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Carbapenem-resistant Klebsiella pneumoniae (CRKP) is a prominent cause of nosocomial
infections associated with high rates of morbidity and mortality, particularly in oncological
patients. The hypermucoviscous (HMV) phenotype and biofilm production are key factors
for CRKP colonization and persistence in the host. This study aims at exploring the impact
of CRKP virulence factors on morbidity and mortality in oncological patients. A total of 86
CRKP were collected between January 2015 and December 2019. Carbapenem
resistance-associated genes, antibiotic susceptibility, the HMV phenotype, and biofilm
production were evaluated. The median age of the patients was 71 years (range 40–96
years). Clinically infected patients were 53 (61.6%), while CRKP colonized individuals were
33 (38.4%). The most common infectious manifestations were sepsis (43.4%) and
pneumonia (18.9%), while rectal surveillance swabs were the most common site of
CRKP isolation (81.8%) in colonized patients. The leading mechanism of carbapenem
resistance was sustained by the KPC gene (96.5%), followed by OXA-48 (2.3%) and VIM
(1.2%). Phenotypic CRKP characterization indicated that 55.8% of the isolates were
strong biofilm-producers equally distributed between infected (54.2%) and colonized
(45.8%) patients. The HMV phenotype was found in 22.1% of the isolates, which showed
a significant (P<0.0001) decrease in biofilm production as compared to non-HMV strains.
The overall mortality rate calculated on the group of infected patients was 35.8%. In
univariate analysis, pneumoniae significantly correlated with death (OR 5.09; CI 95%
1.08–24.02; P=0.04). The non-HMV phenotype (OR 4.67; CI 95% 1.13–19.24; P=0.03)
and strong biofilm-producing strains (OR 5.04; CI95% 1.39–18.25; P=0.01) were also
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associated with increased CRKP infection-related mortality. Notably, the multivariate
analysis showed that infection with strong biofi lm-producing CRKP was an
independent predictor of mortality (OR 6.30; CI 95% 1.392–18.248; P=0.004). CRKP
infection presents a high risk of death among oncological patients, particularly when
pneumoniae and sepsis are present. In infected patients, the presence of strong biofilm-
producing CRKP significantly increases the risk of death. Thus, the assessment of biofilm
production may provide a key element in supporting the clinical management of high-risk
oncological patients with CRKP infection.
Keywords: biofilm, Klebsiella, carbapenem, skin colonization, cancer
INTRODUCTION

Klebsiella pneumoniae is a major human pathogen with mortality
rates up to 50%, particularly in immune-compromised individuals
(Kanj and Kanafani, 2011; David et al., 2019). It causes a broad
spectrum of diseases including pneumonia, urinary tract
infections, bloodstream infections, skin and soft tissue infections
(Melot et al., 2015; Pitout et al., 2015; Paczosa and Mecsas, 2016;
David et al., 2019). Carbapenems are often considered the last line
therapy for the treatment of multidrug-resistant K. pneumoniae
(Tzouvelekis et al., 2012; David et al., 2019). However, global
surveillance studies indicate that a significant fraction of
nosocomial K. pneumoniae isolates display extended-spectrum
b-lactamases (ESBLs) and carbapenemases activities (Molton
et al., 2013; Morrissey et al., 2013; Pitout et al., 2015; Brescini
et al., 2019). The endemic distribution of carbapenem-resistant K.
pneumoniae (CRKP) has been reported worldwide (Munoz-Price
et al., 2013). In European countries, the population-weighted
mean percentage of CRKP is 7.2%. Greece, Italy, and Romania
had the highest rates of CRKP as compared to the rest of Europe
(Cassini et al., 2019). Dissemination of CRKP is primarily
sustained by the horizontal transfer of carbapenemase genes on
mobile elements (Mathers et al., 2011; Martin et al., 2017;
Partridge et al., 2018). K. pneumoniae carbapenemase (KPC),
imipenemase metallo b-lactamase (IMP), New Delhi metallo b-
lactamase (NDM), Verona integron metallo b-lactamase (VIM),
and oxacillinase-48 (OXA-48) are the most common
carbapenemases in CRKP (Meletis, 2016; Partridge et al., 2018).
Treatment for CRKP infections is often limited to colistin, which
represents, in many cases, a last-resort option due to its
nephrotoxicity and neurotoxicity (Karaiskos et al., 2017). More
recently, novel combinations of b-lactam- b-lactamase inhibitors,
such as ceftazidime-avibactam and meropenem-vaborbactam,
have been found effective against CRKP producing KPC-type
and OXA-48-like enzymes, but not for those strains producing
metallo carbapenemases (Bassetti et al., 2018).

The production of capsular polysaccharide is the prominent
virulence factor of K. pneumoniae that allow this bacterium to
overcome innate host immunity (Zhang et al., 2016). Currently,
more than 130 different capsule types have been recognized for
Klebsiella (Follador et al., 2016). A recent study demonstrated that
K. pneumoniae can enhance its pathogenicity by adopting two
opposing strategies based on the capsule biosynthesis. The first is
gy | www.frontiersin.org 2
related to hypercapsule production, which confers phagocytosis
resistance, enhanced dissemination, and higher mortality in animal
models (Ernst et al., 2020). Alternatively, K. pneumoniae can
acquire mutations impairing capsule production, thus allowing
enhanced epithelial cell invasion, increased persistence in urinary
tract infections, and biofilm formation (Ernst et al., 2020).
Hypervirulent strains of K. pneumoniae can be identified by a
hypermucoviscous (HMV) phenotype on agar plates, as a result of
a positive string test (Compain et al., 2014). HMV subtypes,
initially described in 1986, are characterized by increased
production of a capsular substance compared with classic K.
pneumoniae, which confers a HMV phenotype (Casanova et al.,
1989). Mutations in genes reducing capsule production affect the
HMV phenotype and correlate with a substantial reduction in
virulence when tested in mice (Walker andMiller, 2020). Thus, the
HMV phenotype is directly linked with the amount of capsule
production. However, a recent study demonstrated that a mutation
in a gene encoding a transcriptional regulator of the mucoid
phenotype (RmpC) reduces capsule production but does not
affect the HMV phenotype (Walker et al., 2019). This finding
suggests that HMV is dependent on the presence of the capsule, but
HMV and capsule have to be considered independently (Walker
and Miller, 2020). HMV, isolates showed an increased ability to
cause both severe community-acquired infections such as
pneumonia, liver abscesses, and meningitis in young, healthy
individuals, and healthcare-associated invasive infections (Fang
et al., 2007; Turton et al., 2010; Decre et al., 2011; Liu and Guo,
2019). Most HMV K pneumoniae strains have been related to the
capsular type K1, and, in a lower fraction, with the serotype K2
(Alcantar-Curiel and Giron, 2015; Gu et al., 2018; Cubero et al.,
2019) both reported as antibiotic-sensitive (Yeh et al., 2007; Gu
et al., 2018). However, in recent years, carbapenem-resistant HMV
strains have been reported worldwide (Gu et al., 2018; Huang et al.,
2018; Lev et al., 2018; Ferreira et al., 2019; Wang et al., 2020).

