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Universal activation function 
for machine learning
Brosnan Yuen, Minh Tu Hoang, Xiaodai Dong & Tao Lu*

This article proposes a universal activation function (UAF) that achieves near optimal performance 
in quantification, classification, and reinforcement learning (RL) problems. For any given problem, 
the gradient descent algorithms are able to evolve the UAF to a suitable activation function by 
tuning the UAF’s parameters. For the CIFAR-10 classification using the VGG-8 neural network, 
the UAF converges to the Mish like activation function, which has near optimal performance 
F
1
= 0.902± 0.004 when compared to other activation functions. In the graph convolutional 

neural network on the CORA dataset, the UAF evolves to the identity function and obtains 
F
1
= 0.835± 0.008 . For the quantification of simulated 9-gas mixtures in 30 dB signal-to-noise ratio 

(SNR) environments, the UAF converges to the identity function, which has near optimal root mean 
square error of 0.489± 0.003µM . In the ZINC molecular solubility quantification using graph neural 
networks, the UAF morphs to a LeakyReLU/Sigmoid hybrid and achieves RMSE=0.47± 0.04 . For the 
BipedalWalker-v2 RL dataset, the UAF achieves the 250 reward in 961± 193 epochs with a brand new 
activation function, which gives the fastest convergence rate among the activation functions.

The goal of most machine learning algorithms is to find the optimal model for a specific problem. However, find-
ing the optimal model by hand is a daunting task due to the virtually infinite number of possibilities on model 
and the corresponding parameter selection. The field of automated machine learning1–3 solves the problem by 
automatically finding machine learning models using genetic algorithms, neural networks and its combination 
with probabilistic and clustering algorithms.

Genetic algorithms excel at optimizing discrete variables. For example, they can be used to optimize the 
number of neurons in each layer or the depth of the neural network. Neuroevolution of augmenting topologies 
(NEAT)4 uses genetic algorithms to optimize the structure of neural networks. The values of the neuron weights, 
the types of activation functions, and the number of neurons can be optimized by breeding and mutating different 
species of neural networks. HyperNEAT5 is an extension of NEAT. Instead of finding the architecture directly, 
HyperNEAT finds a single function that encodes the entire network. The single function is then bred and mutated 
in order to find the best function that encodes the optimal neural architecture. Moreover, Deep HyperNEAT6 is 
another version of HyperNEAT that allows the design of larger and deeper neural networks.

Aside from the genetic algorithms, neural network structures can also be optimized by other neural networks. 
Liu et al.7 propose a new method for creating convolutional neural networks (CNNs) from scratch. CNNs are 
constructed from cells, where each cell does a specific operation such as convolution, concatenation, and pooling. 
Moreover, the cells come with fixed activation functions that format the outputs. A neural network predictor is 
trained to place and route cells together. The architecture begins as a collection of a few cells and more cells are 
added by the predictor until the lowest loss is achieved. Similar to the paper above, Efficient Neural Architecture 
Search via Parameter Sharing (ENAS)8 uses a recurrent neural network (RNN) controller to place and route 
cell blocks in order to find the optimal architecture. The RNN controller is trained using the policy gradient 
method. On the other hand, the Auto-DeepLab paper9 proposes a method to search architectures at a cell level 
and at the network level.

Probabilistic methods could be used in-conjunction with neural network approaches to create new neural 
network architectures. Zoph et al.10 designed an RNN controller for neural architecture search, which is trained 
using reinforcement learning. The RNN controller searches through the vast array of possible neural networks 
and it labels each network with a probability of being the optimal network. Moreover, it predicts the optimal 
parameters of the neural network such as the size of the CNN filters, the number of CNN channels, and the 
types of activation functions.

Clustering algorithms can be used to find the type of problem based on the information from the dataset. 
For example, the problem may be classified as a video quantification problem or a text classification problem or 
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a reinforcement learning problem. Subsequently, the best neural network is selected from a pre-built model zoo 
and it is retrained to get the best results.

