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Abstract

Background

There is growing evidence of a strong relationship between COVID-19 and myocarditis.

However, there are few bioinformatics-based analyses of critical genes and the mecha-

nisms related to COVID-19 Myocarditis. This study aimed to identify critical genes related to

COVID-19 Myocarditis by bioinformatic methods, explore the biological mechanisms and

gene regulatory networks, and probe related drugs.

Methods

The gene expression data of GSE150392 and GSE167028 were obtained from the Gene

Expression Omnibus (GEO), including cardiomyocytes derived from human induced plurip-

otent stem cells infected with SARS-CoV-2 in vitro and GSE150392 from patients with myo-

carditis infected with SARS-CoV-2 and the GSE167028 gene expression dataset.

Differentially expressed genes (DEGs) (adjusted P-Value <0.01 and |Log2 Fold Change|

�2) in GSE150392 were assessed by NetworkAnalyst 3.0. Meanwhile, significant modular

genes in GSE167028 were identified by weighted gene correlation network analysis

(WGCNA) and overlapped with DEGs to obtain common genes. Functional enrichment

analyses were performed by using the "clusterProfiler" package in the R software, and pro-

tein-protein interaction (PPI) networks were constructed on the STRING website (https://cn.

string-db.org/). Critical genes were identified by the CytoHubba plugin of Cytoscape by 5

algorithms. Transcription factor-gene (TF-gene) and Transcription factor-microRibonucleic
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acid (TF-miRNA) coregulatory networks construction were performed by NetworkAnalyst

3.0 and displayed in Cytoscape. Finally, Drug Signatures Database (DSigDB) was used to

probe drugs associated with COVID-19 Myocarditis.

Results

Totally 850 DEGs (including 449 up-regulated and 401 down-regulated genes) and 159 sig-

nificant genes in turquoise modules were identified from GSE150392 and GSE167028,

respectively. Functional enrichment analysis indicated that common genes were mainly

enriched in biological processes such as cell cycle and ubiquitin-protein hydrolysis. 6 genes

(CDK1, KIF20A, PBK, KIF2C, CDC20, UBE2C) were identified as critical genes. TF-gene

interactions and TF-miRNA coregulatory network were constructed successfully. A total of

10 drugs, (such as Etoposide, Methotrexate, Troglitazone, etc) were considered as target

drugs for COVID-19 Myocarditis.

Conclusions

Through bioinformatics method analysis, this study provides a new perspective to explore

the pathogenesis, gene regulatory networks and provide drug compounds as a reference

for COVID-19 Myocarditis. It is worth highlighting that critical genes (CDK1, KIF20A, PBK,

KIF2C, CDC20, UBE2C) may be potential biomarkers and treatment targets of COVID-19

Myocarditis for future study.

Introduction

Coronavirus disease 2019 (COVID-19) has been defined as a global pandemic by the WHO

since March 2020 and is still ravaging the world with high morbidity and mortality. Globally,

as of 5:20 pm CET, 18 February 2022, there have been 418,650,474 confirmed cases of

COVID-19, including 5,856,224 deaths, reported to WHO (https://covid19.who.int). The com-

mon clinical manifestations of SARS-CoV-2 infection are pneumonia, fever, cough, myalgia,

and fatigue, and in severe cases, respiratory distress and lymphopenia, with complications

including respiratory distress syndrome, secondary infections, and acute heart injury [1].

Numerous studies have shown that [2–4] ACE2 is one of the potential pathogenic targets of

SARS-CoV-2 which uses serine protease to activate the S protein to bind to the ACE2 receptor

of the cell and enter the cell for virus transmission [5]. ACE2 is broadly expressed in various

tissues including the lung, heart, and kidney [6–8], which make these tissues at a higher risk of

infection with the new coronavirus. Further studies showed that SARS-CoV-2 binding to

receptor proteins in target cells resulted in reduced ACE2 expression levels [9] (low levels of

ACE2 are a risk factor for heart disease [6]) and TLR4 activation is a potential mechanism

leading to cardiac diseases, especially myocarditis [10]. This is consistent with the prevalence

of myocardial injury in COVID-19 patients [11, 12].

With the increase in clinical cases [13, 14] and reported deaths [15] of SARS-CoV-2 associ-

ated respiratory and cardiac complications, people increased interest in COVID-19 Myocardi-

tis. However, in clinical practice, the diagnosis of COVID-19 Myocarditis is not well

established, and the biological pathways associated with the two are not fully understood,

which has caused widespread concern in the medical community [16, 17].
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Generally, myocarditis is caused by various viral infections, poisoning, and immune reac-

tions [18]. Although endomyocardial biopsy (EMB) is the gold standard for the diagnosis of

myocarditis, it is limited by the level of medical facilities [19] and the requirements of epidemic

prevention and control, and there is evidence that EMB has the potential to further aggravate

the patient’s condition [17]. On the other hand, a large number of mildly ill patients with clini-

cal symptoms suspicious of COVID-19 Myocarditis are often advised to use non-invasive diag-

nostic tools such as cardiac magnetic resonance imaging; cardiac magnetic resonance (CMR)

imaging is the current non-invasive diagnostic tool for patients with suspected myocarditis

[20]. However, for patients with chronic myocarditis, the diagnostic performance of CMR is

poor. These add to the difficulty of clarifying the diagnosis of COVID-19 myocarditis [17].

Physicians are often limited to vague diagnoses in clinical decision-making, which may

account for the low diagnosis rate of COVID-19 Myocarditis [16]. Consequently, there is a

strong need to explore valid, objective, and reliable biomarkers, such as mRNA and protein

markers that can be used to diagnose COVID-19 Myocarditis and to explore the pathogenesis

of COVID-19 Myocarditis to lay the foundation for further treatment.

Although a large number of antiviral drugs are currently used in the treatment of COVID-

19. However, clinical efficacy data for antivirals in patients with COVID-19 Myocarditis are

lacking [17]. At present, it is urgent to explore drugs related to the treatment of COVID-19

Myocarditis.

High-throughput screening offers the possibility to screen for mRNA and protein diagnos-

tic markers, clarify biological pathways and relationships in COVID-19 and myocarditis, and

screen for gene-targeted drugs.

Our study was conducted by downloading differential analysis of SARS-CoV-2 infected car-

diac stem cell data from the GEO database, performing weighted gene correlation network

analysis (WGCNA) on human myocarditis dataset to identify disease-related modules and

associated genes, and matching with the DEGs to identify the common genes. Kyoto Encyclo-

pedia of Genes and Genomes (KEGG) pathway analysis and Gene Ontology (GO) analysis

were performed for the common genes to identify potential biological pathways and pathogen-

esis. The PPI networks were constructed to screen out critical genes and proteins to clarify dis-

ease diagnostic markers to screen out small molecule drugs based on critical genes.

Subsequently, based on critical genes, the TF-gene networks and TF-miRNA coregulatory net-

works were studied for related pathway analysis to lay the foundation for further research and

clinical diagnosis and treatment of COVID-19 Myocarditis.

The flow chart for this study is presented in Fig 1.

Materials and methods

RNA-sequencing data collection

Dataset related to SARS-CoV-2 infected cardiomyocytes was obtained from the Gene Expres-

sion Omnibus (GEO) datasets (https://www.ncbi.nlm.nih.gov/gds/) with accession number

GSE150392(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE150392) [21, 22] which

from GPL18573 Illumina NextSeq 500 (Homo sapiens). There were 6 groups of the

GSE150392 dataset, including SARS-CoV-2 infected human induced pluripotent stem cell-

derived cardiomyocytes (hiPSC-CMs) groups (n = 3) and Mock hiPSC-CMs (n = 3) groups.

Identification of the DEGs from GSE150392 dataset

NetworkAnalyst 3.0 (https://www.networkanalyst.ca) [23] is a user-friendly online bioinfor-

matics tool for performing comprehensive gene expression analyses, meta-analyses, and net-

work analyses, which agrees with five data inputs, including one or multiple gene lists, single
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or multiple gene expression data, raw RNA-seq reads, and serial matrix files. This potent

online visualization tool integrates transcription factor-gene interaction networks, RNA-gene

interaction networks, and other biological regulatory networks which includes data process-

ing, analysis and data update, integrated knowledge base, and synergistic visualization

analysis.

GSE150392 dataset was uploaded to the NetworkAnalyst 3.0 for screening and normalizing.

The adjusted P-Value (adj P Val) was analyzed to correct for false-positive results in GEO data-

sets. “adj P Val <0.01 and |Log2 Fold Change|�2” were set as the threshold values to screen

the differential expression of mRNAs. Circular heatmap and gradient volcano plot were gener-

ated by using the “gheatmap” function of the R package “ggtree” (version 3.2.1) and “ggplot2”

(version 3.3.5), respectively.

Weighted correlation network analysis (WGCNA) and matching common

genes

WGCNA is a systems biology approach to characterize correlation patterns between genes in

microarray samples [24]. This analysis method is designed to find co-expressed gene modules,

Fig 1. Workflow chart of this study. WGCNA, weighted gene correlation network analysis; DEGs, differentially

expressed genes; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; TF, Transcription factor;

miRNA, microRibonucleic acid.

https://doi.org/10.1371/journal.pone.0269386.g001
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explore the associations between gene networks and phenotypes of interest, and core genes in

the network, and this approach is used to identify candidate biomarkers or therapeutic targets.

