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Rapid parallel measurements of 
macroautophagy and mitophagy 
in mammalian cells using a single 
fluorescent biosensor
A. Sargsyan1,2, J. Cai1, L. B. Fandino1, M. E. Labasky1, T. Forostyan1,3, L. K. Colosimo1, 
S. J. Thompson1 & T. E. Graham1,2

Mitochondrial dysfunction is implicated in many human diseases and occurs in normal aging. 
Mitochondrial health is maintained through organelle biogenesis and repair or turnover of existing 
mitochondria. Mitochondrial turnover is principally mediated by mitophagy, the trafficking of 
damaged mitochondria to lysosomes via macroautophagy (autophagy). Mitophagy requires 
autophagy, but is itself a selective process that relies on specific autophagy-targeting mechanisms, 
and thus can be dissociated from autophagy under certain circumstances. Therefore, it is important 
to assess autophagy and mitophagy together and separately. We sought to develop a robust, high-
throughput, quantitative method for monitoring both processes in parallel. Here we report a flow 
cytometry-based assay capable of rapid parallel measurements of mitophagy and autophagy in 
mammalian cells using a single fluorescent protein biosensor. We demonstrate the ability of the 
assay to quantify Parkin-dependent selective mitophagy in CCCP-treated HeLa cells. In addition, 
we show the utility of the assay for measuring mitophagy in other cell lines, as well as for Parkin-
independent mitophagy stimulated by deferiprone. The assay makes rapid measurements (10,000 
cells per 6 seconds) and can be combined with other fluorescent indicators to monitor distinct cell 
populations, enabling design of high-throughput screening experiments to identify novel regulators 
of mitophagy in mammalian cells.

Mitochondria perform diverse cellular functions, including energy production, intermediary metabolism, 
and calcium and apoptosis regulation. Mitochondrial dysfunction, characterized by impaired oxidative 
phosphorylation and excessive production of reactive oxygen species (ROS), contributes to many human 
diseases1–5. Mitochondrial ROS regulate normal cellular functions and stress responses6; however, exces-
sive ROS production can damage proteins, lipids, and other cellular components, including mitochondria 
themselves7, leading to further worsening of mitochondrial dysfunction. Mitochondria possess several 
quality control mechanisms to counteract damage and maintain functionality8–10. Important among these 
is mitophagy, the trafficking of intact mitochondria or mitochondrial fission products via autophagy to 
lysosomes where they are degraded. Mitophagy is also required for developmental processes that require 
mitochondrial clearance, such as destruction of paternal mitochondria in oocytes after fertilization11 
and maturation of erythrocytes12, eye lens epithelium13, and adipocytes14. Perturbations in mitophagy 
have been implicated in heart disease15–17, neurodegeneration18–20 , metabolic syndrome, diabetes21,22 and 
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cancer23,24. Impairment of autophagy or mitophagy drastically alters mitochondrial function and cell fate 
in many cell types, indicating the importance of these pathways.

Mitophagy requires intact autophagy; however, induction of autophagy alone is not sufficient for 
mitophagy to occur. Increasing evidence indicates that mitophagy is a highly selective process. Whether 
or not individual mitochondria are trafficked into the autophagy pathway depends on factors such as 
mitochondrial membrane potential and display of certain proteins or lipids in the mitochondrial outer 
membrane that act as molecular adaptors to engage mitochondria with nascent autophagasome mem-
branes25–29. These molecular cues are capable of relaying the integrity and functional state of individual 
mitochondria, such that damaged or impaired mitochondria are targeted for destruction and functional 
mitochondria are preserved. Similar mechanisms also appear to coordinate induction of mitophagy 
during development in certain cell types. Therefore, when assessing potential mechanisms involved in 
regulating mitophagy, there is value in assessing the states of both autophagy and mitophagy, together 
and separately.

HeLa cervical carcinoma cells treated with carbonyl cyanide m-chlorophenylhydrazone (CCCP) 
are a widely studied model of selective mitophagy. CCCP uncouples the electron transport chain and 
causes varying degrees of mitochondrial inner membrane depolarization. In most cells, CCCP induces 
generalized autophagy30,31, along with mitophagy that selectively targets depolarized mitochondria for 
destruction32. Activation of the Parkin E3 ubiquitin ligase, initiated by Pink1 stabilization on depolarized 
mitochondria, is a proposed mechanism for selectivity in this process33. HeLa are particularly noteworthy 
as a model for Parkin-dependent selective mitophagy because they do not express endogenous Parkin, 
making it possible to assess the requirement for Parkin by expressing it ectopically34.