One of the core tasks for automated machine learning is to find an optimal activation function for a specific 
model. However, many activation functions have been proposed over the history of machine learning and 
this makes the selection difficult. Richards11 developed the sigmoid activation function family that spans the 
S-shaped curves like the tanh12 function and the sigmoid function. Other activation functions in the family 
include the step function, the clipped tanh function, and the clipped sigmoid function. Subsequently, the first 
neural network13,14 used the sigmoid activation function for modeling biological neuron firing. For the most 
part, activation functions from the sigmoid activation function family are used for classifying objects, where the 
output is constrained to the range [0, 1].

The ReLU activation function15 is another popular activation function that is used for quantification, clas-
sification, and reinforcement learning problems. The ReLU activation function is part of the ReLU activation 
function family, where the behaviour of all functions in the family are linear y = x when x > 0 . The identity, 
LeakyReLU16, Elu17, and softplus18 activation functions are also included in this family. The LeakyReLU activa-
tion function is a version of ReLU activation function that has a non-zero slope y = αx when x < 0 , where the 
non-zero slope is used to prevent the gradient from reaching zero. One of the major problems of the ReLU and 
LeakyReLU activation functions is the discontinuity at x = 0 that produces undefined gradients19 and causes the 
gradient descent optimizer to fail. The Elu and the softplus activation functions solve the problem by creating 
smoothness and continuity around x = 018. Newer activation functions such as Mish20 and Swish21 have built-in 
regularization to prevent over-fitting of models.

The Gaussian activation function22 has a bell shaped curve and it is useful for modeling Gaussian distributed 
random variables. For example, a neural network predicting the speed of a car might use the Gaussian function 
for regression because the speed of a car is Gaussian distributed23. Moreover, the Gaussian function is also used 
for classifying the existence of objects24. The Gaussian function is a special case of the radial basis function (RBF) 
activation function family24, whose functions always have a bell shape curve. Other members of the RBF family 
include the polyharmonic spline and the bump function.

Among the many basic activation functions, selecting the best activation function that suits a specific task 
is hard. Researchers have solved this problem by creating adaptable activation functions that can evolve to a 
specific task. The adaptable activation functions are controlled by trainable parameters, of which are then opti-
mized using gradient descent algorithms. PReLU25 is an example of an adaptive activation function, where the 
slope α of a LeakyReLU function is a trainable parameter. Bodyanskiy et al.26 developed an adaptable RBF that 
can be trained in real time. Qian et al.27 proposed adaptive ReLU functions for CNNs. Campolucci et al.28 used 
an adaptive spline activation function that approximates the curves of a sigmoid activation function. However, 
the adaptive spline activation functions suffer from over-fitting and discontinuities. Each individual spline is 
constructed independently of other segments. Afterwards, the segments are joined together to form a complete 
activation function. As a result, continuity is not guaranteed at the segment joints because the derivatives of the 
two different segments might not agree. Furthermore, too many segments might introduce a large amount of 
trainable parameters and this might cause over-fitting29.

We propose a simple universal activation function (UAF) to solve the problem of finding the optimal acti-
vation function for a specific task. The 5 trainable parameters of the UAF allows it to approximate any of the 
activation functions listed above. Without any additional constraints, the UAF is continuous and differentiable 
for all parameter values. Due to the properties above, the gradient descent algorithms are able to smoothly evolve 
the UAF to a near optimal activation function, which may be an existing activation function in the literature 
or a new activation function. Adopting the UAF in neural networks automates the search for a good activation 
function and reduces the total training time. For example, NEAT4 and ENAS8 discretely search through the 
activation functions one by one. Everytime the activation function changes, the neural networks above need to 
be retrained from scratch. Instead of retraining the neural networks, the activation functions and the weights 
can be continuously updated to reduce training time. These papers30,31 prove that adaptive activation functions 
converge faster for certain problems such as stiff ordinary differential equations and partial differential equations.