The normalized gene expression data were downloaded from GSE167028 (https://www.

ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE167028) dataset, which included 32 samples and

used to construct a co-expression network by using WGCNA (version 1.7.3) package [24] in

R-4.1.1. To be clear, WGCNA package doesn’t recommend attempting WGCNA on a data set

consisting of fewer than 15 samples. If at all possible, one should have at least 20 samples. We

eliminated the KD groups, divided the COVID-19 positive samples into the disease groups,

and combined the remaining samples as control groups to maintain study consistency.

According to the correlation of the trait genes, the neighborhood degree of the trait genes

was calculated to investigate the co-expression similarity of each module. To identify the asso-

ciation between the general expression module and the clinical group, the p-value, and the cor-

relation coefficient were calculated to visualize the characteristic heatmap of the modules.

Modules with a p-value< 0.05 were considered significant.

Finally, a Venn diagram summarizing the overlapping DEGs and significant module genes

was generated by using the OmicShare online tool (https://www.omicshare.com).

Functional enrichment analysis

Gene Ontology (GO) is a widely-used tool to annotate the functions of genes, especially biolog-

ical pathways (BP), cellular components (CC), and molecular function (MF) [25]. KEGG

Enrichment Analysis is a practical resource for analyzing gene function and related high-level

genomic function information [26, 27].

GO pathway analysis of common genes was performed using the R package org.Hs.eg.db

(version 3.1.0) as background. Meanwhile, the KEGG pathway gene annotations (c2.cp.kegg.

v7.4.symbols.gmt subset) were obtained from the Molecular Signatures Database [28] to per-

form the KEGG pathway analysis. In addition, the gene set enrichment results were obtained

by using the R package clusterProfiler (version 3.14.3). GO terms and KEGG pathways with P-

value<0.05 were considered as a significant enrichment.

PPI network construction to identify critical genes and module analysis

The protein-protein interaction (PPI) network was constructed through the STRING (v11.5;

https://cn.string-db.org), a web-based tool for detecting protein interactions by uploading the

gene dataset [29, 30]. In this study, the interaction score was set at 0.4. Subsequently, the PPI

network data was exported into Cytoscape version 3.7.2 for analysis and visualization.

CytoHybba(https://apps.cytoscape.org/apps/cytoHubba/), a plug-in of Cytoscape software,

was used to get the top ten genes through 5 different algorithms: Degree, EPC, Closeness,

Betweenness, and Stress, separately [31, 32]. The intersecting genes obtained by the above five

methods were considered as critical genes and displayed in the form of a Venn diagram gener-

ated by the R package “ggVennDiagram” (version 1.2.0) based on the “ggplot2” (version 3.3.5)

package of R [33].

TF-gene networks and TF-miRNA coregulatory networks construction

TF regulates gene expression by binding to specific regions of genes to form feedforward and

feedback loops involved in a variety of biological processes and disease processes [34]. On the

other hand, TF binds to miRNAs to co-regulate gene expression [35]. In our study, based on

critical genes, TF-gene networks and TF-miRNA coregulatory networks were identified by

NetworkAnalyst 3.0 (https://www.networkanalyst.ca) [23]. In subsequent work, gene regula-

tory networks were imported into the Cytoscape 3.7.2 for visualization and analysis.
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Identification of target drugs associated with COVID-19 myocarditis

The Drug Signatures Database (DSigDB) is an online gene set linking drugs and their target

genes which contains 22 527 gene sets, consists of 17 389 unique compounds, and covers 19

531 genes [36]. The Enrichr (https://maayanlab.cloud/Enrichr/) website provides links to

access to the DSigDB. In this study, critical genes were uploaded to the Enricher website to

identify the drugs associated with COVID-19 Myocarditis.

Results

Identification of COVID-19 myocarditis related DEGs

The GSE150392 dataset contains 3 SARS-CoV-2 infected pluripotent stem cell-derived cardio-

myocytes (hiPSC-CMs) and 3 Mock pluripotent stem cell-derived cardiomyocytes

(hiPSC-CMs) for identification of DEGs in COVID-19 Myocarditis. Under the screening cri-

teria, 850 DEGs were obtained, including 449 up-regulated and 401 down-regulated genes

(data in S1 Text).

A gradient volcano plot was exhibited in Fig 2A, which showed the upregulated and down-

regulated genes that varied as the expression fold changes for the GSE150392 dataset [37]. A

circular heatmap exhibited the top 40 DEGs in Fig 2B, while the top 10 DEGs’ details were

shown in Table 1.

Identification of COVID-19 myocarditis associated modules by WGCNA

In this study, we constructed a co-expression network for normalized gene expression data of

the GSE167028 dataset by the WGCNA package (version 1.7.3) in the R application. The soft

threshold was set to 20 to fit a scale-free network and the maximum mean connectivity, while

the scale-free R^2 was 0.88 (Fig 3A). Meanwhile, a total of 10 co-expression modules, each

with more than 80 genes, were identified using the DynamicTreeCut method (Fig 3B). Among

Fig 2. Identification of differentially expressed genes in the GSE150392 dataset by differential analysis. (A) The circular heatmap exhibited

the top 40 DEGs sorted by the Log2 FC for the GSE150392 dataset. (B) DEGs in the gradient volcano plot. The top 10 genes were labeled on the

plot which was sorted by the Log2 FC and most of them were upregulated (except KCNIP2 and PGAM2 which were downregulated). Two vertical

lines indicated |Log2 FoldChange|�2, severally, and the horizontal line indicated the adj P Val of 0.01. The color of the plots represents the Log2

FoldChange levels [37]. DEGs, differentially expressed genes; FC, fold change; adj P Val, adjusted P-Value.

https://doi.org/10.1371/journal.pone.0269386.g002
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the 10 significant modules (Fig 3C), the lightcyan, turquoise (r = 0.15, p = 0.0019, Fig 3D),

black, darkred modules were positively related to COVID-19 Myocarditis, whereas the green,

brown, lightyellow, cyan, pink, and grey modules were negatively associated with COVID-19

Myocarditis. Nevertheless, only the turquoise module met the criteria which had a p-value of

0.04 (except for the gray module, which contained high amounts of un-classified genes).

Therefore, this module was identified as a significant module for further analysis.

We calculated the expression correlation of module feature vectors with genes to obtain

module membership (MM) and gene significance (GS). Based on the cut-off criteria |MM| >

0.8 and |GS|>0.2, 159 of 427 genes with high connectivity in the turquoise module were

identified.

Ultimately, 46 common genes were obtained by intersecting with the DEGs of GSE150392

and the genes in the turquoise module of GSE167028 (Fig 4, data in S2 Text).

Gene function annotations of COVID-19 myocarditis related the common

genes

After obtaining common genes with COVID-19 Myocarditis, GO enrichment and KEGG

pathway analysis were performed to understand the biological pathways. The top ten Go terms

for biological process, cellular component and molecular function were shown in Table 2 and

Fig 5A–5C. The data of GO terms indicated that the common genes were significantly

enhanced in cell cycle/division and mitotic cell cycle of biological process. Cellular compo-

nents revealed significant involvement of microtubule cytoskeleton and chromosome in com-

mon genes. For the molecular function subsection, it was apparent that ATP binding was

involved in the common genes.

The next section of the functional enrichment analysis was concerned with the KEGG anal-

ysis which was demonstrated in Table 3 and Fig 5D. KEGG analysis found that common genes

were mainly enriched in the cell cycle, oocyte meiosis, progesterone mediated oocyte matura-

tion, ubiquitin mediated proteolysis, and mismatch repair.

Construction of a PPI network and identification of critical genes

Among these 46 common genes, a PPI network (46 nodes and 778 edges) was generated by

STRRING (v11.5; https://cn.string-db.org). Thereafter, the network was imported into the

Cytoscape version 3.7.2 for analysis and visualization. Based on 5 algorithms of the CytoHubba

plug-in, six genes (CDK1, KIF20A, PBK, KIF2C, CDC20, UBE2C) were confirmed as critical

genes related to COVID-19 Myocarditis (Fig 6). All topological features of critical genes were

Table 1. The top ten differentially expressed genes (DEGs) in the GSE150392 dataset.

Gene Log2FoldChange P-value Adj P Value Regulate

IL11 7.6191 1.03E-52 5.49E-49 Up

ANGPTL4 6.1073 2.08E-42 3.33E-39 Up

MX1 6.101 2.39E-33 1.37E-30 Up

IFNB1 6.0943 3.20E-19 4.80E-17 Up

LTA 5.9337 4.18E-19 6.10E-17 Up

IL1B 5.9318 1.43E-34 8.85E-32 Up

KCNIP2 -5.7287 8.10E-44 2.17E-40 Down

OSM 5.5858 4.27E-22 8.78E-20 Up

PGAM2 -5.5819 1.84E-34 1.10E-31 Down

CA9 5.5093 7.12E-37 7.62E-34 Up

https://doi.org/10.1371/journal.pone.0269386.t001
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Fig 3. Identification of significant modules and genes of GSE167028 by WGCNA. (A) Network topology analysis with different soft

thresholds. The scale-free R^2 was 0.88 and the soft threshold was 20. (B) A cluster dendrogram of module-specific colors showed 10 co-

expressed gene modules, each containing more than 80 genes. (C) Correlation between disease groupings and gene modules. (D) The

scatter plot of Gene significance vs Module membership in the turquoise co-expression module.

https://doi.org/10.1371/journal.pone.0269386.g003
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shown in Table 4. Since these critical genes may be potential biomarkers, they may provide a

reference for the diagnosis and treatment of COVID-19 Myocarditis.

