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Abstract: This article provides a comprehensive assessment of dioxins contaminating the soil and
evaluates the bioremediation technology currently being widely used, and also offers recommen-
dations for future prospects. Soil pollution containing dioxins is extremely toxic and hazardous to
human health and the environment. Dioxin concentrations in soils around the world are caused by a
variety of sources and outcomes, but the main sources are from the consequences of war and human
activities. Bioremediation technology (bioaugmentation, biostimulation, and phytoremediation) is
considered an optimal and environmentally friendly technology, with the goal of applying native
microbial communities and using plant species with a high biomass to treat contaminated dioxins
in soil. The powerful bioremediation system is the growth of microorganisms that contribute to the
increased mutualistic and competitive relationships between different strains of microorganisms.
Although biological treatment technology can thoroughly treat contaminated dioxins in soil with
high efficiency, the amount of gas generated and Cl radicals dispersed after the treatment process
remains high. Further research on the subject is required to provide stricter control over the outputs
noted in this study.

Keywords: dioxins; soil; contamination; bioremediation; toxic

1. Introduction

Dioxins are environmentally stable solid substances with high melting and boiling
points and very low vapor pressure [1]. Dioxins are almost insoluble in water, have high
thermal stability that can only be completely decomposed at temperatures above 1200 ◦C,
and are resistant to strong acids and alkalis and adhere to the surface of organic resources,
especially in soil [2,3]. In addition, dioxins are also substances which are man-made
through activities such as the production of 2,4,5-T herbicides, chlorine-containing plant
protection agents, combustion processes (the burning municipal waste, medical waste,
industrial waste, especially waste containing PVC and metallurgical processes), and pulp
bleaching with chlorine substances [4–6]. Dioxins are dangerous threat agents, even at low
concentrations (one part per billion), which are enough to wreak havoc on human health
and the environment [3]. In humans, dioxin exposure in humans effects the endocrine
glands and reproductive functions, causes diseases in the central and peripheral areas of
the nervous system, and impedes fetal development, especially in the nervous system and
joints [7,8]. Dioxins can be remain in the environment for a long time, seeping deeply into
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soil and sediments [2]. Therefore, dioxins remaining in the soil and sediments will seep
into water sources and ecosystems, including those that produce fish, shrimp, vegetables,
and crops, posing a risk of poisoning for future generations [9].

Several studies have been conducted on physical, chemical, and biological dioxin
remediation technologies. In physical treatment, physical processes, such as radioactive
material degradation using solvent extraction and liquefied petroleum gas extraction meth-
ods [10,11], steam distillation [12], thermal desorption [13], and in situ vitrification [14]
are used to degrade persistent organic pollutants,. Chemical reactions, such as basic cat-
alytic decomposition, above and below extreme water treatment [15], photolysis at the
spot level [16,17], electronic solvation technology [18], and K-polyethylene glycol technol-
ogy [19] are used in chemical treatments to degrade persistent organic pollutants in the
soil. Recently, nanotechnology has also been applied, using nanoscale zero-valent iron [20]
to decompose persistent organic pollutants. Bioremediation aims to remove persistent
organic compounds from contaminated soil using the anaerobic and aerobic decomposition
of microorganisms [21,22]. Indigenous microorganisms enriched from dioxin-contaminated
sites are believed to be able to remove dioxins [23,24]. The dechlorination of dioxins by
microbial metabolism under anaerobic and aerobic conditions are the two main mecha-
nisms of dioxin degradation [25]. Microbial strains can use dioxins as a carbon and energy
source [26] to effectively dechlorinate dioxins against highly chlorinated congeners [27].
Phytoremediation is more effective and widespread, but only with the use of plants that
have a large biomass, and is capable of dioxin adsorption in many laboratory and field
studies [28,29].

There are many studies on airborne and food dioxins as the main sources in different
countries, but there are not many general reports on dioxin-contaminated soil, especially
for the bioremediation of dioxins in soil. Furthermore, this paper focuses on analyzing,
comparing, and discussing a global overview of the situation of dioxin-contaminated soil.
This review provides a comprehensive summary and discussion of relevant studies on
dioxin-contaminated soil bioremediation. An assessment will contribute to the optimization
parameters of bioaugmentation, biostimulation, and phytoremediation in the remediation
of dioxin-contaminated soils. Current knowledge, research challenges/gaps, and prospects
for future research are presented in this study.