The paper is organized as follows. Section “Construction of UAF” describes the properties of UAF and its 
training procedure. Section “Experiments” shows the UAF’s performances on the CIFAR-1032 classification, 
infrared spectra database for 9 gas quantification33, BipedalWalker-v234 RL, Planetoid/CORA publication clas-
sification dataset35, and ZINC molecular solubility quantification dataset36. Furthermore, a conclusion is pre-
sented in Section “Conclusion and future work”. Finally, Supplementary Information S.2 gives implementation 
details about the UAF.

Construction of UAF
In this section, the UAF will be derived from the softplus activation function. For the range of x ≫ 0 , the ReLU 
activation function can be approximated by the softplus activation function.

Furthermore, the softplus function can be generalized by adding two new trainable parameters A and B

where A controls the slope and B controls the horizontal shift. The LeakyReLU activation function can be 
approximated by adding another monotonically decreasing function and a new parameter D

(1)softplus(x) = ln(1+ ex) ≈ ReLU(x)

(2)fUAF(x) = ln(1+ eA(x+B))
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that approximates the slope α of the LeakyReLU activation function. Moreover, the sigmoid and tanh activation 
functions can be approximated by adding a new parameter E

that controls the vertical shift. The sigmoid activation function can be transformed into the tanh activation 
function by shifting the function down by E. In order to approximate the Gaussian activation function, a new 
parameter C is added

to give more degrees of freedom to the UAF. The completed fUAF(x) is shown in Eq. (5). In the Supplementary 
Materials, there is a video (V.1 describing the effects of the parameters on the UAF. It is evident that the UAF 
given by Eq. (5) is well behaved such that both the function and its first order derivative exist, are single valued 
and continuous for x ∈ (−∞,∞) provided that all parameters are real.

UAF error analysis using RMSE table.  In this subsection, we will examine the errors of the UAF in the 
range of x ∈ [−5, 5] because every maximum absolute error occurs within this range. Table 1 shows the root 
mean square error (RMSE), mean absolute error (MAE), maximum absolute error, and locations of the maxi-
mum absolute error for each activation function. The UAF models the identity function and the softplus func-
tion without any errors because the UAF is based on those functions. For the continuous activation functions 
such as the sigmoid, tanh, and Gaussian, the UAF models them well with a small RMSE. For the discontinuous 
activation functions like the ReLU and LeakyReLU, the RMSE is slightly higher due to the continuous UAF not 
being able to handle the discontinuities. A more through evaluation of the UAF’s error analysis is available in the 
Supplementary Information S.1.

UAF error analysis using error plots.  To further illustrate the errors between the UAF and the targeted 
activation functions, we have made error plots of the UAF as shown in Fig. 1. The UAF (black solid traces) can 
closely approximate various activation functions (green dashed traces) such as step (Fig. 1a), sigmoid (Fig. 1b), 
tanh (Fig. 1c), ReLU (Fig. 1d), LeakyReLU (Fig. 1e) and Gaussian (Fig. 1f) with red traces showing monotoni-
cally decreasing errors toward ±∞ . Details on UAF’s parameter values in each approximation and the corre-
sponding error analysis are described in Supplementary Information S.1.

Training the UAF’s parameters
Unlike regular activation functions, the UAF has trainable parameters and it requires a unique training procedure 
to achieve the best performance. The exact same training procedure is followed for each dataset in “Experiments”. 
The UAF’s training procedure is divided into phase 1 and phase 2. Starting with training phase 1, gradients of the 
weights, biases, and UAF’s parameters are computed. Afterwards, the ADAM optimizer37 updates the weights, 
biases, and UAF’s parameters concurrently using the computed gradients. When the loss function hits a plateau, 
training phase 1 ends and training phase 2 begins.