Identification of gene regulatory networks related to critical genes

NetworkAnalyst 3.0 was used to identify the TF-gene networks and TF-miRNA coregulatory

networks based on critical genes which were visualized in Fig 8A, 8B.

The TF-gene networks comprised 136 nodes and 185 edges. The entire network consists of

130 TF genes and 6 critical genes. CDC20 was regulated by 55 TF genes and KIF2C was regu-

lated by 52 TF genes. In addition, 130 TF genes regulated more than one common gene, which

indicated that TF genes were highly regulatory of critical genes. Interestingly, we found that

GTF2E2 had high connectivity in the TF-gene regulatory network, regulating four critical

genes simultaneously. Fig 7 showed the TF-gene networks.

On the contrary, the TF-miRNA coregulatory networks consist of two parts, one including

83 nodes and 85 edges, and the other including 13 nodes and 12 edges which were shown in

Fig 8. A total of 25 miRNAs and 64 TF genes co-regulated critical genes.

Identification of target drugs associated with COVID-19 myocarditis

Based on critical genes, the drugs related to the COVID-19 Myocarditis were identified by the

DSigDB database that was built on the Enrichr website. In the integration of the DSigDB data-

set, 308 drug compounds were identified (data in S5 Text). Finally, the top ten drug com-

pounds were screened according to the p-value. Etoposide and methotrexate are two notable

genetically linked drug compounds. Meanwhile, CDC20 and KIF2C were associated with the

most drug compounds, suggesting that they act prominent roles in drug efficacy. Table 5

showed information on potentially effective drug compounds for COVID-19 Myocarditis.

Fig 4. The intersection of DEGs in the GSE150392 dataset and turquoise module genes in the GSE167028. There

were 850 DEGs in the GSE150392 dataset and 159 genes in the turquoise module of the GSE167028 dataset, and 150

genes were obtained as common genes by overlapping the two datasets.

https://doi.org/10.1371/journal.pone.0269386.g004
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Discussion

As previously described, a large number of patients with myocarditis were identified during

clinical treatment of COVID-19. However, the understanding of COVID-19 and myocarditis

is insufficient, and many patients with COVID-19 Myocarditis are not properly diagnosed and

well treated. To our knowledge, research on the key genes and pathways by bioinformatics

methods between COVID-19 and myocarditis has hardly been reported. The present study

was designed to elaborate on the bioinformatics lessons about the key genes and pathways

between COVID-19 and myocarditis.

In our study, 850 DEGs and 159 significant module genes from GSE150392 and

GSE167028 were identified by bioinformatics-related methods, respectively. For constructing

the relationship of the COVID-19 and myocarditis, 46 common genes were overlapped. The

remaining studies were functional enrichment analysis, PPI network construction, TF-gene

networks, TF-miRNA coregulatory networks construction, and gene targeting drug screening

[38]. Eventually, 6 genes (CDK1, KIF20A, PBK, KIF2C, CDC20, UBE2C) were identified by

CytoHubba plug-in of Cytoscape as critical genes of COVID-19 Myocarditis for future study.

Table 2. GO category, GO description, GO ID, and their corresponding P-value.

Category Description GO ID P-value

BP cell cycle GO:0007049 1.31E-23

BP cell division GO:0051301 3.12E-23

BP mitotic cell cycle GO:0000278 1.33E-22

BP chromosome segregation GO:0007059 9.27E-22

BP mitotic cell cycle process GO:1903047 3.41E-21

BP cell cycle process GO:0022402 1.86E-20

BP mitotic nuclear division GO:0140014 1.59E-19

BP sister chromatid segregation GO:0000819 8.04E-19

BP nuclear division GO:0000280 3.57E-18

BP mitotic sister chromatid segregation GO:0000070 4.42E-18

CC chromosome, centromeric region GO:0000775 9.69E-18

CC condensed chromosome GO:0000793 2.73E-17

CC kinetochore GO:0000776 2.7E-16

CC chromosomal region GO:0098687 1.59E-15

CC condensed chromosome, centromeric region GO:0000779 1.99E-15

CC condensed chromosome kinetochore GO:0000777 4.25E-14

CC microtubule cytoskeleton GO:0015630 3.45E-12

CC chromosome GO:0005694 5.64E-12

CC chromosomal part GO:0044427 7.3E-12

CC Ndc80 complex GO:0031262 3.22E-11

MF ATP binding GO:0005524 0.000143

MF kinase binding GO:0019900 0.00016

MF anaphase-promoting complex binding GO:0010997 0.000166

MF adenyl ribonucleotide binding GO:0032559 0.000198

MF adenyl nucleotide binding GO:0030554 0.000207

MF drug binding GO:0008144 0.000496

MF histone kinase activity GO:0035173 0.000534

MF chromatin binding GO:0003682 0.000674

MF purine ribonucleoside triphosphate binding GO:0035639 0.000737

MF purine ribonucleotide binding GO:0032555 0.00099

https://doi.org/10.1371/journal.pone.0269386.t002
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Based on the common genes, GO terms were identified as a threshold of P-value of< 0.05.

According to biological process, the top ten GO terms were cell cycle, cell division, mitotic cell

cycle, chromosome segregation, mitotic cell cycle process, cell cycle process, mitotic nuclear

division, sister chromatid segregation, nuclear division, and mitotic sister chromatid segrega-

tion [39]. The cell cycle is the complete process of cell division and replication and consists of

a specific series of events such as cell division, DNA replication, nuclear membrane rupture,

spindle formation, and preparation for chromosome segregation [40]. Numerous studies have

Fig 5. GO and KEGG analysis of COVID-19 myocarditis related to the common genes. (A) Biological Process. (B) Cellular Component. (C)

Molecular Function. (D) KEGG pathways analysis.

https://doi.org/10.1371/journal.pone.0269386.g005

Table 3. KEGG pathways and their corresponding P-values and Q-values, and common genes enriched in their

pathways.

KEGG pathways P-value Q-value Gene ID

cell cycle 1.13E-09 5.93E-09 PLK1/CDK1/CDC45/CDC6/PKMYT1/

CDKN2C/CDC20
oocyte meiosis 6.00E-05 1.58E-04 PLK1/CDK1/PKMYT1/CDC20
progesterone mediated oocyte maturation 6.17E-04 1.08E-03 PLK1/CDK1/PKMYT1
ubiquitin mediated proteolysis 3.11E-02 4.09E-02 UBE2C/CDC20
mismatch repair 4.72E-02 4.97E-02 EXO1

https://doi.org/10.1371/journal.pone.0269386.t003
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Fig 6. The number of critical genes were shown by using the cytoHubba plugin of cytoscape and the Venn

diagram. EPC, Edge Percolated Component.

https://doi.org/10.1371/journal.pone.0269386.g006
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shown that viruses provide powerful conditions for viral replication and survival by regulating

different processes of the cell cycle of host cells [41–44]. For molecular function, ATP binding,

kinase binding, anaphase-promoting complex binding, adenyl ribonucleotide binding, adenyl

nucleotide binding, drug binding, histone kinase activity, chromatin binding, purine ribonu-

cleoside triphosphate binding, and purine ribonucleotide binding were the top ten GO terms.

Adenosine triphosphate (ATP), is an energy metabolite that plays a role in energy transfer and

information transmission in various cellular metabolic processes. Recent findings uncovered

that SARS-CoV-2 N protein regulates the cell cycle of host cells by specifically binding ATP,

Table 4. The top 10 genes in the PPI network were calculated using five algorithms.

Gene Degree Gene EPC Gene Closeness Gene Betweenness Gene Stress

CDK1 42 KIF2C 16.979 CDK1 42 CDK1 48.66956 CDK1 250

KIF20A 41 PBK 16.82 KIF2C 41.5 CDKN3 42.99438 CDKN3 204

TOP2A 41 RAD51AP1 16.708 PBK 41.5 KIF2C 6.66956 KIF2C 170

PBK 41 CDK1 16.659 RAD51AP1 41.5 PBK 6.66956 PBK 170

AURKB 41 CDCA5 16.594 CDCA5 41.5 RAD51AP1 6.66956 RAD51AP1 170

KIF2C 41 UBE2C 16.576 UBE2C 41.5 CDCA5 6.66956 CDCA5 170

CDCA8 41 EXO1 16.562 KIF20A 41.5 UBE2C 6.66956 UBE2C 170

CDC20 41 KIF20A 16.384 CDC20 41.5 KIF20A 6.66956 KIF20A 170

UBE2C 41 CDC20 16.344 DLGAP5 41.5 CDC20 6.66956 CDC20 170

NUF2 41 NCAPH 16.339 CDC6 41.5 DLGAP5 6.66956 DLGAP5 170

https://doi.org/10.1371/journal.pone.0269386.t004

Fig 7. Transcription factor-gene regulatory network in COVID-19 myocarditis. The circular dots represent critical

genes, and the octagonal dots attached next to the critical genes represent transcription factors that regulated the

critical genes. In addition, the triangular-shaped transcription factors indicated regulation of two critical genes, and the

V-shaped transcription factors regulated three key genes. Obviously, the diamond-shaped transcription factor GF2E2
regulated four critical genes. The network was composed of 142 nodes and 180 edges.

https://doi.org/10.1371/journal.pone.0269386.g007
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which provides us with a new idea to fight against the SARS-CoV-2 pandemic [45]. In addi-

tion, the previous study has shown that ATP is also a specific autoantibody for myocarditis

[46]. As for cellular components, the top GO terms are chromosome, centromeric region, con-

densed chromosome, and kinetochore.