Biofilm production is also important to the virulence of K.
pneumoniae because the biofilm matrix facilitates the transfer of
antibiotic-resistance mobile elements while physically protecting
bacteria, thus increasing microbial tolerance to antibiotics,
bacterial persistence, and dissemination (Clegg and Murphy,
2016; Ribeiro et al., 2016; Cubero et al., 2019). Biofilm
eradication requires high antimicrobial concentrations, which
are often impossible to achieve due to drug-related toxicity.
Thus, relapses are frequent even after targeted and prolonged
December 2020 | Volume 10 | Article 561741
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therapies (Clegg and Murphy, 2016; Di Domenico et al.,
2019). Despite its role in microbial virulence, biofilm
is not routinely assessed in clinical microbiology, and
diagnosis of biofilm-related infection, in most cases, can only
be presumed based on clinical signs and symptoms (Di
Domenico et al., 2016).

This study analyzes the impact of different CRKP virulence
determinants to assess their predictivity in supporting clinical
decision-making in high-risk oncological patients.
MATERIALS AND METHODS

This retrospective study was performed at the San Gallicano
Dermatological Institute and Regina Elena National Cancer
Institute, Rome, Italy, between January 2015 and December 2019.

The Central Ethics Committee I.R.C.C.S. Lazio, approved the
study (Prot. CE/1016/15—15 December 2015, trials registry N.
730/15).

Microbiology
The samples were collected from a total of 86 oncological patients
colonized or infected with CRKP. Bacterial identification was
performed by matrix-assisted laser desorption/ionization-time of
flight mass spectrometry (MALDI-TOF MS) system (Bruker
Daltonik, Bremen, Germany). The antimicrobial susceptibility
was assessed by the VITEK® 2 system (bioMérieux, Marcy
l’Étoile, France) (Lucarelli et al., 2017). Susceptibility for colistin
and ceftazidime/avibactam was determined by the Sensititre broth
microdilution method (Thermo Scientific, New Jersey, USA), and
results were interpreted according to the European Committee on
Antimicrobial Susceptibility Testing (EUCAST) clinical
breakpoints (http://www.eucast.org/clinical_breakpoints). The
presence of blaKPC, blaVIM, blaOXA-48, blaIMP-1, blaNDM types was
determined by the Cepheid Xpert® Carba-R assay and the
GeneXpert® device (Cepheid, Sunnyvale, USA).

Biofilm Formation
Biofilm production was assessed by the clinical BioFilm Ring Test
(cBRT) (Biofilm Control, Saint Beauzire, France), as described in
Di Domenico et al., 2016. Briefly, an overnight culture of K.
pneumoniae grown on a blood agar plate was used to inoculate
2 ml of 0.45% saline solution to 1.0 ± 0.3 McFarland turbidity
standard. The bacterial suspension was used to inoculate a 96-well
polystyrene plate with 200 ml/well. The test was performed using
the toner solution (TON004) containing magnetic beads 1% (v/v)
mixed in the Brain Heart Infusion medium. Ten-fold serial
dilutions were performed in a volume of 200 ml BHI/TON
mix. K. pneumoniae ATCC700603 and K. pneumoniae ATCC
13883 were included in each plate as standard reference and
internal control. After 5 h of incubation at 37°C in a static
condition, wells were covered with contrast liquid, placed for
1 min on the block carrying 96 mini-magnets, and scanned with
a plate reader (Pack BIOFILM, Biofilm Control, Saint Beauzire,
France). The adhesion strength of each strain was expressed as
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
BioFilm Index (BFI). Each K. pneumoniae strain was classified as
weak moderate and high biofilm producers (Di Domenico et al.,
2016; Di Domenico et al., 2017). Besides, moderate and high biofilm
producers were grouped and classified as strong biofilm producers
(Di Domenico et al., 2019). Each K. pneumoniae isolate was
analyzed in duplicate, and experiments were repeated three times.

String Test
The HMV phenotype of the CRKP isolates was revealed by the
string test as described previously (Zhan et al., 2017; Liu
et al., 2019).

Sedimentation Assay
Overnight cultures were pelleted by centrifugation at 9,000×g
and resuspended in PBS to an OD600 of 1. The suspensions were
centrifuged at 1,000×g for 5 min, and the OD600 of the
supernatants was measured. Readings were normalized to the
OD600 of the strains before centrifugation (Bachman et al., 2015;
Walker et al., 2019).

Statistics
Continuous variables were compared by Student’s t-test for
normally distributed variables and the Mann-Whitney U test
for non-normally distributed variables. Categorical variables
were evaluated using the c2 or two-tailed Fisher’s exact test.
Univariate and multivariate analyses were carried by a logistic
regression model to identify independent risk factors for 30-days
mortality. Statistical analyses were carried out using IBM SPSS
v.21 statistics software.
RESULTS

From January 2015 to December 2019, 86 consecutive patients
infected or colonized with CRKP were included in the study.
Patients’ demographic and clinical characteristics are described in
Table 1. The most represented underlying malignancy was hepato-
bilio-pancreatic cancer (27.9%), urinary tract cancer (24.4%),
hematologic malignancy (12.8%), and gastrointestinal cancer
(12.8%) (Table 1). Infected patients were 61.6% (N53), while
colonized patients accounted for 38.4% (N33). A concomitant
fungal infection was detected in 5.8% (N5) of patients. Among
infected patients, the most frequent manifestation caused by CRKP
was sepsis (N23; 43.4%) followed by pneumoniae (N10; 18.9%),
urinary tract infections (N7; 13.2%) and intra-abdominal infection
(N5; 9.4%). CRKP caused 9 cases of catheter-related bloodstream
infections and one case of catheter-acquired urinary infection.
Among colonized patients, rectal surveillance swabs (RSS) were
the most common site of CRKP isolation (N27; 81.8%) followed by
urine samples (N4; 12.1%).

Based on genotypic characterization, the leading mechanism of
carbapenem resistance was related to the KPC gene (N83, 96.5%),
followed by OXA-48 (N2, 2.3%) and VIM (N1, 1.2%). None of the
strains analyzed were positive for the class B metallo-b-lactamases
IMP and NDM. The OXA-48 and VIM were only isolated from
December 2020 | Volume 10 | Article 561741

http://www.eucast.org/clinical_breakpoints
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Di Domenico et al. Biofilm Production in CRKP
RSS in colonized patients, while all CRKP from infected patients
were KPC-producing K. pneumoniae strains. The antimicrobial
susceptibility profile confirmed that almost all the CRKP strains
were resistant to three carbapenems with a high level of resistance
to all tested beta-lactams (Table 2). Among the CRKP strains,
10.5% (N9) were also resistant to colistin. Notably, only one strain
were found resistant to ceftazidime-avibactam. The only CRKP
isolate resistant to ceftazidime-avibactam was the VIM-positive
strain. In the colistin-resistant group, seven strains were isolated
from infected patients and two from colonized individuals.
Among aminoglycosides, 25.6% (N22) of CRKP strains were
susceptible to amikacin, and 17.4% (N15) were susceptible to
gentamycin. Trimethoprim/sulfamethoxazole-susceptible isolates
were 23.3% (N20), while fosfomycin and tigecycline were below
the breakpoints in only 13.9% (N12) and 12.7% (N11) of cases,
respectively. Notably, only 2.3% (N2) of the CRKP strains were
found to be susceptible to ciprofloxacin.