2. Overview of Dioxins

Dioxins are persistent organic pollutants produced by both natural and human ac-
tivities [30]. Dioxins are also the common name for a group of hundreds of chemical
compounds that persist in the environment, as well as in the human body and other organ-
isms [31]. Dioxins are very stable compounds with low polar, lipophilic, and hydrophobic
qualities. They are classified into three groups: polychlorinated dibenzo-p-dioxins (PCDDs,
referred to as dioxins), polychlorinated dibenzofurans (PCDFs, referred to as furans), and
coplanar polychlorinated biphenyls (dioxin-like PCBs, referred to as dl-PCBs). The chem-
ical structures of PCDDs, PCDFs, and PCBs are shown in Figure 1 [1]. Depending on
the number of chlorine atoms and the spatial position, dioxins have 75 congeners PCDD
(poly-chloro-dibenzo-dioxins) and 135 congeners PCDFs (poly-chloro-dibenzo-furans) with
different toxicity. In 210 congeners, 17 congeners are known to be highly toxic because they
can have chlorine atoms at positions 2, 3, 7, and 8, (at least) on the benzene ring [3]. Based
on the international toxicity equivalence factor (I-TEF), 2,3,7,8-TCDD/TCDFs are known to
be the most toxic compounds [32].

2.1. Sources, Fate, and Transportation of Dioxins in Soil

Dioxin sources are typically found in both natural and anthropogenic environments
(Figure 2). Dioxins are a typical examples of persistent organic compounds with extremely
complex structures and many different toxicities. Dioxins are naturally emitted from
volcanic eruptions [33], forest fires [34], and natural combustion [35]. However, previous
studies have shown that the emission of dioxins in the environment is mainly caused
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by humans. The main anthropogenic origins of dioxins are classified into three sources:
incineration, combustion, and industrial processes [30,36,37].

Figure 1. The basic structures of Polychlorinated dibenzo-p-dioxin (PCDD), dibenzofuran (PCDF),
and biphenyls (PCBs).

Figure 2. Sources, fate, and transportation of dioxins in soil.

Dioxins in soil are typically solid and cling to soil particles [38]. The fate and transport
of dioxins in soil are depicted in Figure 2. Dioxins undergo diffusion and dispersion, as
well as biodegradation processes (bioaugmentation, biostimulation, and phytoremedia-
tion) [39]. In addition, the fate and transport of dioxins in the soil media is affected by soil
characteristics (moisture content, soil texture, pH, and organic matter) and environmen-
tal conditions (ground surface, groundwater, plants, weather conditions, and biological
activity) [40]. Since soil particles often adsorb dioxins based on their low mobility and
biodegradability [38], understanding the fate and transportation of dioxins in contaminated
soil is essential in developing bioremediation technologies.

2.2. Toxicity and Health Risk Assessment

The World Health Organization (WHO-2005) has recommended the standard expo-
sure levels of dioxins as 1–4 picograms WHO-TEQ/kg of body weight per one day, or
0.07 ppt in blood; the general environmental limit in most countries is 1200 ppt TEQ in
soil and 150 ppt in sediment [3]. The United States Environmental Protection Agency
(US-EPA) considers reducing the dioxins limit to 72 ppt TEQ to increase the volume of
contaminated soil to be treated [3]. Dioxins, as a dangerous threat agent to the environ-
ment and humans, are associated with severe damage to human health, shortening the
lives of those exposed and potentially shortening the lives of their children and future
generations [3]. When dioxin levels in humans exceed the allowable threshold of 0.0064
picograms/kg of the human body (US-EPA), dark patches of skin appear quickly as a result
of cell death, mutated pigment cells, and impaired liver and kidney function [8,41]. If
long-term exposure to levels exceeds the threshold, dioxins will affect the immune system,
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endocrine glands, and reproductive functions, leading to some cancers and diseases of
the central and peripheral nervous systems, thyroid disorders, immune system damage,
endometriosis, diabetes, etc. [8,42]. As a result, children of exposed parents were born
with many tragic deformities, and some children lived in a vegetative state from birth; the
association between dioxins exposure and five diseases, such as soft tissue cancer, benign
lymphoma, chronic lymphocytic leukemia, hairy leukemia cancer, and chlorosis was also
noted [2,43]. Some diseases associated with dioxin exposure, such as acute, chronic, and
subacute peripheral neuropathy; chlorosis; type 2 diabetes; liver cancer; lipid metabolism
disorders; reproductive abnormalities and birth defects, such as cleft lip and palate; congen-
ital malformations of the legs, hydrocephalus, neural tube defects, adhesions (sticky fingers
or toes), muscle malformations, and paralysis [43] have also been observed. The half-life of
dioxins in the soil is from 60 to 80 years, and at the same time, it persists for a long time
in the environment, seeps into the soil and sediments, and migrates into vegetation and
aquatic life, leading to bioaccumulation in the soil and food chain [2,9,44].