The KEGG pathways analysis was achieved from the common genes for identifying similar

pathways between COVID-19 and myocarditis. KEGG pathway analysis mainly focused on

cell cycle, oocyte meiosis, progesterone mediated oocyte maturation, ubiquitin mediated

Fig 8. Transcription factors-miRNA-gene regulatory networks in COVID-19 myocarditis. There were two TF-miRNA networks.

Pink plots represent critical genes, purple plots represent TF genes, and the others represent miRNAs. Network (A) had 83 plots and 85

edges, which was consisted of 5 critical genes, 56 TF genes, and 21 miRNAs. Network (B) had 13 plots and 12 edges including 1 critical

gene, 8 TF genes, and 4 miRNAs.

https://doi.org/10.1371/journal.pone.0269386.g008

Table 5. COVID-19 myocarditis gene-targeted drugs.

Term P-value Combined Score Genes

etoposide MCF7 DOWN 4.36E-10 19544.37 CDC20; UBE2C; KIF2C; KIF20A
methotrexate MCF7 DOWN 6.07E-10 17637.87 CDC20; UBE2C; KIF2C; KIF20A
LUCANTHONE CTD 00006227 7.78E-10 9976.195 CDC20; CDK1; PBK; KIF2C; KIF20A
troglitazone CTD 00002415 1.16E-09 2388335 CDC20; UBE2C; CDK1; PBK; KIF2C; KIF20A
ciclopirox MCF7 DOWN 1.72E-09 12770.53 CDC20; UBE2C; KIF2C; KIF20A
5109870 MCF7 DOWN 1.82E-09 12532.66 CDC20; UBE2C; KIF2C; KIF20A
thalidomide CTD 00006858 3.51E-08 4975.73 CDC20; UBE2C; CDK1; KIF2C
genistein CTD 00007324 5.37E-08 1885048 CDC20; UBE2C; CDK1; PBK; KIF2C; KIF20A
dmnq CTD 00002569 5.41E-08 4339.482 CDC20; UBE2C; PBK; KIF2C
testosterone CTD 00006844 5.81E-08 1874705 CDC20; UBE2C; CDK1; PBK; KIF2C; KIF20A

https://doi.org/10.1371/journal.pone.0269386.t005
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proteolysis, and mismatch repair, which indicate that they are crucial to the biological progres-

sion of COVID-19 Myocarditis. The ubiquitin protein hydrolysis plays an essential role in a

range of underlying cellular processes, such as immune responses and inflammatory responses

[47]. In addition, it has been shown that ubiquitin protein hydrolysis is associated with myo-

cardial remodelings, such as Atrophy of the heart [48].

PPI network analysis was the most important step in this study, laying the foundation for

the subsequent screening of critical genes. Based on topological algorithms (i.e., degree), in

this study, CDK1, KIF20A, PBK, KIF2C, CDC20, and UBE2C were identified as critical genes

that may be potential biomarkers for COVID-19 Myocarditis.

CDK1 (Cyclin-dependent kinase 1) plays a critical role in eukaryotic cell cycle control by

regulating centrosome cycling and mitotic initiation. There is growing evidence found that

CDK1 can be used as a potential biomarker for a variety of diseases, such as Rhabdomyosar-

coma [49], endometrioid endometrial cancer [50]. Furthermore, in recent studies, CDK1, pro-

motes the phosphorylation of RAPTOR during mitosis, leading to mTORC1 phosphorylation

and affecting the autophagic process [51], which plays an important role in cardiac diseases as

a degradation process of cellular self, especially in myocarditis or cardiomyopathy [52]. In

addition, CDK1 regulates the cell cycle leading to cell cycle arrest in cardiomyocytes, the latter

being an important factor involved in oxidative stress leading to heart failure [53]. Similarly, in

previous studies, CDK1 was identified as a potential target of COVID-19 [54], so the role of

CDK1 in myocarditis needs to be further investigated.

KIF20A (Kinesin Family Member 20A), is a member of the Kinesin-like proteins that play

an important role in intracellular transport and cell division [55]. According to the literature,

KIF20A plays an important role in several cardiovascular diseases, such as restrictive cardio-

myopathy and acute type A aortic coarctation. In one case report, exome sequencing analysis

of children with congenital cardiomyopathy identified the KIF20A complex and in subsequent

in vitro experiments in zebrafish, KIF20A was identified as the phenotypic gene for cardiomy-

opathy [56]. Chen et al. found that KIF20A was identified as a hub gene involved in the infec-

tion of the intestine by the SARS-CoV-2 [57]. All of the above studies provide implications for

the study of KIF20A in COVID-19 and myocarditis.

PBK (PDZ Binding Kinase) plays a regulatory role in cell cycle regulation and cell mitosis.

It was reported that using the PathExt tool was able to identify PBK as the most common cen-

tral gene target in activated TopNets to suppress SARS-CoV-2 [58]. Ekaterina et al. showed

that genes such as PBK regulated myofibril formation and thus caused cardiac hypertrophy

[59].

As for the remaining genes, CDC20 and KIF2C were identified as target genes of COVID-

19 by bioinformatics means and machine learning [54]. Meanwhile, UBE2C, Ubiquitin-Conju-

gating Enzyme E2 C, is closely related to the cardiovascular system which induced endothelial

cell inflammation and endothelial mesenchymal transition, exacerbating aortic sclerosis and

calcification [60].

According to critical genes, the TF-gene networks and TF-miRNA co-regulatory networks

were established. In our knowledge, transcription factors play important roles in many biologi-

cal processes by binding specific sequences of genes, such as regulation of gene transcription,

control of metabolism, and immune response [61]. And further studies have shown that tran-

scription factors are closely related to a variety of diseases. From the network, it can be seen

that CDC20 has a high rate of interactions with other TF genes. In the TF-gene coregulatory

networks, the degree value of CDC20 was 55. This was closely followed by KIF2C with a degree

of 52 and KIF2C had higher connectivity with CDC20 with a value of 14. Notably, GTF2E2 was

identified as the transcription factor that regulates the most genes which has been reported to

exert inhibitory effects on lung adenocarcinoma in the mTOR pathway. It is well known that
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the mTOR pathway plays an important role in the autophagic process and the pathogenesis of

myocarditis [62], and autophagy has been shown to be closely related to COVID-19 and myo-

carditis [63], which provides us with a new idea to study the regulatory role of GTF2E2 in

COVID-19 Myocarditis. Meanwhile, in the TF-miRNA coregulatory networks, MYC, E2F1,

PTTG1, GABPA, TP53 regulated more than one critical gene.

Through the drug database, drug molecules associated with critical genes were identified

and sorted by p-value. Etoposide MCF7 DOWN, Methotrexate MCF7 DOWN, Lucanthone

CTD 00006227, Troglitazone CTD 00002415, Ciclopirox MCF7 DOWN, STL264925 MCF7

DOWN, Thalidomide CTD 00006858, Genistein CTD 00007324, Dmnq CTD 00002569, Tes-

tosterone CTD 00006844 are potentially investigational and therapeutic agents associated with

COVID-19 Myocarditis. Because of superior anti-cancer activity, Etoposide plays an impor-

tant role in cancer treatment. Meanwhile, as a TOP II inhibitor, Etoposide effectively inhibits

intracellular replication of SARS-CoV-2’s structural proteins [64] and has a rescue effect on

the cytokine storm of the COVID-19 [65]. It has been shown that immunosuppressive therapy

has a therapeutic effect on myocarditis and can improve the prognosis of myocarditis [45],

which offers the possibility of drug targeting for the treatment of COVID-19 Myocarditis.

Methotrexate, an immunosuppressant, also has an inhibitory effect on the COVID-19 cytokine

storm [66]. Troglitazone as a type 2 diabetes oral medication, has the effect of improving the

sensitivity of muscle and adipose tissue to insulin and inhibiting hepatic gluconeogenesis. A

recent study has shown that Troglitazone has the potential to inhibit SARS-CoV-2 NSP9

which plays a vital role in viral replication [67].

