflect the allocation pat‐
terns of plants in previous research, but the changes in the ratios of 
different parts observed here are attributed to changes in body size 
or allocation patterns, and we cannot be certain that the imposed 
treatment did not influence the allocation patterns of the plants. 
Weiner et al. (2009) explored the relationship between vegetative 

F I G U R E  3  Correlations between tolerance (difference between the biomass of damaged and undamaged plants) and the allometric 
relationship ratios of plant parts and whole plants to leaves, roots, and stems for four species. b is the of slope two various (allometry 
exponent), the each point represents the mean response of the tolerance and allometric slope for each defoliation level of a single species. 
Solid line represents there are significant differences for test of the regression, dashed line represents there is no significant difference for 
test of the regression
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and reproductive structures using an allometric model and found 
that the reproductive biomass ratio changed at different nutrient 
levels; however, there was no variation in the allometric exponent. 
This result indicates that the change in plant size caused the change 
in the reproductive biomass ratio at different nutrient levels, and 
the invariance of the allometric exponent reflects the invariance 
of the allocation pattern. A change in the biomass ratio cannot re‐
flect the influence of nutrient levels on allocation patterns; similarly, 
when plants experience herbivory, the ratio changes may mask the 
changes in plant biomass allocation to different parts and the rela‐
tionships between different parts. The patterns of variation in the 
allometric exponent and tolerance were similar, but the ratio results 
did not change in line with the tolerance patterns (Figure 1, Table 1). 
Our results suggest that an allometric model is better than ratios to 
reflect the herbivory tolerance of plants.

Ontogenetic drift and response to the environment cooperate 
to influence the development of organs (Niklas, 2006), and envi‐
ronmental selection can change the developmental trajectories 
of organs and delay their growth in resource‐poor environments. 
Therefore, it is necessary to distinguish the changes in biological 
characteristics caused by changes in ontogenetic trajectory from 
those caused by changes in plant size. The allometric relationship 
of biomass partitioning can reflect the effects of environmental 
factors on plants, and some studies have shown that the allometric 
trajectory is plastic (Weiner, 2004). Numerous studies have eval‐
uated whether allocation patterns are influenced by experimental 
measurements of allometry (Achten et al., 2010; Guo et al., 2012; 
Hulshof, Stegen, Swenson, Enquist, & Enquist, 2012; Poorter, 2001; 
Preston & Ackerly, 2003; Qin, Weiner, Qi, Xiong, & Li, 2013). Xie, 
Tang, Wang, Xu, and Li (2012) discussed the influence of soil tex‐
ture on plant biomass allocation. Guo et al. (2012) compared the al‐
lometric relationships of reproductive and vegetative mass for 24 
species of Pedicularis at different elevations, reporting fundamental 
changes in the costs and benefits of increased vegetative biomass 
with elevation.

Invasive species were not always more tolerant than native 
species in our experiment. The enemy release hypothesis (ERH) 
and evolution of increased competitive ability (EICA) hypoth‐
esis (Blossey & Notzold, 1995; Keane & Crawley, 2002; Shea & 
Chesson, 2002; Williamson, 1996) suggest that invasive plants, 
which escape from their enemies, are often more tolerant than na‐
tive species (Ashton & Lerdau, 2008; Wang et al., 2018, 2011; Zou, 
Rogers, & Siemann, 2008; Zou, Siemann, et al., 2008). However, 
some studies have drawn different conclusions. Lurie et al. (2017) 
researched the resistance and tolerance of 12 groups of native, 
invasive, and naturalized vines and found that invasive vines were 
more tolerant than native and naturalized relatives of simulated 
herbivory. Our results also showed that invasive plants were more 
tolerant than native plants on average, but the invasive species did 
not always have higher tolerance scores than the native species. 
Merremia hederacea was more tolerant than M. micrantha, but the 
native species W.  trilobata was much more tolerant than the in‐
vasive species W. chinensis. Generally, invasive plants have faster 

growth rates and the ability to compensate for and maintain simi‐
lar root/shoot ratios after damage (Ashton & Lerdau, 2008; Gard, 
Bretagnolle, Dessaint, & Laitung, 2013). In our study, some of the 
native species were more tolerant than the invasive species, likely 
due to the properties of the plants or other abilities of invasive 
species, such as herbivore resistance or allelopathy (Barton, 2016).

This study indicates that an allometric model provides a better 
approach than other methods for examining the relationship be‐
tween biomass allocation and herbivory tolerance, investment in 
leaves is an important mechanism of tolerance, and investments in 
stems and roots do not improve tolerance in vines or creeping herbs. 
Additionally, the results indicate that investment in photosynthesis 
is related to the mechanisms used by plants to tolerate herbivory. 
Moreover, plants with invariant biomass allocation patterns may be 
more tolerant. Our experiment also revealed that the allometric ex‐
ponent accurately reflects the effects of herbivory on biomass al‐
location patterns and can thus be used to assess the relationship 
between biomass partitioning pattern and herbivory tolerance. 
Therefore, the allometric model is more suitable than other methods 
for studying the mechanism of herbivory tolerance and is helpful for 
understanding the mechanics of herbivory tolerance. We studied 
the relationship between herbivory tolerance and biomass allocation 
with a different approach and different study species. Therefore, our 
results are different from those of other studies, and it is necessary 
to compare our results and methods with those of previous studies 
in the future. Because the allometric model removed the effect of 
plant size on the allocation pattern, the scope of this study included 
more than the responses of plants to herbivory, and it is important 
to determine the responses of plants to other circumstances and 
factors.
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