Phenotypic CRKP characterization indicated that 22.1%
(N19) of the isolates were HMV, and 77.9% (N67) were
classified as non-HMV. The HMV isolates showed a positive
string test result (Figure 1A). The median length of the string
was 7 mm (ranging from 5–25 mm). The mucoviscosisty levels
were determined by the sedimentation assay. HMV strains do
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
not sediment properly during low-speed centrifugation, and the
supernatant remains turbid, while the non-HMV strains produce
compact pellets with clear supernatants. The turbidity of
supernatant can be measured by the optical density at 600 nm
(OD600) (Walker and Miller, 2020). The OD600 of HMV strains
was 0.32±0.12 and, non-HMV was 0.13±0.08 (P<0.001)
(Figure 1B).

One HMV isolate was found colistin-resistant and eight were
non-HMV. Due to the low number of colistin-resistant
compared to colistin-susceptible strains the difference was no
statistically significant. Besides, HMV and non-HMV isolates did
not show any significant association to infected or colonized
patients as well as to a specific site of isolation.

Among the 86 CRKP isolates, 55.8% (N48) were classified as
strong biofilm producers, while 44.2% (N38) showed a weak
production (Table 1). Strong biofilm-producing CRKP were
equally distributed in both infected (N26) and colonized (N22)
patients, while weak biofilm-producing strains were more
abundant in infected (N27) as compared to colonized patients
(N11). Although the level of biofilmwas not significantly related to
the site of isolation, strong biofilm producers were detected in 80%
of BAL from patients with pneumoniae, 63% of urine samples,
63% of RSS, and 43.5% of blood cultures of septic patients (Figure
2). Among the colistin-resistant isolates, six were classified as
strong and three as weak biofilm producers. The degree of biofilm
was not significantly associated with colistin resistance.
Noteworthy, biofilm production was significantly different in
HMV and non-HMV strains (P=0.0002), with the former being
mostly weak biofilm producers (88.2%) as compared to non-HMV
(33.3%) isolates (Figure 2). Confocal microscopy analysis of the
biofilms was performed after 24 h of incubation (Figure 3). The
strong biofilm-producing CRKP isolates (Figure 3A) formed a
compact 15–25 mm thick multi-layered structure. Conversely,
weak biofilm-producing strains, including non-HMV (Figure
3B) and HMV (Figure 3C) isolates, were scattered over the
polystyrene slide surface and no three-dimensional structure
could be observed.
TABLE 2 | Antibiotic susceptibility profile of carbapenem-resistant K.
pneumoniae clinical isolates.

Antibiotic N %

Amikacin 22 25.6
Amoxicillin/clavulanic acid 1 1.2
Cefepime 0 0
Cefotaxime 0 0
Ceftazidime 0 0
Ceftazidime/avibactam 85 98.8
Ciprofloxacin 2 2.3
Colistin 77 89.5
Ertapenem 1 1.2
Fosfomycin 12 13.9
Gentamycin 15 17.4
Imipenem 0 0
Meropenem 0 0
Piperacillin/Tazobactam 0 0
Tigecycline 11 12.7
TMP-SMX 20 23.3
December 202
0 | Volume 10 | Article 56
N, number of strains susceptible for the indicated antibiotic; TMP-SMX, Trimethoprim/
sulfamethoxazole.
TABLE 1 | Demographic and clinical characteristics of patients at enrollment.

Clinical Characteristics N %

Female 46 53.5
Male 40 46.5
Median age (range) 71 40–96
Primary Cancer
Hepato-bilio-pancreatic cancers 24 27.9
Urinary tract cancers 21 24.4
Hematologic malignancies 11 12.8
Gastro-intestinal cancers 11 12.8
Others 19 22.1
Infected patients 53 61.6
Sepsis 23 43.4
Pneumoniae 10 18.9
Urinary tract infections 7 13.2
Intra-abdominal infection 5 9.4
Other 8 15.1
Colonized patients 33 38.4
Rectal swab 27 81.8
Urine 4 12.1
Other 2 6.1
Genotipic characterization
KPC 83 96.5
OXA-48 2 2.3
VIM 1 1.2
NDM 0 0
IMP 0 0
Phenotype
HMV 19 22.1
Non-HMV 67 77.9
Biofilm Production
Weak 38 44.2
Strong 48 55.8
Clinical outcome
Infection-related mortality 19 35.8
KPC, Klebsiella pneumoniae carbapenemase; IMP, imipenemase metallo b-lactamase;
NDM, New Delhi metallo b-lactamase; VIM, Verona integron metallo b-lactamase; OXA-
48, oxacillinase-48. Hypermucoviscous (HMV) phenotype.
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None of the patients colonized with CRKP died in the study
period. Therefore, the 30-day mortality rate was calculated on
the group of infected patients (Table 3). Infection-related
mortality in this group was 35.8% (N19). In univariate
analysis, a significantly high proportion of patients dying
within 30 days had pneumoniae (OR 5.09; CI 95% 1.08–24.02;
P=0.04). The presence of colistin resistance was not significantly
related to increased attributable mortality in this group of
patients (OR 3.08; CI 95% 0.33–28.77; P=0.32). Likewise, a
concomitant fungal infection was not correlated with increased
30-day mortality (OR 4.00; CI 95% 0.33–47.73; P=0.27). Among
the CRKP virulence factors, either the presence of a non-HMV
phenotype (OR 4.67; CI 95% 1.13–19.24; P=0.03) or the presence
of strong biofilm-producing isolates (OR 5.04; CI 95% 1.39–
18.25; P=0.01) represents a significant predictive element for 30-
day mortality. Further assessment of CRKP virulence factors by
multivariate analysis gave a strong biofilm-producing phenotype
as the only independent predictor of mortality (OR 6.30; CI 95%
1.78–19.24; P=0.004).
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
DISCUSSION

Infections caused by CRKP represent a considerable clinical
challenge, often burdened by a delay in the introduction of
appropriate antimicrobial therapy, prolonged hospitalization,
and considerable mortality rates (Gasink et al., 2009; Mouloudi
et al., 2010; Freire et al., 2015; David et al., 2019). Therefore,
understanding the impact of microbial infection/colonization
factors on the outcome of CRKP-induced diseases may help
improve patient management and prognosis.