Several limitations need to be noted regarding the present study. Firstly, since there are few

studies related to COVID-19 Myocarditis, we selected only two datasets from GEO database

for bioinformatics study. In addition, due to the limitations of the data set sample, we unified

the experimental group in the GSE167028 dataset as the group of patients with myocarditis

and unified the healthy adult and pediatric groups as the healthy control group in order to

maintain disease grouping consistency and statistical accuracy, which may result in a degree of

study heterogeneity. Thirdly, although rigorous bioinformatics analysis was performed in this

study, the findings need to be validated with more samples and cellular and animal experi-

ments. A further study with more focus on COVID-19 myocarditis is therefore suggested.

Conclusion

The bioinformatics study of the GSE167028 and GSE150392 datasets identified 6 critical genes

(CDK1, KIF20A, PBK, KIF2C, CDC20, UBE2C) involved in COVID-19 Myocarditis and

explored the biological processes between COVID-19 and myocarditis, confirming previous

studies and providing some insights into the pathogenesis of COVID-19 Myocarditis, demon-

strating that SARS-CoV-2 contributes to myocarditis through pathophysiological processes

such as cell cycle and the ubiquitin-protein hydrolysis. At the same time, this study also pro-

vides relevant drugs for the clinical treatment of COVID-19 Myocarditis. There are few studies

on COVID-19 Myocarditis, and if more samples are available in the future, the role of this

study will be more effective in the context of the SARS-CoV-2 pandemic.

Supporting information

S1 Text. DEGs associated with COVID-19 myocarditis in GSE150392.

(TXT)

PLOS ONE COVID-19 myocarditis bioinformatics analysis

PLOS ONE | https://doi.org/10.1371/journal.pone.0269386 June 24, 2022 16 / 21

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0269386.s001
https://doi.org/10.1371/journal.pone.0269386


S2 Text. The intersection of DEGs in the GSE150392 dataset and turquoise module genes

in the GSE167028.

(TXT)

S3 Text. GO pathways analysis results.

(TXT)

S4 Text. KEGG pathways analysis results.

(TXT)

S5 Text. COVID-19 myocarditis gene-targeted drugs.

(TXT)

S1 File. Transcription factor-gene regulatory network in COVID-19 myocarditis.

(CYS)

Acknowledgments

We acknowledge the GEO database for providing its platforms and contributors for uploading

their meaningful datasets. Meanwhile, we thank Dr. Guangli Sun, Chief Physician, Depart-

ment of Traditional Chinese Medicine, Laixi City Hospital, for her financial assistance with

this study.

Author Contributions

Conceptualization: Fengjun Zhang, Lin Zhang.

Data curation: Wenchang Xu, Junchen Feng.

Formal analysis: Cheng Yu, Hongshuo Shi, Jingrong Yang.

Funding acquisition: Xiao Li, Lin Zhang, Min Peng.

Investigation: Wenchang Xu, Junchen Feng.

Methodology: Cheng Yu, Jingrong Yang.

Project administration: Lin Zhang, Min Peng.

Resources: Fengjun Zhang, Cheng Yu.

Software: Xiao Li, Hongshuo Shi.

Supervision: Lin Zhang, Min Peng.

Validation: Qinhua Sun, Xianyi Cao, Min Peng.

Visualization: Qinhua Sun.

Writing – original draft: Fengjun Zhang, Cheng Yu.

Writing – review & editing: Lin Zhang, Min Peng.

References
1. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel

coronavirus in Wuhan, China. The Lancet. 2020; 395(10223):497–506. https://doi.org/10.1016/s0140-

6736(20)30183-5 PMID: 31986264

2. Hoffmann M, Kleine-Weber H, Schroeder S, Kruger N, Herrler T, Erichsen S, et al. SARS-CoV-2 Cell

Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell.

2020; 181(2):271–80 e8. Epub 2020/03/07. https://doi.org/10.1016/j.cell.2020.02.052 PMID:

32142651.

PLOS ONE COVID-19 myocarditis bioinformatics analysis

PLOS ONE | https://doi.org/10.1371/journal.pone.0269386 June 24, 2022 17 / 21

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0269386.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0269386.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0269386.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0269386.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0269386.s006
https://doi.org/10.1016/s0140-6736%2820%2930183-5
https://doi.org/10.1016/s0140-6736%2820%2930183-5
http://www.ncbi.nlm.nih.gov/pubmed/31986264
https://doi.org/10.1016/j.cell.2020.02.052
http://www.ncbi.nlm.nih.gov/pubmed/32142651
https://doi.org/10.1371/journal.pone.0269386


3. Datta PK, Liu F, Fischer T, Rappaport J, Qin X. SARS-CoV-2 pandemic and research gaps: Under-

standing SARS-CoV-2 interaction with the ACE2 receptor and implications for therapy. Theranostics.

2020; 10(16):7448–64. Epub 2020/07/10. https://doi.org/10.7150/thno.48076 PMID: 32642005.

4. Li W, Moore MJ, Vasilieva N, Sui J, Wong SK, Berne MA, et al. Angiotensin-converting enzyme 2 is a

functional receptor for the SARS coronavirus. Nature. 2003; 426(6965):450–4. https://doi.org/10.1038/

nature02145 PMID: 14647384.

5. Coronaviridae Study Group of the International Committee on Taxonomy of V. The species Severe

acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2.

Nat Microbiol. 2020; 5(4):536–44. Epub 2020/03/04. https://doi.org/10.1038/s41564-020-0695-z PMID:

32123347.

6. Patel VB, Zhong JC, Grant MB, Oudit GY. Role of the ACE2/Angiotensin 1–7 Axis of the Renin-Angio-

tensin System in Heart Failure. Circ Res. 2016; 118(8):1313–26. Epub 2016/04/16. https://doi.org/10.

1161/CIRCRESAHA.116.307708 PMID: 27081112.

7. Hamming I, Timens W, Bulthuis ML, Lely AT, Navis G, van Goor H. Tissue distribution of ACE2 protein,

the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J

Pathol. 2004; 203(2):631–7. Epub 2004/05/14. https://doi.org/10.1002/path.1570 PMID: 15141377.

8. Nicin L, Abplanalp WT, Mellentin H, Kattih B, Tombor L, John D, et al. Cell type- specific expression of

the putative SARS-CoV-2 receptor ACE2 in human hearts. Eur Heart J. 2020; 41(19):1804–6. Epub

2020/04/16. https://doi.org/10.1093/eurheartj/ehaa311 PMID: 32293672.

9. Glowacka I, Bertram S, Herzog P, Pfefferle S, Steffen I, Muench MO, et al. Differential downregulation

of ACE2 by the spike proteins of severe acute respiratory syndrome coronavirus and human coronavi-

rus NL63. J Virol. 2010; 84(2):1198–205. Epub 2009/10/30. https://doi.org/10.1128/JVI.01248-09

PMID: 19864379.

10. Aboudounya MM, Heads RJ. COVID-19 and Toll-Like Receptor 4 (TLR4): SARS-CoV- 2 May Bind and

Activate TLR4 to Increase ACE2 Expression, Facilitating Entry and Causing Hyperinflammation. Media-

tors Inflamm. 2021; 2021:8874339. Epub 2021/01/29. https://doi.org/10.1155/2021/8874339 PMID:

33505220.

11. Guo T, Fan Y, Chen M, Wu X, Zhang L, He T, et al. Cardiovascular Implications of Fatal Outcomes of

Patients With Coronavirus Disease 2019 (COVID-19). JAMA cardiology. 2020; 5(7):811–8. https://doi.

org/10.1001/jamacardio.2020.1017 PMID: 32219356.

12. Shi S, Qin M, Shen B, Cai Y, Liu T, Yang F, et al. Association of Cardiac Injury With Mortality in Hospital-

ized Patients With COVID-19 in Wuhan, China. JAMA cardiology. 2020; 5(7):802–10. https://doi.org/10.

1001/jamacardio.2020.0950 PMID: 32211816.

13. Sala S, Peretto G, Gramegna M, Palmisano A, Villatore A, Vignale D, et al. Acute myocarditis present-

ing as a reverse Tako-Tsubo syndrome in a patient with SARS-CoV-2 respiratory infection. Eur Heart J.

2020; 41(19):1861–2. Epub 2020/04/09. https://doi.org/10.1093/eurheartj/ehaa286 PMID: 32267502.

14. Inciardi RM, Lupi L, Zaccone G, Italia L, Raffo M, Tomasoni D, et al. Cardiac Involvement in a Patient

With Coronavirus Disease 2019 (COVID-19). JAMA cardiology. 2020; 5(7):819–24. https://doi.org/10.

1001/jamacardio.2020.1096 PMID: 32219357.

15. Fox SE, Akmatbekov A, Harbert JL, Li G, Quincy Brown J, Vander Heide RS. Pulmonary and cardiac

pathology in African American patients with COVID-19: an autopsy series from New Orleans. The Lan-

cet Respiratory Medicine. 2020; 8(7):681–6. https://doi.org/10.1016/S2213-2600(20)30243-5 PMID:

32473124

16. Abou Hassan OK, Sheng CC, Wang TKM, Cremer PC. SARS-CoV-2 Myocarditis: Insights Into Inci-

dence, Prognosis, and Therapeutic Implications. Curr Cardiol Rep. 2021; 23(9):129. Epub 2021/08/04.

https://doi.org/10.1007/s11886-021-01551-x PMID: 34342728.