In training phase 2, the ADAM optimizer only updates the weights and biases of the neural network, while 
the UAF’s parameters are not updated. This is done to reduce the over-fitting of the model and to prevent train-
ing instability. In order to update the UAF’s parameters, the ADAM optimizer requires the UAF’s gradients. 
Derivation of the UAF’s gradients is presented below.

Derivation of the UAF’s gradients.  Suppose a MSE loss function J needs to be minimized

by tuning the predicted output ŷ to match the actual output y. Suppose the predicted output ŷ is modeled by a 
single layer MLP that has the UAF 

 where xi are the inputs, wi are the weights, and v is the bias. Firstly, the UAF’s gradients ∇fUAF(x,A,B,C,D,E)

(3)fUAF(x) = ln(1+ eA(x+B))− ln(1+ eD(x−B))

(4)fUAF(x) = ln(1+ eA(x+B))− ln(1+ eD(x−B))+ E

(5)fUAF(x) = ln(1+ eA(x+B)+Cx2)− ln(1+ eD(x−B))+ E

(6)J = (ŷ − y)2

(7a)x = v +

N
∑

i=1

wixi
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Figure 1.   The UAF’s approximations of the following activation functions: (a) step, (b) sigmoid, (c) tanh, (d) 
ReLU, (e) LeakyReLU, and (f) Gaussian. The black solid lines represent the UAF, while the green dashed lines 
represent the targeted activation functions, whose values can be obtained from the y axis on the left. The red 
solid lines represent the error E between the UAF and targeted activation function and the values can be read 
from the y axis on the right side.

Table 1.   UAF approximation errors of various activation functions.

Activation functions RMSE MAE Max abs. err. Locations of max abs. err.

Identity 0 0 0 None

Step 1.2× 10
−2

5.0× 10
−4 0.5 0

±

ReLU 7.5× 10
−5

4.1× 10
−6

4.0× 10
−3 ±0.0181

LeakyReLU 6.2× 10
−2 3.6× 10−2 0.505 ±3.106

Sigmoid 3.0× 10
−4

2.0× 10
−4

6.0× 10
−4 ±0.8665

Tanh 1.5× 10
−3

8.0× 10
−4

4.7× 10
−3 ±0.4355

Softplus 0 0 0 None

Gaussian 4.6× 10
−3

2.4× 10
−3

1.3× 10
−2 ±0.8821
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 are computed. Secondly, the loss function’s gradients ∇J

 are calculated. Thirdly, the UAF’s parameters 

 are updated using the ADAM optimizer. The ADAM optimizer also requires the learning rates, which are 
described in the next subsection.

Learning rates for phase 1 and phase 2.  In training phase 1, the learning rate is held constant α(t) = α0 
for epochs 0 < t < t0 . When the loss does not decrease for Z epochs, the loss is considered to have plateaued 
at epoch t0 and this leads to the start of training phase 2. In training phase 2, the new learning rate α(t) = α1 is 
significantly smaller than the previous learning rate α1 < α0 . Moreover, the learning rate decreases when the loss 
has plateaued for Z epochs.

Experiments
In this article, five experiments are used to benchmark the UAF against other activation functions. To show the 
effectiveness of the UAF, an animation depicting the evolution of the UAF in these datasets is available in the 
Supplementary Materials (V.2).

CIFAR‑10 image classification.  The goal of the CIFAR-10 dataset32 is to take 32× 32 pixel RGB images 
and classify them into 10 different categories: airplane, automobile, bird, cat, deer, dog, frog, horse, ship, and 
truck. The VGG 8 layer CNN38 is applied to the CIFAR-10 dataset, of which contains 6 CNN layers, 6 max pool-
ing layers, and 2 dense layers. Each CNN layer contains many 3× 3 pixel kernels interspersed with max pooling 
layers. On the other hand, each dense layer has 1,024 neurons and they produce the output classification result.