This study analyzed data from 86 oncological patients with an
infection or colonization sustained by CRKP. We found that the
leading mechanism of carbapenem resistance was due to the
expression of the KPC gene, present in 96.5% of the isolates,
followed by OXA-48 and VIM, found in 2.3 and 1.2% of cases,
respectively. These data, though from a limited group of strains,
are consistent with previous epidemiological studies. Indeed, in
Italy, approximately 90% of the CRKP isolates carry the KPC
gene, followed by VIM (9.2%) and, in a small percentage, by
A B

FIGURE 1 | String test for identification of the HMV phenotype. A positive string test (A) is defined as the formation of viscous strings of >5 mm in length on an agar
plate. (B) Sedimentation assay for HMV and non-HMV isolates.
A B

FIGURE 2 | Biofilm formation of CRKP clinical isolates according to (A) the site of isolation and (B) the HMV and non-HMV phenotype.
December 2020 | Volume 10 | Article 561741
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OXA-48 (1.3%) (Giani et al., 2015; Navon-Venezia et al., 2017;
Ripabelli et al., 2018; Di Tella et al., 2019). Different classes of
carbapenemases exhibit specific functional properties and
susceptibilities, which may be clinically relevant (Cassini et al.,
2019). Therefore, information regarding the molecular
mechanism leading to carbapenem resistance may also provide
a guide in antibiotic selection and administration upon suspicion
of infection (Giannella et al., 2014).

The antimicrobial susceptibility profile confirmed that almost
all the CRKP strains assessed in this study were resistant to three
carbapenems with high resistance levels against all the b-lactams
tested (Table 2). Novel b-lactam/b-lactamase inhibitor
combinations have been recently introduced as new treatment
options against infections caused by carbapenem-resistant
Enterobacteriaceae (Karaiskos et al., 2019; Sheu et al., 2019).
Recent evidence indicates that ceftazidime-avibactam may
represent an effective treatment for CRKP infections (Shields
et al., 2016; van Duin and Bonomo, 2016; Krapp et al., 2017;
Caston et al., 2017; Tumbarello et al., 2019). Indeed, ceftazidime-
avibactam inhibits KPC and OXA-48 enzymes, but it is not active
against the metallo-b-lactamases (ECDC EARS-NET report,
2017; Shirley, 2018; Sousa et al., 2018; Ambretti et al., 2019).
Consistently with these observations, our results show that
ceftazidime-avibactam is effective against KPC and OXA-48
but not against CRKP strains harboring the VIM gene (Shirley,
2018; Garcıá-Castillo et al., 2018).

Colistin is considered as an antibiotic of last resort for treating
severe CRKP infections, because of increasing microbial
resistance and associated toxicity (Elnahriry et al., 2016;
Schwarz and Johnson, 2016; Rojas et al., 2017; Wang et al.,
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
2018; Ghirga et al., 2020). In this study, we found a 10.5% of
CRKP resistant to colistin. This result is consistent with studies
performed worldwide, which confirm a colistin-resistant rate
not exceeding 8.8%–13% among CRKP isolates, as assessed
by broth microdilution (Goel et al., 2014; Olaitan et al., 2014;
Rojas et al., 2017; Zafer et al., 2019). Previous colistin therapy
was considered an independent risk factor for colistin resistance
among CRKP (Giacobbe et al., 2015). In this study, the
prevalence of colistin-resistant clinical CRKP isolates was
relatively low. Such colistin resistance rates may indicate that
infection prevention procedures and antimicrobial stewardship
adopted in our institution have reduced the selective pressure,
limiting the spread of colistin resistance. In our colistin-resistant
group, seven strains were isolated from infected patients and two
from a colonized individual. Notably, we did not observe a
statistically significant difference in mortality rates between
patients infected with colistin-resistant and colistin-susceptible
isolates. This observation is consistent with a recent study
showing that the patient’s conditions and not the presence of
colistin-resistant strains have the most significant impact on the
clinical outcome (Brescini et al., 2019). However, other studies
pointed to a direct association between colistin-resistant strains
and mortality (Giacobbe et al., 2015; Rojas et al., 2017). In
particular, results from a multicenter study conducted in Italy,
in which a 20% colistin resistance was found, reported a
mortality rate significantly higher than that observed in
patients infected with colistin-susceptible strains (Giacobbe
et al., 2015).

The HMV strains represent a serious health threat, causing
severe infections in both immune-compromised and healthy
A B C

FIGURE 3 | Representative confocal microscopy images of CRKP biofilms developed on polystyrene slides for 24 h at 37°C. (A) Strong biofilm-producing non-HMV
isolates. (B) Weak biofilm-producing non-HMV and (C) Weak biofilm-producing HMV strain. Orthogonal sections displaying horizontal (z) and side views (x and y) of
reconstructed 3D biofilm images are shown.
TABLE 3 | Univariate and multivariate analyses of factors associated with for 30-day mortality in 53 patients infected with carbapenem-resistant K. pneumoniae.