3. Situation of Dioxin-Contaminated Soil and Standard Limits

Environmental pollution in general, and dioxins pollution in the soil in particular, are
markedly on the rise. The main sources of dioxin emissions are industrial activities (such
as combustion) which are an important part of human production. Dioxin emissions from
G20 industrial activities account for more than 80% of the estimated annual emissions [41].
According to Miguel Dopico and Alberto Gómez et al., 2015, annual global dioxin emissions
were 17,226 kg, equivalent to about 287 kg-TEQ. The main sources of dioxins in the
soil environment are fuel combustion, metal production, pesticide production and use,
waste incineration, accidental fires, landfill disposal, combustion, and herbicide runoff in
agricultural uses [42].

Many countries around the world are currently hotspots for dioxin contamination,
including Germany [43], Korea [44], the Mediterranean [45], South Africa [46], Poland [47],
China [48], Vietnam [3,49], etc. In China, soil dioxin concentrations are primarily found in
soils in the vicinity of production areas, such as urban, agricultural, and mountain soils [48].
Dioxin concentrations in soil in China have varied ranges at the provincial sampling points,
listed in the Table 1 below, used to assess the concentration and health risks of people
living in the area. According to research by Gene J. Zheng et al. in the mainland of China,
Hong Kong, and Taiwan, the main source of PCDD/Fs pollution is from industrial waste
activities, with total PCDD/Fs up to 967,500 ppt of dry weight in a soil sample located
in the eastern part of Guangdong Province [50]. Soil samples in urban and rural areas in
Liaoning province were also compared, and the results revealed that the concentration of
dioxin-like PCBs in urban areas is higher than in rural areas [51]. In general, the dioxin
concentrations in the east of China are lower than in the rest of China, and the urban
and manufacturing areas are higher than the rural areas. While dioxins in the soil are
primarily found in China due to industrial activities, high concentrations of dioxins have
been found in Vietnam in areas affected by previous wars due to Agent Orange [49]. The
majority of research documents on dioxin content in Japanese soil come from agricultural
sources and incinerators; there have not been many studies published on this topic in recent
years. A study of soil samples taken in China and Korea’s coastal areas revealed that the
concentrations of PCDD/Fs at the sampling sites in Korea were higher than those in China,
but both countries are lower than Japan [52].

Table 1. The average concentration of dioxins (homogeneous unit calculated in ppt TEQ in dry
weight) in some different nations in Asia.

Country Year Type of Soil Source Area Concentration References

China (Sichuan) 2013 Soil High mountain area 2.48–4.30 ppt [53]

China (mainland Hong
Kong and Tai wan) 2008 Soil Schistosomiasis disease area 244.8–33,660 ppt [50]
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Table 1. Cont.

Country Year Type of Soil Source Area Concentration References

Soil E-waste recycling 799,000–967,500 ppt [50,54]

Paddy soil E-waste recycling 2552–2726 ppt [50]

Soil Pentachlorophenol manufac-
turing factory 606,000 ppt [50,55,56]

South China 2022 Surface Soil Municipal solid waste incinerator 114–2440 ppt [57]

North China 2020 Soil Urban green space in a metropolis 11.5–91.4 ppt [58]

Eastern China 2009 Surface Soil Electronic solid-waste
with incinerators 0.017–5.04 ppt [59]

North China 2011 Topsoil Coastal areas 6.78–12.3 ppt [52]

Central Vietnam 2019 Surface soil The storage of Agent Orange in A-So
Airbase during the Vietnam War 2.7 to 746 ppt [60]

Southern Vietnam 2007 Topsoil Bien Hoa Airbase was a former
storage depot for Agent Orange 4.6–184 ppt [61]

Japan (Osaka) 2013 Surface soil Incineration plant >1000 ppt [62]

Paddy field soil Former herbicide use 38–110 ppt

Japan (Akita) 2007 Paddy soil Agricultural area 18,000–540,000 ppt [63]

Non-agricultural soil
samples Parks 950–1400 ppt

South Korea 2021 Soil Industrial sites 77.73 ppt [64]