To ensure fairness in the tests, all neurons and all layers are set to the same type of activation function. In 
the case of the UAF, a single UAF is applied to all neurons and to all layers. CIFAR-10 dataset contains 60,000 
images in total, where 50,000 images are used for training and 10,000 images are used for testing. The training 
and testing datasets for CIFAR-10 are not randomized to allow comparisons between papers. After executing the 
1× 10 folding training and testing, the precision, recall, and F1 scores of various activation functions are recorded 
in Table 2 . The ReLU activation function has the worst score F1 = 0.018± 0.001 because the ReLU’s gradient 
sometimes gets stuck and stops the weights from updating19. The identity, sigmoid, tanh, and ELU activation 
functions have poor scores F1 = 0.795± 0.02 , 0.881± 0.006 , 0.835± 0.010 and 0.886± 0.004 because their gra-
dients do not back-propagate well across many different CNN layers. On the other hand, Mish and LeakyReLU 
functions are designed to stop the gradient from reaching zero. As a result, they perform better and have higher 
scores F1 = 0.891± 0.008 and 0.893± 0.003 . Softplus and UAF have the highest scores F1 = 0.902 due to the 
smoothness of the functions and being able to reach the global minimum. This means softplus and UAF are 
superior at classifying objects when compared to the other activation functions despite the UAF requires more 
training time for the UAF’s parameters to converge. Figure 2a shows the evolution of the UAF on the CIFAR-10 
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Figure 2.   The UAF evolution of the following datasets: (a) CIFAR-10 image classification, (b) CORA 
publication classification, (c) 9 gas concentration quantification, (d) ZINC molecular solubility quantification, 
and (e) BipedalWalker-V2 reinforcement learning.
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dataset. Upon initializing the UAF as the identity activation function, the UAF converges to a Mish activation 
function that is shifted to the right and has a different slope.

Planetoid/CORA publication classification.  In the Planetoid/CORA publication classification dataset35, 
uncategorized published papers and their publication metadata are given in order to classify the papers into one 
of seven academic fields. The input to the network is a graph of published papers, where each node contains the 
extracted keywords of a paper and each edge contains a citation between two papers. If a keyword exists within 
a paper, then it is labeled as 1, otherwise it is labeled as 0. The prediction uses a 64 layer graph convolutional 
neural (GCN) network39 that has 64 hidden channels and 1 dense layer. Bias weights are not used because they 
cause overfitting and performance degradation. To ensure fairness in the tests, all neurons and all layers are set 
to the same type of activation function. In the case of the UAF, a single UAF is applied to all neurons and to all 
layers. The Planetoid/CORA dataset contains 2708 publications in total. After randomly shuffling the dataset, 
140 publications are randomly selected for training and 1000 publications are randomly selected for testing. 
Table  3 shows the 1× 10 folding training and testing of the various activation functions. Sigmoid performs 
poorly F1 = 0.129± 0.01 due to label prediction imbalance. In the absence of bias weights, the Sigmoid skews 
the input domain of [0, 1] to the output range of [0.5, 0.731] and this leads to the overprediction of label 1 com-
pared to the label 0. The same label prediction imbalance causes LogSigmoid, Hardswish, softplus, and SiLU 
to perform poorly. The ELU, identity, LeakyReLU, Mish, PReLU, ReLU, tanh, and UAF perform significantly 
better due to them not requiring bias weights. In Fig. 2b, the UAF converged to identity function and failed to 
obtain the best result because the ADAM optimizer stopped at a local minimum. Nevertheless, its F1 score of 
0.835± 0.008 is close to the best performed ReLU ( F1 = 0.845± 0.011 ) which is able to preserve the informa-
tion from the keywords.

9 gas quantification.  The objective of the infrared spectra database is to predict the concentrations of 
9 gasses using 1 ×1000 images of the gasses’ IR spectra. We generated the dataset using the similar procedure 
to33 and made the gas concentrations uniformly distributed between 0 and 10 µM . The total dataset contains 
100,000 images. After shuffling, 80,000 images are randomly sampled for training and 20,000 images are ran-

Table 2.   CIFAR-10 image classification using VGG 8 layers. 1× 10 fold macro averaged results. Confidence 
interval of 2σ . The UAF is the activation function described in this paper. The non bold items are the other 
activation functions used for comparison.