We sought to employ the CCCP-treated HeLa cell as a model for developing an assay capable of 
rapid, highly quantitative parallel measurements of autophagy and mitophagy, with the long term goal 
of enabling high throughput screens for regulators of mitophagy in mammalian cells. The Rosella bio-
sensor has been used to measure mitophagy in yeast35,36. Rosella is a chimera of two tandem fluorescent 
proteins: pHluorin a pH-sensitive green fluorescent protein37, and dsRed.T338, a non-pH-sensitive red 
fluorescent protein (Fig. 1A). Attaching Rosella to specific cellular ‘cargos’ makes it possible to monitor 
their separate delivery to the acidic compartments of lysosomes via autophagy. We hypothesized that 
Rosella-LC3 and Mito-Rosella could be used together for simultaneous measurement of autophagy and 
mitophagy in a single parallel assay capable of demonstrating the requirement for Parkin in selective 
mitophagy in CCCP-treated HeLa cells. Here we report the performance characteristics of Rosella-LC3 
and Mito-Rosella biosensors in single-cell and flow cytometry (FCM)-based parallel autophagy/mito-
phagy assays, and describe the potential of this method for conducting rapid, high-throughput assays 
in human cells.

Results
Mito-Rosella localization and pH-dependence.  Transiently transfected Mito-Rosella specifically 
and completely labeled mitochondria (Fig.  1B), whereas Rosella lacking a targeting sequence showed 
diffuse localization (Suppl. Fig. 1). Rosella green fluorescence was reduced 70% without affecting red 
fluorescence when culture media pH was reduced to 5.0, and recovered rapidly with return to pH 7.4. 
(Fig. 1C,D). Expression of Rosela-LC3 or Mito-Rosella did not alter the dynamics or extent of mitophagy 
and autophagy compared to control transfection, as measured by Western blot analysis of mitochondrial 
markers (Suppl. Fig. 2A) and endogenous LC3 lipidation (Suppl. Fig. 2B).

CCCP-induced redistribution of Rosella-LC3 and Mito-Rosella to lysosomal compart-
ments.  Vehicle (DMSO)-treated HeLa cells expressing Rosella-LC3 exhibited dual-labeled green/
red puncta throughout the cytoplasm, consistent with the characteristic appearance of autolysosomes 
(Fig. 1E, i–iv). In cells treated with CCCP (10 μ M), red-only vesicles were present at 6 hr after treatment 
(Fig. 1E, v–viii) and increased in number at 24 hr after treatment (Fig. 1E, ix–xii). Vehicle-treated HeLa 
cells co-expressing Mito-Rosella and Parkin exhibited dual-labeled green/red mitochondria through-
out the cytoplasm (Fig.  1E,  xiii–xvi). Treatment with CCCP resulted in appearance of Mito-Rosella in 
red-only vesicles, indicative of redistribution to acidic lysosomal compartments, located in the cytoplasm 
at 6 hr after treatment (Fig. 1E, xvii–xx), and accumulating near the perinuclear lysosomal compartments 
at 24 hr after treatment (Fig. 1E, xxi–xxiv).

Parkin-dependent selective mitophagy demonstrated by differential responses of Rosella-LC3 
and mito-Rosella.  To demonstrate the dependence of mitophagy on Parkin expression in 
CCCP-treated HeLa cells, we analyzed autophagy (i.e., LC3-Rosella) and mitophagy (i.e., Mito-Rosella) 
responses in the presence or absence of co-expressed Parkin. HeLa cells transiently transfected with 
Rosella-LC3 were treated with vehicle (DMSO) or CCCP for 24 hr. In vehicle-treated cells, Rosella-LC3 
produced primarily dual-labeled green/red autophagic puncta (Fig.  2A,  i–iii), while CCCP treatment 
induced large perinuclear accumulations of red-only LC3, indicating redistribution of autophagasomes to 
low pH lysosomal compartments (Fig. 2A, iv–vi). Treatment with Bafilomycin-A1 (BafA1), an inhibitor 
of the lysosomal V-ATPase that maintains lysosome pH, caused accumulation of dually labeled green/red 
LC3 puncta (Fig. 2A, vii–ix), indicative of autophagasomes or autolysosomes collecting under conditions 
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of impaired lysosome acidification. Co-expressing Parkin did not alter the number, size or localization 
pattern of LC3-containing structures, relative to control cells under the same conditions (Fig 2A, x–xviii).

In vehicle-treated cells transfected with Mito-Rosella, mitochondria were primarily dual-labeled 
green/red and exhibited normal cytosolic localization (Fig.  2B,  i–iii). CCCP treatment (10 μ M, 24 hr) 
did not alter mitochondrial fluorescence or localization in control cells (Fig. 2B, iv–vi). In cells express-
ing Parkin, CCCP induced redistribution and accumulation of red-only mitochondria near the cen-
tral lysosomal compartments (Fig.  2B,  xiii–xv) in a BafA1-dependent manner (Fig.  2B,  xvi–xviii). 
Therefore, LC3-Rosella and Mito-Rosella responses replicate prior observations that autophagy occurs 
in a Parkin-independent manner whereas mitophagy occurs in a selective, Parkin-dependent manner in 
CCCP-treated HeLa cells.