17. Mele D, Flamigni F, Rapezzi C, Ferrari R. Myocarditis in COVID-19 patients: current problems. Intern

Emerg Med. 2021; 16(5):1123–9. Epub 2021/01/24. https://doi.org/10.1007/s11739-021-02635-w

PMID: 33484452.

18. Sagar S, Liu PP, Cooper LT. Myocarditis. The Lancet. 2012; 379(9817):738–47. https://doi.org/10.

1016/S0140-6736(11)60648-X PMID: 22185868

19. Cooper LT, Baughman KL, Feldman AM, Frustaci A, Jessup M, Kuhl U, et al. The role of endomyocar-

dial biopsy in the management of cardiovascular disease: a scientific statement from the American

Heart Association, the American College of Cardiology, and the European Society of Cardiology

Endorsed by the Heart Failure Society of America and the Heart Failure Association of the European

Society of Cardiology. Eur Heart J. 2007; 28(24):3076–93. Epub 2007/10/26. https://doi.org/10.1093/

eurheartj/ehm456 PMID: 17959624.

20. Friedrich MG, Sechtem U, Schulz-Menger J, Holmvang G, Alakija P, Cooper LT, et al. Cardiovascular

magnetic resonance in myocarditis: A JACC White Paper. J Am Coll Cardiol. 2009; 53(17):1475–87.

Epub 2009/04/25. https://doi.org/10.1016/j.jacc.2009.02.007 PMID: 19389557.

PLOS ONE COVID-19 myocarditis bioinformatics analysis

PLOS ONE | https://doi.org/10.1371/journal.pone.0269386 June 24, 2022 18 / 21

https://doi.org/10.7150/thno.48076
http://www.ncbi.nlm.nih.gov/pubmed/32642005
https://doi.org/10.1038/nature02145
https://doi.org/10.1038/nature02145
http://www.ncbi.nlm.nih.gov/pubmed/14647384
https://doi.org/10.1038/s41564-020-0695-z
http://www.ncbi.nlm.nih.gov/pubmed/32123347
https://doi.org/10.1161/CIRCRESAHA.116.307708
https://doi.org/10.1161/CIRCRESAHA.116.307708
http://www.ncbi.nlm.nih.gov/pubmed/27081112
https://doi.org/10.1002/path.1570
http://www.ncbi.nlm.nih.gov/pubmed/15141377
https://doi.org/10.1093/eurheartj/ehaa311
http://www.ncbi.nlm.nih.gov/pubmed/32293672
https://doi.org/10.1128/JVI.01248-09
http://www.ncbi.nlm.nih.gov/pubmed/19864379
https://doi.org/10.1155/2021/8874339
http://www.ncbi.nlm.nih.gov/pubmed/33505220
https://doi.org/10.1001/jamacardio.2020.1017
https://doi.org/10.1001/jamacardio.2020.1017
http://www.ncbi.nlm.nih.gov/pubmed/32219356
https://doi.org/10.1001/jamacardio.2020.0950
https://doi.org/10.1001/jamacardio.2020.0950
http://www.ncbi.nlm.nih.gov/pubmed/32211816
https://doi.org/10.1093/eurheartj/ehaa286
http://www.ncbi.nlm.nih.gov/pubmed/32267502
https://doi.org/10.1001/jamacardio.2020.1096
https://doi.org/10.1001/jamacardio.2020.1096
http://www.ncbi.nlm.nih.gov/pubmed/32219357
https://doi.org/10.1016/S2213-2600%2820%2930243-5
http://www.ncbi.nlm.nih.gov/pubmed/32473124
https://doi.org/10.1007/s11886-021-01551-x
http://www.ncbi.nlm.nih.gov/pubmed/34342728
https://doi.org/10.1007/s11739-021-02635-w
http://www.ncbi.nlm.nih.gov/pubmed/33484452
https://doi.org/10.1016/S0140-6736%2811%2960648-X
https://doi.org/10.1016/S0140-6736%2811%2960648-X
http://www.ncbi.nlm.nih.gov/pubmed/22185868
https://doi.org/10.1093/eurheartj/ehm456
https://doi.org/10.1093/eurheartj/ehm456
http://www.ncbi.nlm.nih.gov/pubmed/17959624
https://doi.org/10.1016/j.jacc.2009.02.007
http://www.ncbi.nlm.nih.gov/pubmed/19389557
https://doi.org/10.1371/journal.pone.0269386


21. Sharma A, Garcia G Jr., Wang Y, Plummer JT, Morizono K, Arumugaswami V, et al. Human iPSC-

Derived Cardiomyocytes Are Susceptible to SARS-CoV-2 Infection. Cell Rep Med. 2020; 1(4):100052.

Epub 2020/08/25. https://doi.org/10.1016/j.xcrm.2020.100052 PMID: 32835305.

22. Kumar S, Curran JE, Kumar K, DeLeon E, Leandro AC, Peralta J, et al. Disease Modeling and Disease

Gene Discovery in Cardiomyopathies: A Molecular Study of Induced Pluripotent Stem Cell Generated

Cardiomyocytes. Int J Mol Sci. 2021; 22(7). Epub 2021/04/04. https://doi.org/10.3390/ijms22073311

PMID: 33805011.

23. Zhou G, Soufan O, Ewald J, Hancock REW, Basu N, Xia J. NetworkAnalyst 3.0: a visual analytics plat-

form for comprehensive gene expression profiling and meta-analysis. Nucleic Acids Res. 2019; 47

(W1):W234–W41. Epub 2019/04/02. https://doi.org/10.1093/nar/gkz240 PMID: 30931480.

24. Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioin-

formatics. 2008; 9:559. Epub 2008/12/31. https://doi.org/10.1186/1471-2105-9-559 PMID: 19114008.

25. Doms A, Schroeder M. GoPubMed: exploring PubMed with the Gene Ontology. Nucleic Acids Res.

2005; 33(Web Server issue):W783–6. Epub 2005/06/28. https://doi.org/10.1093/nar/gki470 PMID:

15980585.

26. Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000; 28

(1):27–30. https://doi.org/10.1093/nar/28.1.27 PMID: 10592173.

27. Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K. KEGG: new perspectives on genomes,

pathways, diseases and drugs. Nucleic Acids Res. 2017; 45(D1):D353–D61. https://doi.org/10.1093/

nar/gkw1092 PMID: 27899662.

28. Liberzon A, Subramanian A, Pinchback R, Thorvaldsdottir H, Tamayo P, Mesirov JP. Molecular signa-

tures database (MSigDB) 3.0. Bioinformatics. 2011; 27(12):1739–40. Epub 2011/05/07. https://doi.org/

10.1093/bioinformatics/btr260 PMID: 21546393.

29. Szklarczyk D, Gable AL, Nastou KC, Lyon D, Kirsch R, Pyysalo S, et al. The STRING database in 2021:

customizable protein-protein networks, and functional characterization of user-uploaded gene/mea-

surement sets. Nucleic Acids Res. 2021; 49(D1):D605–D12. https://doi.org/10.1093/nar/gkaa1074

PMID: 33237311.

30. Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, et al. STRING v11: protein-pro-

tein association networks with increased coverage, supporting functional discovery in genome-wide

experimental datasets. Nucleic Acids Res. 2019; 47(D1):D607–D13. https://doi.org/10.1093/nar/

gky1131 PMID: 30476243.

31. Chin CH, Chen SH, Wu HH, Ho CW, Ko MT, Lin CY. cytoHubba: identifying hub objects and sub-net-

works from complex interactome. BMC Syst Biol. 2014; 8 Suppl 4:S11. Epub 2014/12/19. https://doi.

org/10.1186/1752-0509-8-S4-S11 PMID: 25521941.

32. Ceylan H. A bioinformatics approach for identifying potential molecular mechanisms and key genes

involved in COVID-19 associated cardiac remodeling. Gene Rep. 2021; 24:101246. Epub 2021/06/17.

https://doi.org/10.1016/j.genrep.2021.101246 PMID: 34131597.

33. Gao CH, Yu G, Cai P. ggVennDiagram: An Intuitive, Easy-to-Use, and Highly Customizable R Package

to Generate Venn Diagram. Front Genet. 2021; 12:706907. Epub 2021/09/25. https://doi.org/10.3389/

fgene.2021.706907 PMID: 34557218.

34. Sigova AA, Abraham BJ, Ji X, Molinie B, Hannett NM, Guo YE, et al. Transcription factor trapping by

RNA in gene regulatory elements. Science. 2015; 350(6263):978–81. Epub 2015/10/31. https://doi.org/

10.1126/science.aad3346 PMID: 26516199.

35. Zhang HM, Kuang S, Xiong X, Gao T, Liu C, Guo AY. Transcription factor and microRNA co-regulatory

loops: important regulatory motifs in biological processes and diseases. Brief Bioinform. 2015; 16

(1):45–58. Epub 2013/12/07. https://doi.org/10.1093/bib/bbt085 PMID: 24307685.

36. Yoo M, Shin J, Kim J, Ryall KA, Lee K, Lee S, et al. DSigDB: drug signatures database for gene set

analysis. Bioinformatics (Oxford, England). 2015; 31(18):3069–71. https://doi.org/10.1093/

bioinformatics/btv313 PMID: 25990557.