Activation functions Precision Recall F1 Training time ( ×10
3s)

Softplus 0.902± 0.003 0.902± 0.003 0.902± 0.003 0.699± 0.002

UAF 0.902± 0.004 0.902± 0.004 0.902± 0.004 1.692± 0.004

LeakyReLU 0.893± 0.003 0.893± 0.003 0.893± 0.003 0.863± 0.005

Mish 0.891± 0.008 0.890± 0.008 0.891± 0.008 0.927± 0.005

ELU 0.886± 0.004 0.886± 0.004 0.886± 0.004 0.699± 0.003

Sigmoid 0.882± 0.004 0.881± 0.006 0.881± 0.006 0.686± 0.010

Tanh 0.839± 0.006 0.835± 0.011 0.835± 0.010 0.703± 0.006

Identity 0.804± 0.009 0.798± 0.015 0.795± 0.017 0.656± 0.006

ReLU 0.010± 0.001 0.100± 0.010 0.018± 0.001 0.650± 0.005

Table 3.   Planetoid/CORA classification using graph convolution neural networks. 1× 10 fold macro averaged 
results. Confidence interval of 2σ . The UAF is the activation function described in this paper. The non bold 
items are the other activation functions used for comparison.

Activation functions Precision Recall F1 Training time (s)

ReLU 0.845± 0.013 0.852± 0.011 0.845± 0.011 47± 6

LeakyReLU 0.843± 0.010 0.852± 0.003 0.844± 0.004 44± 1

PReLU 0.831± 0.006 0.848± 0.005 0.837± 0.005 50± 1

ELU 0.829± 0.005 0.846± 0.007 0.835± 0.005 45± 1

UAF 0.830± 0.016 0.847± 0.012 0.835± 0.008 131± 4

Identity 0.829± 0.006 0.845± 0.009 0.834± 0.005 49± 2

Tanh 0.826± 0.004 0.846± 0.005 0.833± 0.003 45± 2

Mish 0.742± 0.015 0.740± 0.022 0.737± 0.005 49± 1

SiLU 0.458± 0.029 0.435± 0.016 0.424± 0.010 45± 1

Hardswish 0.385± 0.040 0.368± 0.030 0.344± 0.019 45± 2

Sigmoid 0.124± 0.023 0.163± 0.006 0.129± 0.011 45± 1

LogSigmoid 0.105± 0.026 0.152± 0.013 0.112± 0.019 46± 2

Softplus 0.098± 0.026 0.150± 0.006 0.107± 0.013 54± 2
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domly sampled for testing. A 2 layer MLP with 109 neurons each predicts the concentrations of the 9 gasses, of 
which the activation functions remain constant for all layers and all neurons. Table 4 shows the 1× 10 fold test-
ing of the 30 dB SNR IR spectra database33. The ReLU activation function again gets stuck and produces a high 
RMSE = 1.2± 1.7 . Moreover, softplus, sigmoid, and tanh activation functions have high RMSE = 0.90± 0.03 , 
0.95± 0.01 and 0.694± 0.002 because they are not suited for quantification. On the other hand, MLPs using the 
Identity, LeakyReLU, and UAF activation functions obtained the lowest RMSE = 0.489± 0.004 , 0.488± 0.004 
and 0.489± 0.003 due to them being suitable for quantification. As a result, MLPs with the identity, LeakyReLU, 
and UAF are able to predict the concentrations of the gasses more accurately than the MLP with other activation 
functions. Fig. 2c shows the evolution of the UAF during the training procedure. The UAF begins as the identity 
function. Afterwards, the UAF changes to a parabolic function. Subsequently, the UAF converges to the identity 
function, which is close to the optimal activation function.