Variables Univariate Analysis Multivariate Analysis

OR (CI 95%) P value OR (CI 95%) P value

Biofilm (strong vs weak) 5.04 (1.39–18.25) 0.01 6.30 (1.78–19.24) 0.004
Colistin resistance (no vs. yes) 3.08 (0.33–28.77) 0.32 – ns
Fungal infection (yes vs. no) 4.00 (0.33–47.73) 0.27 – ns
Phenotype (non-HMV vs. HMV) 4.67 (1.13–19.24) 0.03 – ns
Site (respiratory vs. other) 5.09 (1.08–24.02) 0.04 – ns
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individuals (Shon and Russo, 2012; Shon et al., 2013; Gu et al., 2018;
Liu and Guo, 2019). In critically ill patients, such as those from
intensive care units, HMV K. pneumoniae can induce invasive
infection and syndromes (Lee et al., 2010; Liu and Guo, 2019).
Thus, the assessment of the HMV phenotype by the string test has
been proposed as a necessary addition into the daily practice of
microbiological surveillance in ICU (Hagiya et al., 2014). Globally,
the prevalence of HMV strains in K. pneumoniae isolates is
reported in the range of 17%–45% (Yu et al., 2006; Liu and Guo,
2019). The HMV strains are usually highly susceptible to
antibiotics, and infections can be generally treated with success
using carbapenems (Shon and Russo, 2012; Holt et al., 2015).
Nevertheless, sporadic reports of isolation of carbapenemase-
producing HMV strains are emerging worldwide, mostly
occurring in hospitalized patients (Arena et al., 2017; Gu et al.,
2018; Simner et al., 2018). In our study, CRKP-HMV strains
accounted for 22.1% of the total isolates. This result is in contrast
with previously reported epidemiological data showing a prevalence
of about 1% (Gu et al., 2018; Simner et al., 2018; Liu and Guo,
2019). An important concern when considering the highly
susceptible HMV strains is their ability to became resistant to
carbapenems when subjected to a meropenem regimen (Simner
et al., 2018). The carbapenem resistance in HMV appears to be
maintained only in the presence of meropenem and is lost after
antibiotic removal (Huang et al., 2013; Simner et al., 2018). This
suggests that the presence of carbapenemase-encoding plasmids in
HMV strains may someway harm bacterial fitness and is
dispensable in the absence of selective pressure (Huang et al.,
2013; Simner et al., 2018). Such instability may recognize several
possible causes and associated factors, including the specific K.
pneumoniae strains, the type of plasmid incompatibility groups
and/or the acquisition of different carbapenemase genes (Simner
et al., 2018). The exposure to multiple cycles of prolonged antibiotic
treatment in our group of hospitalized patients might have exerted
the selective pressure necessary to acquire and preserve
carbapenemase genes in such a high number of strains. If true,
this further emphasizes the judicious use of antibiotics to limit
the development and spread of antibiotic resistance in
hypervirulent strains of K. pneumoniae. Of importance, we
found that non-HMV strains were associated with a significant
increase in infection-related mortality. This is in contrast with a
previous study describing high mortality rates caused by HMV
K. pneumoniae strains (Shon and Russo, 2012). However, some
controversies exist regarding the HMV classification and its
putative virulence (Lin et al., 2011; Zhang et al., 2015). In
animal models, HMV strains did not show more severe
infections or higher mortality rates as compared to non-HMV
(Zhang et al., 2016; Catalan-Najera et al., 2017). Besides, CRKP
with an HMV phenotype were found to produce a significantly
lower amount of biofilm compared to non-HMV isolates,
suggesting that exopolysaccharides production has a negative
impact on CRKP fitness (Cubero et al., 2019). This further
confirms that the presence of the capsular polysaccharides
reduces bacterial adhesion probably by the shielding of the
fimbrial adhesins (Wang et al., 2015; Wang et al., 2017).
However, in this reduced ability of adhesion may reside an
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
advantage of the HMV strains. Indeed, capsule allows tighter
bacterial packing, as compared to capsule-deficient cells,
promoting an increased ability to disseminate to distant sites,
including the lung, eye, soft tissue and central nervous system
(Dzul et al., 2011; Choby et al., 2020). On the other hand, biofilm
production may explain, at least in part, the association of non-
HMV strains with a significant increase in infection-related
mortality, since most non-HMV strains (55.8%) were strong
biofilm producers, being equally distributed between infected
and colonized patients. Notably, in infected patients, the
presence of strong biofilm-producing CRKP significantly
(P=0.01) correlated with increased mortality. Strong biofilm
producers were detected in 80% of pneumonia cases, 63% of
urine samples, 63% of RSS, and 43.5% of blood cultures. The
fraction of strong biofilm-producing CRKP observed in this
study is consistent with previous reports (Di Domenico et al.,
2017; Vuotto et al., 2017; Nirwati et al., 2019; Ramos-Vivas et al.,
2019). Studies directed at assessing carbapenem-susceptible K.
pneumoniae isolated from blood, respiratory specimens, urine,
and wounds, found strong biofilm producers in percentages
ranging from 65% to 85% (Yang and Zhang, 2008; Hassan
et al., 2011; Seifi et al., 2016; Cepas et al., 2019). The analysis
of biofilm production in vitro showed a large variation among K.
pneumoniae isolates according to the microenvironment, the
surface where the biofilm adheres, temperature, pH, and the
physicochemical characteristic of the isolate. A number of
reports have pointed to an association between higher level of
biofilm formation and the acquisition of a multidrug-resistant
phenotype in K. pneumoniae (Yang and Zhang, 2008;
Subramanian et al., 2012; Sanchez et al., 2013; Vuotto et al.,
2017; Bocanegra-Ibarias et al., 2017; Cepas et al., 2019; Nirwati
et al., 2019). In particular, an increased rate of horizontal gene
transfer among bacteria growing in close contact within the
biofilm matrix is deemed responsible for the rapid acquisition of
antibiotic resistance, both at the single and multispecies levels
(Ghigo, 2001; Madsen et al., 2012; Lebeaux et al., 2014). Despite
these findings, the association between antibiotic resistance and
biofilm formation is still debated (De Campos et al., 2016; Di
Domenico et al., 2017; Cepas et al., 2019).

The overall CRKP infection-related mortality rate observed in
the present study was 35.8%. This figure is consistent with recent
studies reporting mortality rates of approximately 40% in Italy
and other European countries (Hoxha et al., 2016; Xu et al., 2017;
Ramos-Castañeda et al., 2018). However, geographic variations,
as well as co-morbidities, should be considered. Studies in South
America gave figures of 51.0% of CRKP-related mortality while
in North America, a 33.2% mortality rate was reported (Rossi
Gonçalves et al., 2016; GBD 2015, 2017; Xu et al., 2017). In
immune-compromised patients, CRKP infection gave mortality
rates higher than those observed in our study, particularly when
considering patients undergoing liver transplantation (78%), or
patients with hematologic malignancies and solid tumors (56%–
73%) (Lübbert et al., 2013; Satlin et al., 2013; Freire et al., 2015;
Ramos-Castañeda et al., 2018). We found the highest rate of
mortality in patients with pneumoniae and sepsis. Similar results,
in association with additional factors, including a high APACHE
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score, inappropriate initial antimicrobial therapy, advanced age
and shock, were previously found among cancer patients infected
with multidrug-resistant agents (Gasink et al., 2009; Souli et al.,
2010; Zarkotou et al., 2011; Tumbarello et al., 2012; Bodro et al.,
2014; Xu et al., 2017).

Assessment of these data by univariate analysis indicated that
both a Non-HMV phenotype (P=0.001) and a strong biofilm-
producing strain (P=0.01) are predictive of an increased CRKP
infection-related mortality. Besides, multivariate analysis indicated
that the presence of strong biofilm-producing CRKP strains was
the only microbial factor independently associated with death (95%
CI, 1.78-19.24; P=0.004) in oncological patients infected with
CRKP. This result is also supported by previous study
demonstrating that biofilm formation contributes to increased K.
pneumoniae pathogenicity (Wu et al., 2011; Ernst et al., 2020).
These data further support the notion that biofilm production
represents a key CRKP virulence factor, which protects bacteria
from physical and chemical insults, including antimicrobials,
supporting microbial persistence and dissemination The effective
antibiotic concentration required for biofilm eradication in vivo is,
in most cases, impossible to reach due to drug toxicity and side
effects (Ciofu et al., 2015). Therefore, the diagnosis of a biofilm-
associated infection represents an area of serious concern for the
clinical management of patients. The timely recognition of a strong
biofilm producer, before the development of a mature biofilm
matrix, may provide key decision-making elements for most
appropriate targeting of either medical or surgical intervention,
including type, doses, duration of antimicrobial therapy or removal
of medical devices, respectively. However, conventional
antimicrobial susceptibility testing performed on planktonic cells
does not detect the additional resistance mechanism provided by
biofilm. Thus, the introduction of reliable microbiological
platforms for the diagnosis of biofilm-associated infections and
the determination of biofilm-induced antibiotic tolerance
represents a desirable addition in clinical microbiology.