West Korea 2011 Topsoil Coastal areas 14.2–27 ppt [52]

Dioxin concentrations have not decreased in Europe in recent years, but instead, have
increased significantly due to new dioxins emission sources, such as the illegal disposal of
electric transformers in Italy [65] and Sweden [66]. Besides the main sources of pollution
from manufacturing industries, motor vehicle emissions are one of the sources of pollution
in Russia, because motor fuel combustion is dependent on the dopes used [67]. The results
of dioxin concentrations in various regions of European countries are compared in Table 2;
it is revealed that the concentration of dioxins in the soil in Spain, Slovakia, and Austria
was lower than in other countries. Similarly, another study in Spain on dioxin levels
affected by various sources, including municipal solid waste incineration, clinical waste
incineration, and industrial areas, found results ranging from 0.45 to 14.41 ppt-TEQ (dry
weight), with the effects of uncontrolled combustion processes being the most severe [68].
Research results on dioxin content in the soil in the UK by C.S. Creaser et al. showed that
uncontrolled combustion leads to higher results in urban areas than in rural areas [69,70].

Table 2. The average concentration of dioxins (homogeneous unit calculated in ppt TEQ in dry
weight) in some different nations in Europe.

Country Year Type of Soil Source Area Concentration References

Sweden 2013 Soil Contaminated sawmill site 0.62–690,000 ppt [66]
Russia 2011 Soil Urban site 8.2 ppt [67]
Poland 2015 Soil Urban site 475.48–3039.27 ppt [47]

Germany 2007 Soil Alluvial flood plain of the river 7680 ppt [57]
Spain 2006 Topsoil High industrial activity zones 0.33–9.99 ppt [71]

Slovakia 2012 Topsoil Industrial site 0.34 to 18.05 ppt [72]
Austria 2004 Soil Agricultural site 0.05–23 ppt [73]

Similar to the results of searching for research documents on the situation of dioxin
pollution in the soils of European countries, there are few data on the situation of soil
research in America in recent years. In general, across the United States, dioxin concentra-
tions in urban soil are generally higher than in rural soil, with maximum concentrations
reaching 186 ng/kg according to TEQ in urban areas [74]. Another study conducted in
Washington state discovered relatively low dioxin concentrations in soils, ranging from



Toxics 2022, 10, 278 6 of 17

0.14 to 4.1 ng/kg by TEQ, with agricultural land having the lowest dioxin value and urban
land having the highest dioxin value, in accordance with other studies [75].

Research data on dioxins in countries in Africa are limited because the cost of dioxin
analysis is expensive, and the analytical capacity is limited in this country [76]. According
to research by C. Nieuwoudt et al., the dioxin concentrations in the soil of the sampled
areas in Africa ranged from 0.34 to 20 ng/kg by TEQ, lower than those in Europe and the
US [46,77]. The study also found that dioxin concentrations at industrial sites were higher
than in agricultural soils and higher than in non-industrial sites, with combustion sources
being the primary polluters [77].

Depending on soil pollution and effective land-use planning, several organizations
around the world, such as the US EPA and WHO, have issued regulations on the concen-
tration of pollutants in the soil (e.g., dioxins). However, some countries have developed
industries in which the emission of pollutants into the soil is high (or have been affected
by war, such as Vietnam), so each country will have its own regulations on PCDD/Fs
concentrations in soil. The details are presented in Table 3.

Table 3. Some standards limitations for PCDD/Fs (ppt TEQ) in different nations.

National Standard Limitation Comments Regulation/Guideline Values References

US EPA Region 5 11 ppt
38.6 ppt

PCDD in soil
PCDFs in soil

US EPA Region 5 ecological
screening levels [78]

US EPA Region 9 39 ppt Residential soil US EPA Region 9 preliminary
remediation goal for 2,3,7,8-TCDD [79]

China (Taiwan) 1000 ppt General soil The standard limit—Taiwan EPA [80]

Vietnam
100 ppt
300 ppt

1200 ppt

Forest soil
Agricultural soil
Commercial soil

National technical regulation on
the permissible limit of dioxins

in soil
[81]

Finland 500 ppt Agricultural and
residential soil

Finland Ministry of the
Environment, Department for

Environmental Protection
[82]

Sweden 10 ppt
250 ppt

Land with sensitive use,
Land with less

sensitive use and
groundwater extraction

Sweden Generic Guidance Value [82]