Autophagy and mitophagy were quantified in single cells by blinded scoring of Rosella-LC3 and 
Mito-Rosella responses, respectively. CCCP induced autophagy in 11.2 ±  2.6% of cells at 6 hr (vs. 
2.4 ±  1.0% in CCCP +  BafA1-treated cells, p <  0.05, Fig. 2C) and 67.5 ±  2.2% of cells at 24 hr (vs. 4.0 ±  1.4% 
in CCCP +  BafA1-treated cells, p <  10−8, Fig. 2C). Interestingly, cells in vehicle-treated media exhibited 
increased autophagy after 24 hr (17 ±  1.4% vs. 1.4 ±  0.9% baseline, p <  0.001, Fig. 2C), though to a much 

Figure 1.  Rosella pH-responsive fluorescent biosensors. (A) Schematic representation of Rosella, 
Rosella-LC3, and Mito-Rosella fluorescent protein biosensor constructs. Rosella (top) is a chimeric 
protein containing the pH-stable DsRed.T3 red fluorescent protein and the pH-sensitive pHluorin green 
fluorescent protein. Rosella-LC3 (middle) consists of the complete open reading frame (ORF) of human 
LC3B (Map1lc3b) joined in-frame with the 3′  end of the Rosella ORF (coding the C-terminus) without a 
stop codon. Mito-Rosella (bottom) consists of the complete human ATP synthase subunit gamma (Atp5c1) 
ORF without a stop codon fused in-frame with the 5′  end of the Rosella ORF (coding the N-terminus). 
(B) Representative micrographs of HeLa cells transiently transfected with expression plasmids for Mito-
Rosella and treated with Mitotracker Deep Red FM to image mitochondria independently of Rosella. The 
merged panel shows overlap of fluorescence from the green, red, and far-red channels in two cells expressing 
Mito-Rosella (white arrows). (C) Representative micrographs of green and red channel fluorescence of 
Mito-Rosella in cells subjected to sequential incubations in culture media adjusted to pH 7.4 (for 15 min; 
starting point), pH 5.0 (for 5 min), and then pH 7.4 again (for 1 min). (D) Quantification of green to red 
fluorescence ratios measured in single cells subjected to pH changes described above for (C). Bars represent 
mean ±  SEM of ratios for n =  50–60 cells per condition. *p <  0.05, based on unpaired T-test. For panels 
B and C: scale bars indicate a length of 50 μ m. (E) Representative widefield micrographs of HeLa cells 
transiently transfected with expression plasmids for Rosella-LC3 (panels i to xii) and Mito-Rosella (panels 
xiii to xxiv) with Parkin, treated with CCCP (10 μ M) or vehicle for 6 and 24 hr. In merged images arrows 
represent acidified Rosella-LC3 (panels viii and xii) and acidified Mito-Rosella (panels xx and xxiv). DIC, 
differential interference contrast microscopy. Scale bars indicate a length of 10 μ m.
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lesser extent than CCCP treatment. Co-expression of Parkin did not alter the autophagic response in 
vehicle or CCCP-treated cells (p =  NS for LC3-Rosella alone vs. LC3-Rosella co-expressed with Parkin 
at 6 or 24 hr time-points after treatment, Fig. 2C). In cells expressing Mito-Rosella, CCCP-induced mito-
phagy solely in cells co-expressing Parkin (8.8 ±  0.8% with Parkin vs. 2.2 ±  0.2% without Parkin at 6 hr, 
p <  0.001; and 32 ±  3.0% with Parkin vs. 2.5 ±  0.4% without Parkin at 24 hr, p < 10−4, Fig. 2D).

Flow-cytometry based parallel analyses of autophagy and mitophagy using Rosella bio-
sensors.  The robust Rosella biosensor responses observed in single cell measurements suggested 
they could be adapted for flow cytometry (FCM)-based assays, which are capable of making rapid, 
highly-quantitative measurements. We measured effects of CCCP treatment in cells transfected with 