Although bringing relevant information, this study has a few
limitations. Being a retrospective study performed in a single
oncological Hospital, our epidemiology findings might differ
from those emerging from other experiences. Nevertheless,
data from this study indicated that the mortality rate among
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
oncological patients infected with CRKP is high (35.8%). The
infection-related mortality rate did not correlate with the
presence of HMV strains but, conversely, was significantly
associated with non-HMV, strong biofilm-producing isolates,
the latter representing an independent risk factor of death in
oncological patients infected with CRKP. A more in-depth
exploration of the mechanisms promoting biofilm formation in
K. pneumoniae will help identify specific virulence markers.
Nevertheless, the timely recognition of biofilm-associated
infections and biofilm-induced drug tolerance still represents
an unmet need in clinical microbiology.
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Gracia-Ahufinger, I., et al. (2018). Activity of ceftazidime-avibactam against
carbapenemase-producing Enterobacteriaceae from urine specimens obtained
during the infection-carbapenem resistance evaluation surveillance trial
(iCREST) in Spain. Int. J. Antimicrob. Agents 51, 511–515. doi: 10.1016/
j.ijantimicag.2018.01.011

Gasink, L. B., Edelstein, P. H., Lautenbach, E., Synnestvedt, M., and Fishman,
N. O. (2009). Risk factors and clinical impact of Klebsiella pneumoniae
carbapenemase-producing K. pneumoniae. Infect. Control Hosp. Epidemiol.
30, 1180–1185. doi: 10.1086/648451

GBD 2015 Healthcare Access and Quality Collaborators (2017). Healthcare Access
and Quality Index based on mortality from causes amenable to personal health
care in 195 countries and territories 1990–2015: a novel analysis from the
Global Burden of Disease Study 2015. Lancet 390, 231–266. doi: 10.1016/
S0140-6736(17)30818-8

Ghigo, J. M. (2001). Natural conjugative plasmids induce bacterial biofilm
development. Nature 412, 442–445. doi: 10.1038/35086581

Ghirga, F., Stefanelli, R., Cavinato, L., Lo Sciuto, A., Corradi, S., Quaglio, D., et al.
(2020). A novel colistin adjuvant identified by virtual screening for ArnT
inhibitors. J. Antimicrob. Chemother. 75 (9), 2564–2572. doi: 10.1093/jac/dkaa200

Giacobbe, D. R., Del Bono, V., Trecarichi, E. M., De Rosa, F. G., Giannella, M.,
Bassetti, M., et al. (2015). Risk factors for bloodstream infections due to
colistin-resistant KPC-producing Klebsiella pneumoniae: results from a
multicenter case–control–control study. Clin. Microbiol. Infect. 21, 1106 e1–
8. doi: 10.1016/j.cmi.2015.08.001

Giani, T., Arena, F., Vaggelli, G., Conte, V., Chiarelli, A., Henrici De Angelis, L.,
et al. (2015). Large nosocomial outbreak of colistin-resistant, carbapenemase-
producing Klebsiella pneumoniae traced to clonal expansion of an
mgrB deletion mutant. J. Clin. Microbiol. 53, 3341–3344. doi: 10.1128/
JCM.01017-15

Giannella, M., Trecarichi, E. M., De Rosa, F. G., Del Bono, V., Bassetti, M.,
Lewis, R. E., et al. (2014). Risk factors for carbapenem-resistant Klebsiella
pneumoniae bloodstream infection among rectal carriers: a prospective
observational multicentre study. Clin. Microbiol. Infect. 20, 1357–1362.
doi: 10.1111/1469-0691.12747
December 2020 | Volume 10 | Article 561741

https://doi.org/10.1001/archinte.1989.00390060171048
https://doi.org/10.1001/archinte.1989.00390060171048
https://doi.org/10.1016/S1473-3099(18)30605-4
https://doi.org/10.1016/j.ijid.2017.03.021
https://doi.org/10.1080/21505594.2017.1317412
https://doi.org/10.1080/21505594.2017.1317412
https://doi.org/10.1089/mdr.2018.0027
https://doi.org/10.1111/joim.13007
https://doi.org/10.1016/j.addr.2014.11.017
https://doi.org/10.1128/microbiolspec.UTI-0005-2012
https://doi.org/10.1128/microbiolspec.UTI-0005-2012
https://doi.org/10.1128/JCM.02316-14
https://doi.org/10.1371/journal.pone.0222628
https://doi.org/10.1038/s41564-019-0492-8
https://doi.org/10.1038/s41564-019-0492-8
https://doi.org/10.1007/s00284-016-0996-x
https://doi.org/10.1007/s00284-016-0996-x
https://doi.org/10.1128/JCM.00676-11
https://doi.org/10.3389/fmicb.2016.01429
https://doi.org/10.3390/ijms18051077
https://doi.org/10.1186/s12866-019-1596-2
https://doi.org/10.2147/IDR.S226416
https://doi.org/10.1128/AEM.01752-10
https://doi.org/10.1128/AAC.00269-16
https://doi.org/10.1038/s41591-020-0825-4
https://ecdc.europa.eu/sites/portal/files documents/EARSNet- report-2017-update-jan-2019.pdf
https://ecdc.europa.eu/sites/portal/files documents/EARSNet- report-2017-update-jan-2019.pdf
https://doi.org/10.1086/519262
https://doi.org/10.3389/fmicb.2018.03198
https://doi.org/10.1099/mgen.0.000073
https://doi.org/10.1007/s10096-014-2233-5
https://doi.org/10.1016/j.ijantimicag.2018.01.011
https://doi.org/10.1016/j.ijantimicag.2018.01.011
https://doi.org/10.1086/648451
https://doi.org/10.1016/S0140-6736(17)30818-8
https://doi.org/10.1016/S0140-6736(17)30818-8
https://doi.org/10.1038/35086581
https://doi.org/10.1093/jac/dkaa200
https://doi.org/10.1016/j.cmi.2015.08.001
https://doi.org/10.1128/JCM.01017-15
https://doi.org/10.1128/JCM.01017-15
https://doi.org/10.1111/1469-0691.12747
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Di Domenico et al. Biofilm Production in CRKP
Goel, G., Hmar, L., De Sarkar, M., Bhattacharya, S., and Chandy, M. (2014).
Colistin resistant Klebsiella pneumoniae: report of a cluster of 24 cases from a
new oncology center in eastern India. Infect. Control Hosp. Epidemiol. 35,
1076–1077. doi: 10.1086/677170

Gu, D., Dong, N., Zheng, Z., Lin, D., Huang, M., Wang, L., et al. (2018). A fatal
outbreak of ST11 carbapenem-resistant hypervirulent Klebsiella pneumoniae
in a Chinese hospital: a molecular epidemiological study. Lancet Infect. Dis. 18,
37–46. doi: 10.1016/S1473-3099(17)30489-9

Hagiya, H., Watanabe, N., Maki, M., Murase, T., and Otsuka, F. (2014). Clinical
utility of string test as a screening method for hypermucoviscosity-phenotype
Klebsiella pneumoniae. Acute Med. Surg. 1, 245–246. doi: 10.1002/ams2.40

Hassan, A., Usman, J., Kaleem, F., Omair, M., Khalid, A., and Iqbal, M. (2011).
Evaluation of different detection methods of biofilm formation in the clinical
isolates. Braz. J. Infect. Dis. 15, 305–311. doi: 10.1016/S1413-8670(11)70197-0