Netherlands 10 ppt
1000 ppt

Dairy farming
Agricultural and

residential soil
The Netherlands Guidelines [82]

Germany

5–40 ppt
100 ppt

1000 ppt
10,000 ppt

Agriculture
Landscape

Residential soil
Industrial soil

Germany regulatory limit
and recommendation [82]

New Zealand

100 ppt
1500 ppt

18,000 ppt
90,000 ppt
21,000 ppt

Agricultural soil
Residential soil
Industrial soil

Industrial-paved soil
Maintenance

New Zealand Interim
Acceptance Criteria [83]

Canada 4 ppt Alert soil Canadian Environmental
Quality Guidelines [84]

4. Biodegradation Technologies of Dioxins

Biological treatment methods to reduce pollutants in different environments are con-
sidered effective and environmentally friendly [39]. Bioaugmentation is the addition of a
degradation capacity into the soil to increase contaminant degradation, with effective poten-
tial for the bioremediation of organic-contaminated soils [85,86]. The addition of nutrients
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can encourage microbial activity by adjusting soil nutrients, which is known as biostimu-
lation [87]. Composting is used to convert organic waste into simple organic substances.
Bio-composting has traditionally been considered an eco-friendly remedy for organic soil
contaminants, including petroleum, dioxins, and furans. Composting incubation is divided
into mesophilic, thermophilic, cooling, and maturation stages, depending on microbial
metabolism and heat production [88]. The mesophilic phase (<45 ◦C) occurs when the
microbial community adapts to the initial conditions, and their numbers increase rapidly
due to the readily degradable organic substrates [89]. Phytoremediation is frequently
studied for its potential for immediate soil use with persistent organic compounds [28].
The main mechanisms involved in phytoremediation are based on the combined effects of
plant uptake and the accumulation of toxic substances [90]. In this paper, bioremediation
technology, including bioaugmentation, biostimulation, and phytoremediation, is analyzed
and discussed below for the treatment of dioxin contamination in soil.

4.1. Bioaugmentation

Using microorganisms and fungus is currently an active application trend in dioxin-
contaminated soil because of its low cost and environmental friendliness. The dechlorina-
tion of dioxins by microbial metabolism under anaerobic and aerobic conditions are the
two main mechanisms of dioxin degradation in biological treatment [25]. Microbial strains
can use dioxins as a carbon and energy source [26] to effectively dechlorinate dioxins from
highly chlorinated isomers [27]. Table 4 lists microorganisms strains capable of degrading
dioxins. Certain microorganisms such as Pseudomonas, Mendocino, and Dehalococcoides
have been shown to effectively dechlorinate dioxins under anaerobic conditions [25,91,92].
Furthermore, aerobic microorganisms were discovered to degrade dioxins more efficiently
and quickly than typical dioxin-contaminated soil anaerobes. Catechol 2,3-dioxygenase
(C23O) is an important enzyme that catalyzes the reaction using molecular oxygen to
destroy benzene rings [22], and Bacillus (Firmicutes) is the most dominant strain in aerobic
degradation [93]. In addition to the strains of microorganisms that have been found to
degrade dioxins with high efficiency, fungi also play a similar role, with their high mass
and rapid environmental metabolism. Fungi are a diverse group of organisms, present
in most environments and playing an integral role in ecosystems. In addition, fungi can
regulate the flow of nutrients and energy through their network [89]. Furthermore, fungi
are also unique organisms that can be used in the remediation of persistent organic wastes
(POPs) in different environments, such as soil, water, and air [94]. Soils heavily contam-
inated with dioxins can also use fungi to decompose (with high efficiency) some typical
strains such as Cordyceps sinensis strain A [15], Phlebia lindtneri [95,96], Phanerochaete sordida
YK-264 [97], etc. Table 5 presents some fungal strains capable of decomposing dioxins in
soil, with high efficiency.

Table 4. Bacterial strains capable of biodegrading dioxins in a soil matrix.

Bacterial Strains PCDD/Fs Congeners Concentration Removal Average (%) Time References

Terrabacter sp. strain DBF63

2-CDD

10 µg/mL

75

18 h [98]

2,3-CDD 80

2-CDF 82.5

2,8-DCDF 85

Pseudomonas sp. strain CA10 2-CDF 60

Pseudomonas sp. strain CA10
2-CDD

1 µg/mL
97

5 d [98]
2,3-CDD 89

Sphingomonas sp. strain RW1
DD

10 ppm
90

24 h [99]
2-CDD 90

Sphingomonas sp. strain KA1
2-CDD

1 µg/g
96

7 d [100,101]
2,3-DCDD 70
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Table 4. Cont.