Figure 2.  Single-cell measurements of autophagy and mitophagy based on biosensor responses to 
CCCP treatment. (A) Representative micrographs of HeLa cells transiently co-transfected with Rosella-LC3 
expression plasmid plus Parkin expression plasmid or ‘empty’ plasmid (Control). Cells were treated for 
24 hr with: Vehicle alone (DMSO), CCCP (10 μ M), or CCCP (10 μ M) +  lysosomal inhibitor Bafilomycin-A1 
(BafA1, 100 nM). CCCP-treated cells displayed accumulation of primarily red Rosella-LC3 fluorescence 
near the central lysosomal compartments (solid arrows in identical, labeled panels below panels vi and xv), 
while vehicle treated cells primarily display co-localization between red and green signals (hollow arrows in 
identical, labeled panels below panels iii and xii). Co-treatment with BafA1 (panels ix and xviii) prevented 
CCCP-induced relocation of Rosella-LC3 to the central lysosomal compartment, causing it to accumulate 
in autophagasomes within the cytoplasm (panels ix and xviii). (B) Representative micrographs of HeLa cells 
co-transfected with Mito-Rosella plus either Parkin or Control plasmids, and treated exactly as described 
above for (A). CCCP treatment caused an accumulation of red-only Mito-Rosella-labeled mitochondria in 
the central lysosomal compartments in Parkin co-transfected cells but not in control cells (solid arrows in 
identical, labeled panel below panel xv), and this was inhibited by BafA1 treatment (panel xviii). In contrast, 
DMSO-treated Parkin-expressing cells (panel xii) and control cells treated with vehicle (DMSO) or CCCP 
(panels iii and vi), there is a complete co-localization of green/red fluorescence. Quantification of percentage 
of cells exhibiting induction of (C) autophagy or (D) mitophagy, as determined by categorizing individual 
cells on the basis of presence/absence of visible accumulations of red biosensor fluorescence in the lysosomal 
compartments as in (A) and (B) above. For panels C and D: bars represent mean ±  SEM of percentages of 
cells from n =  4 biological replicates, with >120 cells categorized per replicate. For panels A and B: scale 
bars indicate a length of 25 μ m. For panel C: *p <   0.05 vs. DMSO treated cells at the same time-point; and 
#p  <   0.05 vs. 6 hr time-point by unpaired T-test. For panel D: *p <   0.05 by unpaired T-test for the indicated 
comparisons between cells co-transfected with Parkin vs. Control plasmid.
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Rosella-LC3 or Mito-Rosella and Parkin, using standard FCM methods. In cells expressing Rosella-LC3, 
CCCP induced a BafA1-sensitive reduction in green fluorescence (green-shift) indicating induction of 
autophagy (detected in 34.3 ±  1.2%, 44.3 ±  0.6%, and 60.0 ±  1.9% of cells measured at 6, 12 or 24 hr, 
respectively; Fig 3A,C). In cells expressing Mito-Rosella with Parkin, CCCP also induced a BafA1-sensitive 
green-shift indicating mitophagy (detected in 25 ±  0.2%, 49.8 ±  1.8 and 59.4 ±  1.3% of cells measured at 
6, 12, or 24 hr after treatment, respectively; p <  10−4 vs. cells treated with CCCP +  BafA1 for each of the 
three time-points; Fig. 3B,D). These responses correlated with Western blot analysis of LC3 processing 
(Fig. 3D) and disappearance of mitochondrial markers (Fig. 3F).

A spectrally distinct fluorescent population marker (iRFP) can be used in screens to assess 
regulators of autophagy/mitophagy.  High-throughput screens utilizing DNA or RNA expression 
libraries frequently employ fluorescent proteins to monitor transfection/transduction efficiencies as a 
means of improving signal-to-noise ratio. Since standard FCM instruments measure several fluorescent 
channels simultaneously, we tested whether a third fluorescent marker could be used in conjunction 
with green/red Rosella biosensors to monitor responses selectively in transfected cells only. To test this, 
we transiently transfected Parkin coupled via a T2A sequence39 to near-infrared fluorescent protein40 
(iRFP) in cells stably expressing Mito-Rosella (Fig. 3G). Transient transfection efficiencies in HeLa are 
~60–70%, so that a significant number of cells go untransfected under these conditions. The FCM analy-
sis was gated for iRFP fluorescence as the indicator of Parkin expression (Suppl. Fig. 5). Cells expressing 
Parkin (60% the total population) exhibited robust CCCP-induced mitophagy, whereas untransfected 
cells showed no mitophagy (Fig. 3H). Therefore, use of a spectrally distinct fluorescent marker in con-
junction with Rosella enables robust analysis even under imperfect transfection/transduction conditions.

Characteristics of Rosella-based flow cytometry parallel autophagy/mitophagy assay in HeLa 
cells.  We performed additional studies to characterize the performance of the FCM assay for mito-
phagy. We determined the sensitivity of the assay for detecting CCCP-induced mitophagy at earlier 
time-points. As shown in Suppl. Fig. 3A, a statistically significant increase in mitophagy was detected 
at 2 hr after treatment with CCCP (7.4 ±  0.4% vs. 5.4 ±  0.3% for CCCP +  BafA1 treatment, p <  0.01). 
We also compared the efficiency of Parkin translocation to mitochondria at 6 and 24 hr after treatment 
with 10 μ M CCCP. As expected, there was extensive translocation of Parkin to mitochondria at 6 and 
24 hr (70.1 ±  2.3% and 95.4 ±  1.7%, respectively). The percentage of cells displaying mitophagy at these 
time-points (Fig. 3D) is less than the percentage displaying Parkin translocation (Suppl. Fig. 3B), which 
agrees with prior observations that Parkin translocation to mitochondria occurs more rapidly and effi-
ciently than mitochondrial clearance by mitophagy in CCCP-treated HeLa cells32. However, rates of 
mitophagy in the HeLa model can be increased by treatment with higher concentrations of CCCP, as a 
dose-response study showed 20 μ M CCCP induced greater mitophagy than the 10 μ M concentration used 
in our studies (Suppl. Fig. 3C). To determine whether the relative amount of Mito-Rosella expression 
alters measurements of rates of mitophagy, we studied cells co-transfected with a fixed amount of Parkin 
and varying amounts of Mito-Rosella. As shown in Suppl. Fig. 3D, there is no significant difference in 
the quantities of CCCP-induced mitophagy measured over a 3-fold range of transfected Mito-Rosella.