Holt, K. E., Wertheim, H., Zadoks, R. N., Baker, S., Whitehouse, C. A., Dance, D.,
et al. (2015). Genomic analysis of diversity, population structure, virulence, and
antimicrobial resistance in Klebsiella pneumoniae, an urgent threat to public
health. Proc. Natl. Acad. Sci. U.S.A. 112, E3574–EE3581. doi: 10.1073/
pnas.1501049112

Hoxha, A., Kärki, T., Giambi, C., Montano, C., Sisto, A., Bella, A., et al. (2016).
Attributable mortality of carbapenem-resistant Klebsiella pneumoniae
infections in a prospective matched cohort study in Italy 2012-2013. J. Hosp.
Infect. 92, 61–66. doi: 10.1016/j.jhin.2015.06.018

Huang, T. W., Chen, T. L., Chen, Y. T., Lauderdale, T. L., Liao, T. L., Lee, Y. T.,
et al. (2013). Copy number change of theNDM-1 sequence in a multidrug-
resistant Klebsiella pneumoniae clinical isolate. PLoS One 8, e62774. doi:
10.1371/journal.pone.0062774

Huang, Y. H., Chou, S. H., Liang, S. W., Ni, C. E., Lin, Y. T., Huang, Y. W., et al.
(2018). Emergence of an XDR and carbapenemaseproducing hypervirulent
Klebsiella pneumoniae strain in Taiwan. J. Antimicrob. Chemother. 73, 2039–
2046. doi: 10.1093/jac/dky164

Kanj, S., and Kanafani, Z. (2011). Current Concepts in Antimicrobial Therapy
Against Resistant Gram-Negative Organisms: Extended-Spectrum b-
Lactamase–Producing Enterobacteriaceae, Carbapenem-Resistant
Enterobacteriaceae, and Multidrug-Resistant Pseudomonas aeruginosa. Mayo
Clin. Proc. 86, 250–259. doi: 10.4065/mcp.2010.0674

Karaiskos, I., Souli, M., Galani, I., and Giamarellou, H. (2017). Colistin: still a
lifesaver for the 21st century? Expert Opin. Drug Metab. Toxicol. 13, 59–71.
doi: 10.1080/17425255.2017.1230200

Karaiskos, I., Galani, I., Souli, M., and Giamarellou, H. (2019). Novel beta-lactam-
betalactamase inhibitor combinations: expectations for the treatment of
carbapenem-resistant gram-negative pathogens. Expert Opin. Drug Metab.
Toxicol. 15, 133–149. doi: 10.1080/17425255.2019.1563071

Krapp, F., Grant, J. L., Sutton, S. H., Ozer, E. A., and Barr, V. O. (2017). Treating
complicated carbapenem-resistant enterobacteriaceae infections with ceftazidime/
avibactam: a retrospective study with molecular strain characterisation. Int. J.
Antimicrob. Agents 49, 770–773. doi: 10.1016/j.ijantimicag.2017.01.018

Lübbert, C., Becker-Rux, D., Rodloff, A. C., Laudi, S., Busch, T., Bartels, M., et al.
(2013). Colonization of liver transplant recipients with KPC-producing
Klebsiella pneumoniae is associated with high infection rates and excess
mortality: a case–control analysis. Infection 42, 309–316. doi: 10.1007/
s15010-013-0547-3

Lebeaux, D., Ghigo, J. M., and Beloin, C. (2014). Biofilm-related infections:
Bridging the gap between clinical management and fundamental aspects of
recalcitrance toward antibiotics. Microbiol. Mol. Biol. Rev. 78, 510–543.
doi: 10.1128/MMBR.00013-14

Lee, C. H., Liu, J. W., Su, L. H., Chien, C. C., Li, C. C., and Yang, K. D. (2010).
Hypermucoviscosity associated with Klebsiella pneumoniaemediated invasive
syndrome: a prospective cross-sectional study in Taiwan. Int. J. Infect. Dis. 14,
e688–e692. doi: 10.1016/j.ijid.2010.01.007

Lev, A. I., Astashkin, E. I., Kislichkina, A. A., Solovieva, E. V., Kombarova, T. I.,
Korobova, O. V., et al. (2018). Comparative analysis of Klebsiella pneumoniae
strains isolated in 2012-2016 that differ by antibiotic resistance genes and
virulence genes profiles. Pathog. Glob. Health 112, 142–151. doi: 10.1080/
20477724.2018.1460949

Lin, Y. C., Lu, M. C., Tang, H. L., Liu, H. C., Chen, C. H., Liu, K. S., et al. (2011).
Assessment of hypermucoviscosity as a virulence factor for experimental
Klebsiella pneumoniae infections: comparative virulence analysis with
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 10
hypermucoviscosity-negative strain. BMC Microbiol. 11, 50. doi: 10.1186/
1471-2180-11-50

Liu, C., and Guo, J. (2019). Hypervirulent Klebsiella pneumoniae (hypermucoviscous
and aerobactin positive) infection over 6 years in the elderly in China: antimicrobial
resistance patterns, molecular epidemiology and risk factor. Ann. Clin. Microbiol.
Antimicrob. 18, 4. doi: 10.1186/s12941-018-0302-9

Liu, Z., Gu, Y., Li, X., Liu, Y., Ye, Y., Guan, S., et al. (2019). Identification and
Characterization of NDM-1-producing Hypervirulent (Hypermucoviscous)
Klebsiella pneumoniae in China. Ann. Lab. Med. 39, 167–175. doi: 10.3343/
alm.2019.39.2.167

Lucarelli, C., Di Domenico, E. G., Toma, L., Bracco, D., Prignano, G., Fortunati,
M., et al. (2017). Ralstonia mannitolilytica infections in an oncologic day ward:
description of a cluster among high-risk patients. Antimicrob. Resist. Infect.
Control 6, 20. doi: 10.1186/s13756-017-0178-z

Madsen, J. S., Burmølle, M., Hansen, L. H., and Sørensen, S. J. (2012). The
interconnection between biofilm formation and horizontal gene transfer. FEMS
Immunol. Med. Microbiol. 65, 183–195. doi: 10.1111/j.1574-695X.2012.00960.x

Martin, J., Phan, H. T. T., Findlay, J., Stoesser, N., Pankhurst, L., Navickaite, I., et al.
(2017). Covert dissemination of carbapenemase-producing Klebsiella pneumoniae
(KPC) in a successfully controlled outbreak: long- and short-read whole-genome
sequencing demonstrate multiple genetic modes of transmission. J. Antimicrob.
Chemother. 72, 3025–3034. doi: 10.1093/jac/dkx264

Mathers, A. J., Cox, H. L., Kitchel, B., Bonatti, H., Brassinga, A. K., Carroll, J., et al.
(2011). Molecular dissection of an outbreak of carbapenem resistant
Enterobacteriaceae reveals intergenus KPC carbapenemase transmission through
a promiscuous plasmid. mBio 2, e00204–e00211. doi: 10.1128/mBio.00204-11