Bacterial Strains PCDD/Fs Congeners Concentration Removal Average (%) Time References

Rhodococcus opacus SAO 101
1-CDD

1 ppm
92

7 d [102]
Dioxin (DD) 97

Pseudomonas aeruginosa

3,6-DCDF
10 mg/L

60

5 d [103]1,2,3,4-TCDD 84

DBF 90

Pseudomonas veronii PH-03

1-MCDD

1 µM

88.3

60 h [104]
2-MCDD 78.6

DD 90.7

DF 79.7

Sphingomonas sp. wittichi RW1
DD 1 mM 81 72 h

[105]
PCDD 29 ppt 75.5 15 d

Pseudomonas resinovorans
strain CA10 2,3-DCDD 1 µg/kg 90.95 7–14 d [106]

Pseudomonas resinovorans
strain CA10 2,3-DCDD 1000 µg/L 100 14 d [106]

Pseudomonas sp. CA10 2-CDD 10,000 µg/L 98.5 7 d [99]

Pseudallescheria boydii 2,3,7,8-TCDD 125 ng/g 92 15 d [107]

Stropharia rugosoannulata 1,2,3,4,6,7,8-HpCDF 200 µg/L 64 3 m [91]

Bacillus-Firmicutes 2,3,7,8-TCDD 136.33 ng/g 75 42 d [108]

Bosea BHBi7 2,3,7,8-TCDD 170 ng/g 59.1 21 d [109]
Hydrocarboniphaga BHBi4

Pseudomonas mendocina NSYSU OCDD 20.1 mg/kg 74 60 d [92]

Table 5. Degradation of dioxins by fungi strains in soil matrix.

Fungi sp. Name Pollutants Compounds Nutrients/Conditions Removal (%) Time References

Cordyceps sinensis strain A

DD

Glucose or 1,4-dioxane

50

4 d [15]2,3,7-CDD 50

octaCDD 50

Phanerochaete sordida YK-624

2,3,7,8-TetraCDD

Glucose

70

7 d [97]

1,2,3,7,7-PentaCDD 70

1,2,3,4,7,8-HexaCDD 75

1,2,3,4,6,7,8-HeptaCDD 70

1,2,3,4,6,7,8,9-OctaCDD 70

2,3,7,8-TetraCDF 45

1,2,3,7,8-PentaCDF 45

1,2,3,4,7,8-HexaCDF 75

1,2,3,4,6,7,8-HeptaCDF 70

1,2,3,4,6,7,8,9-OctaCDF 70

Acremonium sp. strain 622

T4CDD

Activated sludge
and effluent

73

24 h [110]

P5CDD 85

H6CDD 79

H7CDD 76

O8CDD 88

T4CDF 81

P5CDF 88

H6CDF 84

H7CDF 84

O8CDF 71
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Table 5. Cont.

Fungi sp. Name Pollutants Compounds Nutrients/Conditions Removal (%) Time References

Phanerochaete chrysosporium
strain PcCYP11a3

1-MCDD

Glucose

100

2 h [111]2-MCDD 38.2

2,3-DCDD 6.1

Pleurotus pulmonarius
strain BCRC36906

HexaCDD/Fs
Solid state

fermentation (SSF)

80

72 d [112]HeptaCDD/Fs 97

OctaCDD/Fs 90

Phlebia radiata strain 267

1,2,3,4,7,8-H6CDD
Laccase, Tween-80

50 mL

28

30 d [113,114]1,2,3,7,8-P5CDF 29

2,3,7,8-T4CDF 60

Phlebia radiata
strain PL1

1,2,3,7,8-P5CDD

Laccase, 50 mL
Tween-80

76.3

30 d [113,114]

1,2,3,4,7,8-H6CDD 75.6

1,2,3,6,7,8-H6CDD 79.4

1,2,3,7,8,9-H6CDD 79.3

1,2,3,4,6,7,8-H7CDD 79

octaCDD 80

1,2,3,4,7,8-H6CDF 100

1,2,3,6,7,8-H6CDF 100

2,3,4,6,7,8-H6CDF 82.3

1,2,3,4,6,7,8-H7CDF 70.2

1,2,3,4,7,8,9-H7CDF 100

octaCDF 67.4

P. brevispora
strain BMC3014

2,7-DiCDD

Glucose and
ammonium tartrate

33.8

14 d [95,114]