It has been reported that under certain conditions, CCCP may directly alter lysosomal function41. 
Since the FCM-based Rosella method relies on acidification of lysosomes to detect delivery of autophagic 
cargo, we tested whether CCCP treatment alters lysosome acidity in our model. As shown in Suppl. Fig. 
4A,B, there were no changes in lysosome acidification induced by CCCP under the conditions of our 
experiments, as measured by Lysotracker red uptake. Since CCCP-induced, Parkin-dependent mitophagy 
relies on depolarization of mitochondria, we also tested the efficiency of CCCP in depolarizing mito-
chondria in our model. As shown in Suppl. Fig. 4C–D, CCCP induced substantial depolarization of mito-
chondria at 6, 12, and 24 hr after treatment, as measured by uptake of the membrane potentiometric dye 
TMRE. Interestingly, at 24 hr after treatment with CCCP, a partial recovery of mitochondrial membrane 
potential was evident (74.4% depolarization at 24 hr vs. 94.4% and 91.6% at 6 and 12 hr, respectively), 
which could potentially affect the maximal rates of mitophagy measured at 24 hr in this model.

To determine the utility of the Mito-Rosella-based assay for measuring mitophagy induced by 
other stimuli, we tested its ability to quantify mitophagy in HeLa cells treated with the iron chelator, 
3-Hydroxy-1,2-dimethyl-4(1H)-pyridone (deferiprone, or DFP), which is reported to induce mitophagy 
independently of Parkin42. As shown in Fig.  4A–C, treatment of HeLa cells expressing Mito-Rosella 
(without Parkin) with DFP (1 mM) induced mitophagy at 12 and 24 hr after treatment (Fig. 4A,B). The 
induction of mitophagy by DFP correlated with Western blot analysis showing a decrease in mitochon-
drial markers (Fig.  4C). We also tested the ability of the Rosella-based mitophagy assay to quantify 
mitophagy in other cell types beside HeLa. As shown in Fig. 4D,E, the assay readily detects mitophagy in 
CCCP-treated HEK-293 kidney epithelial cells, which are known to express endogenous Parkin31,32,43,44, 
as well as in CCCP treated HCT-116 colorectal carcinoma cells co-transfected with Parkin. In addition, 
the Mito-Rosella-based assay exhibits similar capacity to measure mitophagy in HepG2 hepatocarcinoma 
cells, H9C2 cardiomyocytes, and bovine aortic endothelial cells (data not shown).
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Figure 3.  Parallel quantification of autophagy and mitophagy under the same conditions by flow 
cytometry (FCM) measurement of biosensor responses. Representative histograms of pHluorin/green 
and DsRed.T3/red fluorescence intensities of HeLa cells transiently transfected with plasmids expressing 
(A) Rosella-LC3 and Parkin, or (B) Mito-Rosella and Parkin, and treated for 24 hr with: DMSO (vehicle), 
CCCP (10 μ M), or CCCP (10 μ M) +  Baf1A (100 nM); histograms depict intensities of n =  10,000 cells per 
condition. CCCP induced a significant reduction (dashed lines and arrow) in pHluorin/green fluorescence 
but not in DsRed.T3/red fluorescence of both Rosella-LC3 and Mito-Rosella. Quantitation of cells with 
(C) increased autophagy or (D) increased mitophagy based on detection of changes in green vs. red 
fluorescence intensities in gated FCM scattergram analysis (see also Suppl. Fig. 5A–B); bars represent means 
of 3 biological replicates ±  SEM, N =  10,000 cells analyzed per replicate; *p <  0.001 vs. CCCP +  BafA1; 
#p <  0.001 vs. DMSO at 6 time-point (see also Suppl. Fig. 5A–B). (E) Western blots of LC3 processing in 
cells co-transfected with Rosella biosensors plus Parkin or Control plasmids and treated 24 hr as indicated. 
(F) Western blots of mitochondrial markers in cells co-transfected with plasmids for each of the Rosella 
biosensors plus Parkin or Control plasmid. (G) Representative micrographs of HeLa cells stably expressing 
Mito-Rosella and transiently transfected with a bicistronic iRFP-T2A-Parkin expression plasmid; iRFP 
fluorescence was readily visualized and exhibited a diffuse localization in successfully transfected cells 
(panels iv and ix). As expected, DMSO did not induce mitophagy in cells expressing Parkin (iRFP positive 
cells; panels iii–v). Consistent with our other findings, CCCP treatment did not induce mitophagy in iRFP-
negative cells lacking Parkin (panels vi–x, solid white arrow), but induced mitophagy in iRFP-positive cells 
expressing Parkin (panels viii–x). (H) FCM analysis was used to demonstrate the requirement of Parkin 
expression for CCCP-induced mitophagy. Cells stably expressing Mito-Rosella and transiently transfected 
with iRFP-T2A-Pakin were first gated according to negative vs. positive iRFP-fluorescence (i.e., No Parkin vs. 
Parkin expression, respectively), and then analyzed separately to detect mitophagic cells (see Suppl. Fig. 5D), 
using the same method described for Fig. 3C,D.
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Figure 4.  Quantification of CCCP induced mitophagy in HEK-293 and HCT-116 cells and deferiprone 
(DFP)-induced mitophagy in HeLa cells. (A) Representative micrographs of HeLa cells transfected with 
Mito-Rosella and then treated with 1mM of 3-Hydroxy-1,2-dimethyl-4(1H)-pyridone (deferiprone, DFP) 
or Vehicle (phosphate-buffered saline, PBS) for 24 hr. DFP treatment caused an accumulation of red-only 
Mito-Rosella labeled mitochondria (panel vi, solid arrows) while in vehicle treated cells there was complete 
co-localization between red/green signals (panel iii). Scale bar indicate a length of 50 μ m. (B) Percentage 
of Mito-Rosella expressing cells showing increased mitophagy after 1 mM DFP treatment at indicated 
time-points as quantified by mito-Rosella FCM assay. Bars represent mean of 3 biological replicates ±  
SEM, N =  10,000 cells analyzed per replicate; *p <  0.001 vs DFP +  BafA1 (C) Western blots of markers 
of mitochondrial content–HSP60, ATP synthase, VDAC1, TIM23 and TOM20 (top four panels) and p62 
(autophagy marker) and actin (gel loading control) in cell treated with DFP or Vehicle (PBS) control for the 
indicated time-points. (D) Representative micrographs of HEK-293 cells transfected with Mito-Rosella alone 
(top panels) and HCT-116 cells (bottom panels) transfected with Mito-Rosella plus HA-Parkin; cells were 
treated with CCCP (10 μ M) or vehicle as indicated; treatment durations were 24 hr for HEK-293 cells or 6 hr 
for HCT-116 cells. CCCP treatment induced accumulation of red-only Mito-Rosella indicating mitophagy 
(white arrows). Scale bars indicate a length of 25 μ m. (E) Percentage of Mito-Rosella expressing HEK-293 
and HCT-116 cells showing increased mitophagy after CCCP treatment as quantified by mito-Rosella assay.
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Discussion
Degradation of mitochondria by macroautophagy, also known as ‘mitophagy’, is important for mitochon-
drial function and has been implicated in human disease processes. Mitophagy requires autophagy, and 
so autophagy and mitophagy must be assessed in parallel when considering regulation of mitophagy. Here 
we report a novel, flow cytometry (FCM)-based assay for measuring autophagy and mitophagy in paral-
lel using a single fluorescent biosensor, Rosella, targeted to different cellular compartments. We demon-
strate the performance of this assay in measuring Parkin-mediated mitophagy in CCCP-treated HeLa, a 
well-characterized model of selective mitophagy, in HEK-293 and HCT-116 cells treated with CCCP, and 
in Parkin-independent mitophagy in cells treated with DFP. Measuring 10,000 cells requires 6 seconds 
of analysis time (<10 min for 96 separate conditions). Therefore, this parallel assay for autophagy/mito-
phagy has the capacity to make hundreds to thousands of measurements in minutes to hours. Moreover, 
by combining these methods with iRFP as a marker of genetic manipulation (as shown in Fig. 3G,H), 
the assay should be capable of screening large libraries of cDNA, RNAi, TALEN, or Crispr-Cas9 sgRNA 
to identify regulators of selective mitophagy.