Meletis, G. (2016). Carbapenem resistance: overview of the problem and future
perspectives. Ther. Adv. Infect. Dis. 3, 15–21. doi: 10.1177/2049936115621709

Melot, B., Colot, J., and Guerrier, G. (2015). Bacteremic community-acquired
infections due to Klebsiella pneumoniae: clinical and microbiological
presentation in New Caledonia 2008–2013. Int. J. Infect. Diseases: IJID: Off.
Publ. Int. Soc. Infect. Dis. 41, 29–31. doi: 10.1016/j.ijid.2015.10.013

Molton, J. S., Tambyah, P. A., Ang, B. S., Ling, M. L., and Fisher, D. A. (2013). The
global spread of healthcare-associated multidrug-resistant bacteria: a
perspective from Asia. Clin. Infect. Dis. 56, 1310–1318. doi: 10.1093/cid/cit020

Morrissey, I., Hackel, M., Badal, R., Bouchillon, S., Hawser, S., and Biedenbach, D.
(2013). A review of ten years of the Study for Monitoring Antimicrobial
Resistance Trends (SMART) from 2002 to 2011. Pharmaceuticals 6, 1335–
1346. doi: 10.3390/ph6111335

Mouloudi, E., Protonotariou, E., Zagorianou, A., Iosifidis, E., Karapanagiotou, A.,
Giasnetsova, T., et al. (2010). Bloodstream infections caused by metallo-b-
lactamase/Klebsiella pneumoniae carbapenemase producing K. pneumoniae
among intensive care unit patients in Greece: risk factors for infection and
impact of type of resistance on outcomes. Infect. Control Hosp. Epidemiol. 31,
1250–1256. doi: 10.1086/657135

Munoz-Price, L. S., Poirel, L., Bonomo, R. A., Schwaber, M. J., Daikos, G. L.,
Cormican, M., et al. (2013). Clinical epidemiology of the global expansion of
Klebsiella pneumoniae carbapenemases. Lancet Infect. Dis. 13, 785–796.
doi: 10.1016/S1473-3099(13)70190-7

Navon-Venezia, S., Kondratyeva, K., and Carattoli, A. (2017). Klebsiella
pneumoniae: a major worldwide source and shuttle for antibiotic resistance.
FEMS Microbiol. Rev. 41, 252–275. doi: 10.1093/femsre/fux013

Nirwati, H., Sinanjung, K., Fahrunissa, F., Wijaya, F., Napitupulu, S., Hati, V. P.,
et al. (2019). Biofilm formation and antibiotic resistance of Klebsiella
pneumoniae isolated from clinical samples in a tertiary care hospital, Klaten,
Indonesia. BMC Proc. 13, 20. doi: 10.1186/s12919-019-0176-7

Olaitan, A. O., Diene, S. M., Kempf, M., Berrazeg, M., Bakour, S., Gupta, S. K., et al.
(2014). Worldwide emergence of colistin resistance in Klebsiella pneumoniae
from healthy humans and patients in Lao PDR, Thailand, Israel, Nigeria and
France owing to inactivation of the PhoP/PhoQ regulator mgrB: an
epidemiological and molecular study. Int. J. Antimicrob. Agents 44, 500–507.
doi: 10.1016/j.ijantimicag.2014.07.020

Paczosa, M. K., and Mecsas, J. (2016). Klebsiella pneumoniae: going on the offense
with a strong defense. Microbiol. Mol. Biol. Rev. 80, 629–661. doi: 10.1128/
MMBR.00078-15

Partridge, S. R., Kwong, S. M., Firth, N., and Jensen, S. O. (2018). Mobile Genetic
Elements Associated with Antimicrobial Resistance. Clin. Microbiol. Rev. 31,
e00088–e00017. doi: 10.1128/CMR.00088-17
December 2020 | Volume 10 | Article 561741

https://doi.org/10.1086/677170
https://doi.org/10.1016/S1473-3099(17)30489-9
https://doi.org/10.1002/ams2.40
https://doi.org/10.1016/S1413-8670(11)70197-0
https://doi.org/10.1073/pnas.1501049112
https://doi.org/10.1073/pnas.1501049112
https://doi.org/10.1016/j.jhin.2015.06.018
https://doi.org/10.1371/journal.pone.0062774
https://doi.org/10.1093/jac/dky164
https://doi.org/10.4065/mcp.2010.0674
https://doi.org/10.1080/17425255.2017.1230200
https://doi.org/10.1080/17425255.2019.1563071
https://doi.org/10.1016/j.ijantimicag.2017.01.018
https://doi.org/10.1007/s15010-013-0547-3
https://doi.org/10.1007/s15010-013-0547-3
https://doi.org/10.1128/MMBR.00013-14
https://doi.org/10.1016/j.ijid.2010.01.007
https://doi.org/10.1080/20477724.2018.1460949
https://doi.org/10.1080/20477724.2018.1460949
https://doi.org/10.1186/1471-2180-11-50
https://doi.org/10.1186/1471-2180-11-50
https://doi.org/10.1186/s12941-018-0302-9
https://doi.org/10.3343/alm.2019.39.2.167
https://doi.org/10.3343/alm.2019.39.2.167
https://doi.org/10.1186/s13756-017-0178-z
https://doi.org/10.1111/j.1574-695X.2012.00960.x
https://doi.org/10.1093/jac/dkx264
https://doi.org/10.1128/mBio.00204-11
https://doi.org/10.1177/2049936115621709
https://doi.org/10.1016/j.ijid.2015.10.013
https://doi.org/10.1093/cid/cit020
https://doi.org/10.3390/ph6111335
https://doi.org/10.1086/657135
https://doi.org/10.1016/S1473-3099(13)70190-7
https://doi.org/10.1093/femsre/fux013
https://doi.org/10.1186/s12919-019-0176-7
https://doi.org/10.1016/j.ijantimicag.2014.07.020
https://doi.org/10.1128/MMBR.00078-15
https://doi.org/10.1128/MMBR.00078-15
https://doi.org/10.1128/CMR.00088-17
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Di Domenico et al. Biofilm Production in CRKP
Pitout, J. D., Nordmann, P., and Poirel, L. (2015). Carbapenemase-Producing
Klebsiella pneumoniae, a Key Pathogen Set for Global Nosocomial
Dominance. Antimicrob. Agents Chemother. 59, 5873–5884. doi: 10.1128/
AAC.01019-15

Ramos-Castañeda, J. A., Ruano-Ravina, A., Barbosa-Lorenzo, R., Paillier-
Gonzalez, J. E., Saldaña-Campos, J. C., Salinas, D. F., et al. (2018). Mortality
due to KPC carbapenemase-producing Klebsiella pneumoniae infections:
Systematic review and meta-analysis: Mortality due to KPC Klebsiella
pneumoniae infections. J. Infect. 76, 438–448. doi: 10.1016/j.jinf.2018.02.007

Ramos-Vivas, J., Chapartegui-González, I., Fernández-Martıńez, M., González-
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