ZINC molecular solubility quantification.  The objective of the ZINC molecular solubility quantifica-
tion dataset36 is to predict an unknown chemical’s solubility property given its molecular structure. A graph 
neural network with principal neighbourhood aggregation40 is used to predict the solubility values. For testing, 
a single type of activation function is applied to all layers and all neurons. The input to the neural network is 
the molecular structure in the form of a graph. Each node represents an atom and each edge represents a bond 
between two atoms. The entire ZINC dataset contains 250,000 different molecular graphs. 220,011 molecular 
graphs are randomly sampled for training and 5,000 molecular graphs are randomly sampled for testing. Table 5 
shows the results of the various activation functions on the ZINC dataset after executing the 1× 10 fold testing. 
Sigmoid and LogSigmoid perform poorly RMSE = 0.6± 0.1 and 0.51± 0.05 because they are not designed for 
quantification. Identity performs poorly RMSE = 0.56± 0.05 as it does not filter out invalid values such as nega-

Table 4.   9 gas quantification using 2 layer MLP. Infrared spectra database for 9 gas quantification33  30 dB 
SNR uniformly distributed concentrations. 1× 10 fold macro averaged results. Confidence interval of 2σ . The 
UAF is the activation function described in this paper. The non bold items are the other activation functions 
used for comparison.

Activation functions MAE ( µM) RMSE ( µM) Rel error Training time ( ×10
3s)

PReLU 0.271± 0.002 0.487± 0.003 0.3± 0.2 2.77± 0.17

LeakyReLU 0.269± 0.002 0.488± 0.004 0.3± 0.1 2.87± 0.16

UAF 0.269± 0.001 0.489± 0.003 0.3± 0.1 2.93± 0.11

Identity 0.273± 0.002 0.489± 0.004 0.4± 0.1 2.84± 0.18

ELU 0.273± 0.001 0.490± 0.003 0.4± 0.1 2.87± 0.16

Mish 0.333± 0.005 0.527± 0.004 0.8± 0.5 2.90± 0.13

SiLU 0.356± 0.009 0.546± 0.006 0.8± 0.5 2.91± 0.21

Hardswish 0.365± 0.096 0.556± 0.005 0.7± 0.1 2.91± 0.17

Tanh 0.521± 0.002 0.694± 0.002 0.9± 0.4 2.89± 0.11

Softplus 0.647± 0.034 0.900± 0.059 2.3± 0.8 2.84± 0.16

Sigmoid 0.564± 0.009 0.953± 0.013 1.7± 0.9 2.81± 0.14

ReLU 1.146± 1.156 1.231± 1.725 0.4± 0.2 2.73± 0.05

LogSigmoid 4.996± 0.012 5.771± 0.012 1.00± 0.01 2.99± 0.22

Table 5.   ZINC molecular solubility quantification using graph neural networks with principal neighbourhood 
aggregation. 1× 10 fold macro averaged results. Confidence interval of 2σ . The UAF is the activation function 
described in this paper. The non bold items are the other activation functions used for comparison.

Activation function MAE RMSE Rel error Training time ( ×10
3s)