Our findings indicate that LC3-Rosella and Mito-Rosella can be employed in parallel to measure 
both generalized macroautophagy and selective mitophagy; and importantly, the two biosensors used 
together can readily detect dissociation between autophagy and mitophagy when it occurs (e.g., in HeLa 
cells treated with CCCP but not expressing Parkin). Other fluorescent markers have been used for mon-
itoring delivery of autophagic cargo lysosomes, including tandem mCherry-eGFP45,46, mRFP-GFP47, 
and RFP-eGFP48 constructs, and the pH-sensitive Keima49 fluorescent protein; however, this is the first 
demonstration of an FCM-based high-throughput method for measuring autophagy and mitophagy in 
parallel in mammalian cells.

Monitoring of mitochondrial content by means of Western blotting of mitochondrial protein mark-
ers, uptake of mitochondria-specific dyes, or measurement of mitochondrial DNA provides information 
about the cellular content of mitochondria at any given point in time. However, because the net content 
of mitochondria reflects simultaneous mitochondrial biogenesis and mitochondrial turnover, mediated 
in part by mitophagy, these methods may underestimate mitophagy when there is substantial mito-
chondrial biogenesis. Because measurement of mitochondrial flux to the lysosome by the Mito-Rosella 
method is a more direct measurement of mitophagy (i.e., trafficking via autophagy and terminal delivery 
of mitochondria to the functional lysosome), there is less potential for it to be affected by mitochondrial 
biogenesis than surrogate measurements of mitophagy based on mitochondrial content.