37. Han G, Yang G, Hao D, Lu Y, Thein K, Simpson BS, et al. 9p21 loss confers a cold tumor immune

microenvironment and primary resistance to immune checkpoint therapy. Nat Commun. 2021; 12

(1):5606. Epub 2021/09/25. https://doi.org/10.1038/s41467-021-25894-9 PMID: 34556668.

38. Taz TA, Ahmed K, Paul BK, Kawsar M, Aktar N, Mahmud SMH, et al. Network-based identification

genetic effect of SARS-CoV-2 infections to Idiopathic pulmonary fibrosis (IPF) patients. Brief Bioinform.

2021; 22(2):1254–66. Epub 2020/10/08. https://doi.org/10.1093/bib/bbaa235 PMID: 33024988.

39. Shen M, Cao J, Shi H. Effects of Estrogen and Estrogen Receptors on Transcriptomes of HepG2 Cells:

A Preliminary Study Using RNA Sequencing. Int J Endocrinol. 2018; 2018:5789127. https://doi.org/10.

1155/2018/5789127 PMID: 30510575.

PLOS ONE COVID-19 myocarditis bioinformatics analysis

PLOS ONE | https://doi.org/10.1371/journal.pone.0269386 June 24, 2022 19 / 21

https://doi.org/10.1016/j.xcrm.2020.100052
http://www.ncbi.nlm.nih.gov/pubmed/32835305
https://doi.org/10.3390/ijms22073311
http://www.ncbi.nlm.nih.gov/pubmed/33805011
https://doi.org/10.1093/nar/gkz240
http://www.ncbi.nlm.nih.gov/pubmed/30931480
https://doi.org/10.1186/1471-2105-9-559
http://www.ncbi.nlm.nih.gov/pubmed/19114008
https://doi.org/10.1093/nar/gki470
http://www.ncbi.nlm.nih.gov/pubmed/15980585
https://doi.org/10.1093/nar/28.1.27
http://www.ncbi.nlm.nih.gov/pubmed/10592173
https://doi.org/10.1093/nar/gkw1092
https://doi.org/10.1093/nar/gkw1092
http://www.ncbi.nlm.nih.gov/pubmed/27899662
https://doi.org/10.1093/bioinformatics/btr260
https://doi.org/10.1093/bioinformatics/btr260
http://www.ncbi.nlm.nih.gov/pubmed/21546393
https://doi.org/10.1093/nar/gkaa1074
http://www.ncbi.nlm.nih.gov/pubmed/33237311
https://doi.org/10.1093/nar/gky1131
https://doi.org/10.1093/nar/gky1131
http://www.ncbi.nlm.nih.gov/pubmed/30476243
https://doi.org/10.1186/1752-0509-8-S4-S11
https://doi.org/10.1186/1752-0509-8-S4-S11
http://www.ncbi.nlm.nih.gov/pubmed/25521941
https://doi.org/10.1016/j.genrep.2021.101246
http://www.ncbi.nlm.nih.gov/pubmed/34131597
https://doi.org/10.3389/fgene.2021.706907
https://doi.org/10.3389/fgene.2021.706907
http://www.ncbi.nlm.nih.gov/pubmed/34557218
https://doi.org/10.1126/science.aad3346
https://doi.org/10.1126/science.aad3346
http://www.ncbi.nlm.nih.gov/pubmed/26516199
https://doi.org/10.1093/bib/bbt085
http://www.ncbi.nlm.nih.gov/pubmed/24307685
https://doi.org/10.1093/bioinformatics/btv313
https://doi.org/10.1093/bioinformatics/btv313
http://www.ncbi.nlm.nih.gov/pubmed/25990557
https://doi.org/10.1038/s41467-021-25894-9
http://www.ncbi.nlm.nih.gov/pubmed/34556668
https://doi.org/10.1093/bib/bbaa235
http://www.ncbi.nlm.nih.gov/pubmed/33024988
https://doi.org/10.1155/2018/5789127
https://doi.org/10.1155/2018/5789127
http://www.ncbi.nlm.nih.gov/pubmed/30510575
https://doi.org/10.1371/journal.pone.0269386


40. Fan Y, Sanyal S, Bruzzone R. Breaking Bad: How Viruses Subvert the Cell Cycle. Front Cell Infect

Microbiol. 2018; 8:396. Epub 2018/12/05. https://doi.org/10.3389/fcimb.2018.00396 PMID: 30510918.

41. Berger G, Lawrence M, Hue S, Neil SJ. G2/M cell cycle arrest correlates with primate lentiviral Vpr inter-

action with the SLX4 complex. J Virol. 2015; 89(1):230–40. Epub 2014/10/17. https://doi.org/10.1128/

JVI.02307-14 PMID: 25320300.

42. Li FQ, Tam JP, Liu DX. Cell cycle arrest and apoptosis induced by the coronavirus infectious bronchitis

virus in the absence of p53. Virology. 2007; 365(2):435–45. Epub 2007/05/12. https://doi.org/10.1016/j.

virol.2007.04.015 PMID: 17493653.

43. Yi R, Saito K, Isegawa N, Shirasawa H. Alteration of cell cycle progression by Sindbis virus infection.

Biochem Biophys Res Commun. 2015; 462(4):426–32. Epub 2015/05/16. https://doi.org/10.1016/j.

bbrc.2015.04.148 PMID: 25976675.

44. Wu W, Munday DC, Howell G, Platt G, Barr JN, Hiscox JA. Characterization of the interaction between

human respiratory syncytial virus and the cell cycle in continuous cell culture and primary human airway

epithelial cells. J Virol. 2011; 85(19):10300–9. Epub 2011/07/29. https://doi.org/10.1128/JVI.05164-11

PMID: 21795354.

45. Cooper LT Jr., Hare JM, Tazelaar HD, Edwards WD, Starling RC, Deng MC, et al. Usefulness of immu-

nosuppression for giant cell myocarditis. Am J Cardiol. 2008; 102(11):1535–9. Epub 2008/11/26.

https://doi.org/10.1016/j.amjcard.2008.07.041 PMID: 19026310.

46. Schulze K, Becker BF, Schultheiss HP. Antibodies to the ADP/ATP carrier, an autoantigen in myocardi-

tis and dilated cardiomyopathy, penetrate into myocardial cells and disturb energy metabolism in vivo.

Circ Res. 1989; 64(2):179–92. 2536302. https://doi.org/10.1161/01.res.64.2.179 PMID: 2536302

47. Ciechanover A, Orian A, Schwartz AL. Ubiquitin-mediated proteolysis: biological regulation via destruc-

tion. BioEssays: news and reviews in molecular, cellular and developmental biology. 2000; 22(5):442–

51. https://doi.org/10.1002/(SICI)1521-1878(200005)22:5<442::AID-BIES6>3.0.CO;2-Q PMID:

10797484.

48. Razeghi P, Sharma S, Ying J, Li YP, Stepkowski S, Reid MB, et al. Atrophic remodeling of the heart in

vivo simultaneously activates pathways of protein synthesis and degradation. Circulation. 2003; 108

(20):2536–41. Epub 2003/11/12. https://doi.org/10.1161/01.CIR.0000096481.45105.13 PMID:

14610007.

49. Lu S, Sun C, Chen H, Zhang C, Li W, Wu L, et al. Bioinformatics Analysis and Validation Identify CDK1

and MAD2L1 as Prognostic Markers of Rhabdomyosarcoma. Cancer Manag Res. 2020; 12:12123–36.

Epub 2020/12/05. https://doi.org/10.2147/CMAR.S265779 PMID: 33273853.

50. Ying X, Che X, Wang J, Zou G, Yu Q, Zhang X. CDK1 serves as a novel therapeutic target for endome-

trioid endometrial cancer. J Cancer. 2021; 12(8):2206–15. Epub 2021/03/25. https://doi.org/10.7150/

jca.51139 PMID: 33758599.

51. Odle RI, Florey O, Ktistakis NT, Cook SJ. CDK1, the Other ’Master Regulator’ of Autophagy. Trends

Cell Biol. 2021; 31(2):95–107. Epub 2020/12/05. https://doi.org/10.1016/j.tcb.2020.11.001 PMID:

33272830.

52. Oka T, Hikoso S, Yamaguchi O, Taneike M, Takeda T, Tamai T, et al. Mitochondrial DNA that escapes

from autophagy causes inflammation and heart failure. Nature. 2012; 485(7397):251–5. https://doi.org/

10.1038/nature10992 PMID: 22535248.

53. Sun W, Zhu J, Li S, Tang C, Zhao Q, Zhang J. Selenium supplementation protects against oxidative

stress-induced cardiomyocyte cell cycle arrest through activation of PI3K/AKT. Metallomics. 2020; 12

(12):1965–78. Epub 2020/11/26. https://doi.org/10.1039/d0mt00225a PMID: 33237045.

54. Auwul MR, Rahman MR, Gov E, Shahjaman M, Moni MA. Bioinformatics and machine learning

approach identifies potential drug targets and pathways in COVID-19. Brief Bioinform. 2021; 22(5).

https://doi.org/10.1093/bib/bbab120 PMID: 33839760.