2,3,7-TriCDD 20

1,2,8,9-TetraCDD 15

1,2,6,7-TetraCDD 18

P. brevispora
strain BMC9152

2,7-DiCDD 54

2,3,7-TriCDD 30

1,2,8,9-TetraCDD 16.5

1,2,6,7-TetraCDD 26

P. brevispora
strain BMC9160

2,7-DiCDD 40

2,3,7-TriCDD 27

1,2,8,9-TetraCDD 23

1,2,6,7-TetraCDD 16.5

4.2. Biostimulation

Microbial adsorption highly contributes to the mineralization and co-transformation
of organic contaminants during composting [115]. Therefore, microbial activity is the most
important factor for the biodegradation of organic contaminants. In addition, the effects
of operational parameters, such as humidity, growing conditions, and C/N ratio on the
bio-incubation process are very important. Humidity is known as the main factor affecting
the biodegradation of organic contaminants because it affects the microbial activity and
the physicochemical properties of the contaminants [22]. Oxygen molecules participate
in the catabolism and mineralization of hydrocarbon compounds by microbial and fun-
gal activities. In addition, the C/N ratio plays an important role in the biodegradation
of contaminants because it controls the composition of the microbial community. Pre-
vious studies have shown that the optimal C/N ratio for the biodegradation of organic
contaminants by bio-incubation is between 10 and 40 [116]. Bio-composting has been suc-
cessfully used in the biodegradation of dioxin-contaminated soils on a laboratory scale [25].
Chen et al., 2016, reported that the biodegradation efficiency of PCDD/PCDFs was ap-
proximately 95.8–99.7%, from an initial toxic concentration of 1580–3660 µg I-TEQ/kg dw
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after 42 days of incubation. Table 6 summarizes the organic compositions used to degrade
dioxins in the soil by biological composting.

Table 6. Summary of biodegradation statistics for dioxins in contaminated soil.

Initial Concentration Mechanical Components Materials Removal (%) Time (days) Conditions References

16,004 ng-TEQ/kg Sandy loam Food waste, sawdust,
and compost 75 42 Aerobic [108]

840–5300 ng-TEQ/kg Sandy Wood chips
and compost 85 360 Semi-aerobic [25]

30,000–60,000 ng-
TEQ/kg Sandy loam Lime granules,

Nutrients, and bark 21 175 Anaerobic [117]

88.8–912.7 µmol/kg Sandy loam

Sewage sludge 61.2

42

Aerobic [32]

Leaves 36.8

Animal manure 32.5

Sewage sludge
and compost 53

280
Sewage sludge and

animal manure 79

6048 ng-TEQ/kg Sandy loam Food waste, sawdust,
and compost 70 49 Aerobic [118]

300–660 ngTEQ/kg Sandy loam Straw manure, bark
chips, and wood chips 75 175 Semi-aerobic [91]

4.3. Phytoremediation

The application of phytoremediation is widely used by plants that grow in the wild,
with features such as round and fat stems, many gaseous roots, or large roots, which
can crawl on the ground or crawl on the trunk of another tree. These trees can grow,
completely covering the ground, and remain green all year, are less deciduous, and yield a
large biomass, which can withstand harsh environmental conditions, making it an ideal
habitat for microorganisms and fungi in the rhizosphere, etc. They can form a favorable
combination that optimizes the absorption and decomposition of toxic chemicals in the
soil [119]. In addition, biological products, such as DECOM1 (a mixture of nutrient salts and
organic humus), can be applied to the soil to increase the decay time of toxic substances to
reduce the concentration of difficult pollutants, degrading, or in other words, helping plants
absorb organic toxins more quickly in the soil [120,121]. Especially for the phytoremediation
of persistent organic compounds in the soil, it takes a long time considering practical
experimental conditions, such as weather, climate, other anthropogenic factors, etc. [122].
Table 7 below reviews some plants with the highest removal performance used for the
treatment of dioxins in the soil.

Table 7. Degradation of dioxins by phytoremediation.

Names Pollutant Compounds Concentration Removal (%) Time References

Arabidopsis thaliana TCDD
10 ppt 72

30 d [123]50 ppt 58
100 ppt 55

Black Beauty Total PCDDs 43 ppt-TEQ 46
32 d

[124]
Total PCDFs 50

Gold Rush
Total PCDDs 45 ppt-TEQ 60

32 dTotal PCDFs 62
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Table 7. Cont.