Moreover, several of the mitochondrial dyes used to quantify mitochondria–including those described 
as ‘non-potentiometric’50 can be affected by conditions that alter membrane potential51,52 and should be 
used with caution. For example, staining of mitochondria with 10-N-nonyl acridine orange (NaO), a 
dye that interacts specifically with cardiolipin on the mitochondrial membrane, is highly dependent on 
mitochondrial energy state53. Moreover, recent reports that externalization of cardiolipin to the outer 
mitochondrial membrane plays a role in initiation of mitophagy24 raises questions about how this pro-
cess might influence measurements of mitochondrial mass using NaO. In addition, a recent report by 
Padman et al.41 showed redistribution of mitochondrial dyes (DiOC6, TMRM, MTR, and MTG) from 
mitochondria to lysosomes after CCCP treatment. Another aspect of non-potentiometric mitochondrial 
dyes is that they typically have affinity for some specific chemical group on/in mitochondria, and these 
dyes can therefore potentially stain mitochondria even after delivery to lysosomes via mitophagy, which 
could result in overestimation of intact mitochondrial mass.

Because Rosella monitors terminal delivery of cargo to lysosomes, the assay cannot provide infor-
mation about lysosome-independent mechanisms for mitochondrial degradation54, or budding of 
mitochondrial-derived vesicles (MDVs) that may traffic to other compartments55. A potential limitation 
of this method is that Rosella biosensors could potentially detect lysosome-independent acidification of 
cargos; conversely, they could underestimate delivery of cargos when lysosomal pH is elevated by other 
factors41. Therefore, pilot studies to assess intracellular localization of different biosensor-tagged cargos 
by fluorescence microscopy and sensitivity to BafA1 treatment are advisable when applying these meth-
ods to new conditions or when attaching Rosella to different cargos.

Taken together, these findings indicate Rosella biosensor measurements are amenable to use in 
high-throughput screening assays designed to identify chemical or genetic factors that regulate auto-
phagy or mitophagy in mammalian cells, and can readily detect selective regulation of mitophagy as 
a dissociation between the two processes when it occurs. We are currently applying the Rosella-based 
autophagy/mitophagy assays to screen shRNAi and cDNA libraries in an effort to identify new regulators 
in mammalian cells, and we are producing transgenic mice expressing Rosella-LC3 and Mito-Rosella 
biosensors for measuring autophagic and mitophagic fluxes to lysosomes in different tissues in vivo.

Materials and Methods
Cell culture.  HeLa, HEK-293 and HCT-116 cells were from ATCC (American Type Culture Collection), 
and cultured in DMEM for HeLa and HEK-293 (Life Technologies) and McCoy's 5a Medium Modified 
(Life Technologies) for HTC-116 and supplemented with 10% heat-inactivated fetal bovine serum 
(Atlanta Biologicals), penicillin, and streptomycin (Life Technologies), and maintained in a 5% CO2, 
37 °C humidified incubator. Media was changed every third day, and culture passage number was main-
tained under fifteen.
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Expression plasmids.  The Rosella biosensor was described in previous publications35,36. The 
full-length open reading frame (ORF) of human microtubule-associated protein 1A/1B-light chain 3 
(Map1lc3b) was joined in-frame to the 3′  end of the Rosella ORF (coding the C-terminus) in the pDest 
expression vector, generating the Rosella-LC3 biosensor (Fig. 1A), for use in detecting delivery of auto-
phagasomes to lysosomes (i.e., generalized macroautophagy). The ATP synthase subunit gamma (Atp5c) 
full-length ORF minus the terminal stop codon was joined in-frame to 5′  of the Rosella ORF (end 
(coding the N-terminus) in the pCIneo expression plasmid (Clontech), generating the Mito-Rosella bio-
sensor (Fig. 1A) for detecting delivery of mitochondria to lysosomes (i.e., mitophagy). pRK5-HA-Parkin 
(Addgene plasmid 17613) was a gift from Dr. Ted Dawson (Johns Hopkins University), pIRFP (Addgene 
plasmid 31857; based on vector backbone pEGFP-C1) was a gift from Dr. Vladislav Verkhusha (Yeshiva 
University). iRFP-T2A-Parkin vector was generated from IRFP-T2A-TREX2 in pExodus CMV vector 
(Addgene plasmid #50419), a gift from Dr. Andrew Scharenberg (Seattle’s Children Hospital), by sub-
stituting TREX2 with Parkin. pmTurquoise2-Mito (Addgene plasmid 36208) was a gift from Dr. Dorus 
Gadella (University of Amsterdam) and mCherry-Parkin (Addgene plasmid 23956) was a gift from Dr. 
Richard Youle (NINDS). HeLa cells with stable expression of Rosella-LC3 or Mito-Rosella were generated 
by cloning the biosensor ORFs into a PiggyBac transposon transfer vector (System Biosciences, prod-
uct #B510B-1), which was then co-transfected with the Super PiggyBac Transposase expression vector 
(System Biosciences, product #PB210PA-1); stable cell lines were developed by repeated passaging in the 
presence of puromycin (2 μ g/mL, InvivoGen) for 3 weeks, followed by sterile flow cytometry-automated 
cell sorting to isolate cells with increased green and red channel fluorescence. After sorting, stable lines 
were cultured continuously in media containing Puromycin (2 μ g/mL).