55. Lai F, Fernald AA, Zhao N, Le Beau MM. cDNA cloning, expression pattern, genomic structure and

chromosomal location of RAB6KIFL, a human kinesin-like gene. Gene. 2000; 248(1–2):117–25. https://

doi.org/10.1016/s0378-1119(00)00135-9 PMID: 10806357.

56. Louw JJ, Nunes Bastos R, Chen X, Verdood C, Corveleyn A, Jia Y, et al. Compound heterozygous

loss-of-function mutations in KIF20A are associated with a novel lethal congenital cardiomyopathy in

two siblings. PLoS Genet. 2018; 14(1):e1007138. https://doi.org/10.1371/journal.pgen.1007138 PMID:

29357359.

57. Chen J-C, Xie T-A, Lin Z-Z, Li Y-Q, Xie Y-F, Li Z-W, et al. Identification of Key Pathways and Genes in

SARS-CoV-2 Infecting Human Intestines by Bioinformatics Analysis. Biochem Genet. 2021. https://doi.

org/10.1007/s10528-021-10144-w PMID: 34787756.

58. Agrawal P, Sambaturu N, Olgun G, Hannenhalli S. A path-based analysis of infected cell line and

COVID-19 patient transcriptome reveals novel potential targets and drugs against SARS-CoV-2.

Research Square. 2022. https://doi.org/10.21203/rs.3.rs-1474136/v1 PMID: 35434729.

PLOS ONE COVID-19 myocarditis bioinformatics analysis

PLOS ONE | https://doi.org/10.1371/journal.pone.0269386 June 24, 2022 20 / 21

https://doi.org/10.3389/fcimb.2018.00396
http://www.ncbi.nlm.nih.gov/pubmed/30510918
https://doi.org/10.1128/JVI.02307-14
https://doi.org/10.1128/JVI.02307-14
http://www.ncbi.nlm.nih.gov/pubmed/25320300
https://doi.org/10.1016/j.virol.2007.04.015
https://doi.org/10.1016/j.virol.2007.04.015
http://www.ncbi.nlm.nih.gov/pubmed/17493653
https://doi.org/10.1016/j.bbrc.2015.04.148
https://doi.org/10.1016/j.bbrc.2015.04.148
http://www.ncbi.nlm.nih.gov/pubmed/25976675
https://doi.org/10.1128/JVI.05164-11
http://www.ncbi.nlm.nih.gov/pubmed/21795354
https://doi.org/10.1016/j.amjcard.2008.07.041
http://www.ncbi.nlm.nih.gov/pubmed/19026310
https://doi.org/10.1161/01.res.64.2.179
http://www.ncbi.nlm.nih.gov/pubmed/2536302
https://doi.org/10.1002/%28SICI%291521-1878%28200005%2922%3A5%26lt%3B442%3A%3AAID-BIES6%26gt%3B3.0.CO%3B2-Q
http://www.ncbi.nlm.nih.gov/pubmed/10797484
https://doi.org/10.1161/01.CIR.0000096481.45105.13
http://www.ncbi.nlm.nih.gov/pubmed/14610007
https://doi.org/10.2147/CMAR.S265779
http://www.ncbi.nlm.nih.gov/pubmed/33273853
https://doi.org/10.7150/jca.51139
https://doi.org/10.7150/jca.51139
http://www.ncbi.nlm.nih.gov/pubmed/33758599
https://doi.org/10.1016/j.tcb.2020.11.001
http://www.ncbi.nlm.nih.gov/pubmed/33272830
https://doi.org/10.1038/nature10992
https://doi.org/10.1038/nature10992
http://www.ncbi.nlm.nih.gov/pubmed/22535248
https://doi.org/10.1039/d0mt00225a
http://www.ncbi.nlm.nih.gov/pubmed/33237045
https://doi.org/10.1093/bib/bbab120
http://www.ncbi.nlm.nih.gov/pubmed/33839760
https://doi.org/10.1016/s0378-1119%2800%2900135-9
https://doi.org/10.1016/s0378-1119%2800%2900135-9
http://www.ncbi.nlm.nih.gov/pubmed/10806357
https://doi.org/10.1371/journal.pgen.1007138
http://www.ncbi.nlm.nih.gov/pubmed/29357359
https://doi.org/10.1007/s10528-021-10144-w
https://doi.org/10.1007/s10528-021-10144-w
http://www.ncbi.nlm.nih.gov/pubmed/34787756
https://doi.org/10.21203/rs.3.rs-1474136/v1
http://www.ncbi.nlm.nih.gov/pubmed/35434729
https://doi.org/10.1371/journal.pone.0269386


59. Ovchinnikova E, Hoes M, Ustyantsev K, Bomer N, de Jong TV, van der Mei H, et al. Modeling Human

Cardiac Hypertrophy in Stem Cell-Derived Cardiomyocytes. Stem Cell Reports. 2018; 10(3):794–807.

https://doi.org/10.1016/j.stemcr.2018.01.016 PMID: 29456183.

60. Fernandez Esmerats J, Villa-Roel N, Kumar S, Gu L, Salim MT, Ohh M, et al. Disturbed Flow Increases

UBE2C (Ubiquitin E2 Ligase C) via Loss of miR-483-3p, Inducing Aortic Valve Calcification by the pVHL

(von Hippel-Lindau Protein) and HIF-1α (Hypoxia-Inducible Factor-1α) Pathway in Endothelial Cells.

Arteriosclerosis, Thrombosis, and Vascular Biology. 2019; 39(3):467–81. https://doi.org/10.1161/

ATVBAHA.118.312233 PMID: 30602302.

61. Singh H, Khan AA, Dinner AR. Gene regulatory networks in the immune system. Trends Immunol.

2014; 35(5):211–8. Epub 2014/04/29. https://doi.org/10.1016/j.it.2014.03.006 PMID: 24768519.

62. Buckley BJR, Harrison SL, Fazio-Eynullayeva E, Underhill P, Lane DA, Lip GYH. Prevalence and clini-

cal outcomes of myocarditis and pericarditis in 718,365 COVID-19 patients. Eur J Clin Invest. 2021; 51

(11):e13679. https://doi.org/10.1111/eci.13679 PMID: 34516657.

63. Bello-Perez M, Sola I, Novoa B, Klionsky DJ, Falco A. Canonical and Noncanonical Autophagy as

Potential Targets for COVID-19. Cells. 2020; 9(7). https://doi.org/10.3390/cells9071619 PMID:

32635598.

64. Lovetrue B. The AI-discovered aetiology of COVID-19 and rationale of the irinotecan+ etoposide combi-

nation therapy for critically ill COVID-19 patients. Med Hypotheses. 2020; 144:110180. Epub 2020/12/

02. https://doi.org/10.1016/j.mehy.2020.110180 PMID: 33254502.

65. Patel M, Dominguez E, Sacher D, Desai P, Chandar A, Bromberg M, et al. Etoposide as Salvage Ther-

apy for Cytokine Storm Due to Coronavirus Disease 2019. Chest. 2021; 159(1):e7–e11. Epub 2020/09/

16. https://doi.org/10.1016/j.chest.2020.09.077 PMID: 32931823.

66. Ganjei Z, Faraji Dana H, Ebrahimi-Dehkordi S, Alidoust F, Bahmani K. Methotrexate as a safe immuno-

suppressive agent during the COVID-19 pandemic. Int Immunopharmacol. 2021; 101:108324. https://

doi.org/10.1016/j.intimp.2021.108324 PMID: 34731780

67. Chandra A, Gurjar V, Ahmed MZ, Alqahtani AS, Qamar I, Singh N. Exploring potential inhibitor of

SARS-CoV2 replicase from FDA approved drugs using insilico drug discovery methods. J Biomol Struct

Dyn. 2021:1–8. Epub 2021/01/26. https://doi.org/10.1080/07391102.2020.1871416 PMID: 33491573.

PLOS ONE COVID-19 myocarditis bioinformatics analysis

PLOS ONE | https://doi.org/10.1371/journal.pone.0269386 June 24, 2022 21 / 21

https://doi.org/10.1016/j.stemcr.2018.01.016
http://www.ncbi.nlm.nih.gov/pubmed/29456183
https://doi.org/10.1161/ATVBAHA.118.312233
https://doi.org/10.1161/ATVBAHA.118.312233
http://www.ncbi.nlm.nih.gov/pubmed/30602302
https://doi.org/10.1016/j.it.2014.03.006
http://www.ncbi.nlm.nih.gov/pubmed/24768519
https://doi.org/10.1111/eci.13679
http://www.ncbi.nlm.nih.gov/pubmed/34516657
https://doi.org/10.3390/cells9071619
http://www.ncbi.nlm.nih.gov/pubmed/32635598
https://doi.org/10.1016/j.mehy.2020.110180
http://www.ncbi.nlm.nih.gov/pubmed/33254502
https://doi.org/10.1016/j.chest.2020.09.077
http://www.ncbi.nlm.nih.gov/pubmed/32931823
https://doi.org/10.1016/j.intimp.2021.108324
https://doi.org/10.1016/j.intimp.2021.108324
http://www.ncbi.nlm.nih.gov/pubmed/34731780
https://doi.org/10.1080/07391102.2020.1871416
http://www.ncbi.nlm.nih.gov/pubmed/33491573
https://doi.org/10.1371/journal.pone.0269386