Names Pollutant Compounds Concentration Removal (%) Time References

Spinach Total PCDDs 3.42 ppt 48.6

ND [125]

Total PCDFs 0.519 ppt 37.9

Garland Chrysanthemum Total PCDDs 0.543 ppt 36.1
Total PCDFs 0.622 ppt 48.8

Mitsuba
Total PCDDs 0.765 ppt 38
Total PCDFs 0.161 ppt 43.8

Chingentsuai Total PCDDs 0.268 ppt 39.2
Total PCDFs 0.166 ppt 41.6

Rice leaf and stem Total dioxins 317 ppt 90
5 m [126]Rice paddy chaff Total dioxins 44 ppt 98

Atena Polka PCDD/Fs 7 ppt-TEQ dw 66 5 w [127]
Zucchini PCDD/Fs 155 ppt-TEQ dw 37 5 w

[127,128]Cucumber PCDD/Fs 122 ppt-TEQ dw 24 5 w

Zucchini
2,4,8-TrCDF

0.0089 TSCF
64

4 d [129,130]
2,3,7,8-TeCDD 70

Pumpkin 2,4,8-TrCDF
0.0064 TSCF

77
2,3,7,8-TeCDD 79

5. Prospects for Future Research

Bio-composting can degrade dioxins in contaminated soil. However, to achieve high
efficiency of the decomposition process, many different strains of microorganisms are
required. Therefore, the biodegradation mechanisms of microbial strains are still poorly
understood, and further research efforts are needed. To better understand the microbial di-
versity and structural changes associated with bio-composting, next-generation sequencing
is proposed to identify the respective microbial strains. Lastly, the biodegradation process
is designed to enhance the biodegradation process and shorten the processing time.

The growth and activity of microorganisms during the composting process determine
the efficiency of the biodegradation of dioxins, which can be optimized through operational
parameters, such as aeration rate, humidity, incubation time, pH, and C/N ratio. Optimal
values of operational parameters vary with laboratory scale, pilot scale, composting mate-
rial, and soil properties relative to the properties of dioxins. Currently, the knowledge from
the literature is not sufficient to achieve commonly used optimal values. In addition, one
of the major challenges of composting is that microbial activity is very time-consuming,
which demonstrates why field-scale studies are very rare.

Additional studies are required to accurately and completely evaluate dioxin contami-
nation sites of various origins and locations in order to provide effective treatment options.
Furthermore, the bioremediation approaches for various contamination sites should be
investigated. Other methods currently remain limited, such as hybrid bioremediation
strategies in developing some transgenic plants to express dioxin-degrading enzymes,
or nano-phytoremediation by combining the nanoparticles and vegetal species, which
should be emphasized to improve the biodegradation efficiency of dioxins. In addition, the
combination of chemical and biological measures or the combination of physicochemical
and biological technologies should be utilized to improve efficiency in the degradation
of pollutants.

Overall, future studies should provide more insight into the microbial relationships
in the biodegradation of dioxins, in addition to the biodegradation mechanisms outlined
above. The performance parameters also need to be studied more deeply for study scal-
ing purposes.

6. Conclusions

With the current rate of industrial development and urbanization, the land area is
shrinking, land quality is deteriorating, and land area per capita is decreasing. Currently,
there are many hotspots of dioxin pollution in the soils of some countries around the world;
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the main source of dioxin-contaminated soil is industrial production activities, followed by
the consequences of war, producing high dioxin concentrations and widespread infection.
Dioxin contamination in the soil not only has a negative impact on industrial production,
agriculture, and service activities, but it also has an indirect impact on human and animal
health through food, vegetables, etc. Composting is full of economic benefits, it can
treat dioxins in contaminated soil with high efficiency, and it is environmentally friendly.
Parameters such as temperature, humidity, pH, oxygen content, aeration rate, and C/N
ratio need to be continuously monitored and controlled during the composting process.
The microbial community is primarily responsible for the biodegradation of dioxins in the
soil. Some microbials can use dioxins as a source of carbon and energy to break down these
compounds. The correlation between the microbial communities and the breakdown of
dioxins during the composting process needs to be further studied so that the metabolic
and congeners mechanisms can be elucidated. Ultimately, current knowledge is insufficient
to achieve an optimal set of values for the treatment of soils contaminated with dioxins on
a laboratory scale, pilot scale, and field scale.
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