Microscopy and flow cytometry (FCM).  Figure  1E cells were plated on 60 mm glass bottom 
poly-D-lysine coated plates, transfected with Rosella-LC3 or Mito-Rosella with Parkin. 24 hr post trans-
fection cells were treated as indicated and live images were obtained with Nikon Eclipse Ti-E widefield 
inverted microscope equipped with 405 nm diode laser, 488 nm Argon gas and 543 nm Helium-neon 
gas lasers and DAPI (450–465 nm) FITC (505–535 nm) and TRITC (580–620) filter sets using 100X oil 
immersion objective. For all other images: Cells were grown on 6 or 12 well plates and images of unfixed, 
live cells were obtained using an EVOS-f  l inverted LED fluorescence microscope. pHluorin emission 
(510 ±  42 nm), DsRed.T3 emission (593 ±  40 nm) and iRFP emission (692 ±  40 nm) were measured after 
excitation with (470 ±  22 nm), (531 ±  40 nm) and (628 ±  40 nm) LED illuminations respectively. ImageJ 
software were used for quantitative analysis. Individual cells in micrographs were scored as being positive 
or negative for autophagy or mitophagy, based on the presence/absence of visible accumulations of red 
biosensor fluorescence in the central lysosomal compartments with distinct “red only” fluorescence. For 
FCM, cells were grown on 12 well plates until reaching 90% confluency and treated with CCCP (10 μ M) 
and/or bafilomycin A (100 nM,) for indicated durations. Cells were harvested for analysis by washing 
twice with PBS, trypsinizing with TrypLE (Life Technologies), and transferring to 96 well plate wells 
containing 0.3 mL PBS. Cells were analyzed using a BD FACSCanto analyzer on high throughput mode. 
pHluorin emission (530 ±  30 nm), DsRed.T3 emission (585 ±  15 nm) and iRFP emission (780 ±  60 nm) 
were measured after excitation with 488, 561 and 640 nm lasers, respectively. 5,000 to 10,000 live cells 
were analyzed per condition, with fluorescent detection in green and red channels, and when required 
for detecting iRFP, the near-infrared (Cy7) channel. Increased autophagy or mitophagy were determined 
for individual cells by detecting decreased green vs. red fluorescence, based on gating determined by the 
green and red fluorescence of vehicle (DMSO)-treated control cells. To eliminate potential confounding 
effects of lysosome-independent changes in mitochondrial pH, Bafilomycin A1-treated cells were used 
as a control condition under situations where potential acidification of media or cytoplasm might occur 
(e.g., prolonged CCCP treatment in Fig. 3H).

Antibodies and chemicals.  Primary antibodies used in this study: rabbit anti-LC3A/B, rabbit 
anti-Parkin rabbit anti-HSP60 (1:1000, Cell Signaling, products #4108S, #4211S and #12165S , respec-
tively); mouse anti-TIM23 (1:1000, BD Biosciences, product #611222); mouse anti-VDAC1, mouse 
anti-TOM20, and mouse anti-p62 (Santa Cruz, 1: 500, sc-58649, sc-17764, and sc-28359, respectively); 
rabbit anti-ATP synthase gamma (1:1000, GeneTex, product #GTX-114275), mouse anti-Actin (1:3000, 
Genescript, product #A00702) and rabbit anti-GFP (Genescript, product #A01388-40). Secondary anti-
bodies were: HPR conjugated goat anti-rabbit and goat anti-mouse (1:2500, products #170-6515 and 
#172-1011, respectively). CCCP and DMSO were obtained from Sigma. Bafilomycin A1 was obtained 
from LC Laboratories. Mitotracker Deep Red FM, Lysotracker Red DND 99, and TMRE, and Hoechst 
33342 were obtained from Life Technologies. 3-Hydroxy-1,2-dimethyl-4(1H)-pyridone was from Sigma.

Western blot analysis.  Cells were washed twice in PBS and lysed with ice-cold RIPA buffer 
(Santa-Cruz) containing HALT protease/phosphatase cocktail (Pierce/Thermo Scientific). Lysates were 
incubated on ice for 30 min with gentle, constant agitation. Lysates were centrifuged at 12,000 ×  g for 
20 min at 4 °C to pellet nuclei and other insoluble material. Lysates were treated with Novex sample buffer 
and heated 10 min at 90 °C. SDS-PAGE was performed on 4–12% Tris-Bis gels (Life Technologies) with 
MES-based running buffer containing anti-oxidant additive, according to the manufacturer's instruc-
tions. Gels were transferred to nitrocellulose (iBlot system, Life technologies). Western blot membranes 



www.nature.com/scientificreports/

1 0Scientific Reports | 5:12397 | DOI: 10.1038/srep12397

were blocked with 5% BSA in TBS-T buffer for 1 hour at room temperature, followed by incubation with 
5% BSA in TBS-T containing primary antibodies at the indicated concentrations (see Methods, above) 
overnight at 4 °C with gentle rocking; in the morning, blots were washed in TBS-T and incubated 1 hr 
at room temperature in 5% BSA in TBS-T containing HRP-conjugated secondary antibodies (1:2500), 
washed again in TBS-T, and incubated in luminescent peroxidase substrate (ThermoFisher). Imaging of 
Western blot band luminescence was performed with a GeneGnome imager (Syngene); and band inten-
sities were quantified using Gene Snap software (Syngene).
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