Hardswish 0.16± 0.01 0.46± 0.08 0.46± 0.11 2.24± 0.02

UAF 0.17± 0.01 0.47± 0.04 0.50± 0.09 4.62± 0.04

SiLU 0.17± 0.01 0.47± 0.05 0.45± 0.07 2.27± 0.01

ReLU 0.18± 0.01 0.48± 0.03 0.51± 0.14 2.16± 0.01

Mish 0.17± 0.02 0.48± 0.04 0.44± 0.06 2.25± 0.06

ELU 0.18± 0.01 0.49± 0.04 0.47± 0.08 2.24± 0.01

LeakyReLU 0.18± 0.01 0.49± 0.04 0.54± 0.09 2.17± 0.06

PReLU 0.190± 0.008 0.51± 0.04 0.48± 0.07 2.17± 0.02

Softplus 0.19± 0.01 0.51± 0.04 0.52± 0.09 2.27± 0.01

LogSigmoid 0.20± 0.02 0.51± 0.05 0.53± 0.11 2.27± 0.03

Tanh 0.19± 0.02 0.51± 0.06 0.53± 0.06 2.26± 0.01

Identity 0.25± 0.01 0.56± 0.05 0.73± 0.13 2.24± 0.01

Sigmoid 0.27± 0.04 0.61± 0.11 0.72± 0.14 2.25± 0.02
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tive solubility values. Softplus, Tanh, ELU, ReLU, PReLU, and LeakyReLU perform moderately well but they do 
not achieve the best performance. This is because the output probability distributions of the activation functions 
above do not match the actual probability distribution of the ZINC dataset. On the other hand, UAF, Hard-
swish, Mish, and SiLU obtained better performances RMSE = 0.47± 0.04 , 0.46± 0.08 , 0.48± 0.04 , 0.47± 0.05 
because they are able to approximate the probability distribution of the ZINC dataset with greater accuracy. The 
confidence interval of the activation function with the lowest RMSE, Hardswish, overlaps significantly with the 
confidence interval of UAF, Mish, and SiLU. As a result, it is unknown which activation function is optimal for 
this specific problem.

BipedalWalker‑v2 reinforcement learning.  The goal of the BipedalWalker-v234 RL benchmark is to 
move the robot past the finish line while adapting to large changes in the simulation’s terrain. The neural net-
works control the torques of the robot’s legs in order to move the robot forwards and to prevent the robot from 
falling over. The reward function depends on the furthest distance traveled and the total amount of energy used 
to move the robot. Maximizing the furthest distance traveled and minimizing the total energy used, increases the 
reward function. Moreover, the neural networks must converge in the least number of epochs. High rewards and 
low number of epochs imply that the models run efficiently. Table 6 shows the results of the Deep Deterministic 
Policy Gradient41 on BipedalWalker-v2. 1× 10 fold testing is used on the dataset and each fold has randomly 
generated terrain. The sigmoid activation function achieves the 100 reward in 818± 213 epochs, which is the 
least number of epochs. UAF is slightly slower at achieving the 100 reward in 859± 209 epochs. However, UAF 
is the fastest at achieving the 250 reward with 961± 193 epochs. In the long run, the UAF achieves the best per-
formance in terms of highest rewards in the least number of epochs.

Figure 2e shows the evolution of the UAF in BipedalWalker-v2. The UAF is initialized as the identity func-
tion. Subsequently, the UAF evolves to an unusual parabolic activation function. The parabolic function is a 
new activation function that performs well for this specific problem. It limits the torque of the bipedal robot to 
y ∈ [−1,∞) and the parabolic function decreases the energy needed to move the robot. As the energy needed 
decreases, the reward increases.

Conclusion and future work
The UAF was developed as a generic activation function that can approximate many others such as the identity, 
ReLU, LeakyReLU, sigmoid, tanh, softplus, and Gaussian as well as to evolve to a unique shape. This versatility 
allows the UAF to achieve near optimal performance in classification, quantification, and reinforcement learn-
ing. As demonstrated, incorporating the UAF in a neural network leads to best or close-to-best performance, 
without the need to try many different activation functions in the design.

In the current setup, a single UAF is applied to the entire neural network. As for future work, each layer or 
each neuron could have its own UAF. Each UAF would then specialize to a specific task. This would enable the 
neural networks to model more non-linear processes and to solve more difficult problems. Moreover, the UAF 
could be used for transfer learning. The activation functions from one neural network could be transferred to 
another neural network. This would enable multiple neural networks to learn from each other and to converge 
faster.

Data availability
The majority of the datasets used in this paper are publicly available. Private datasets can be given upon request.

Code availability
The UAF’s code is available for Tensorflow and Pytorch upon request.

Table 6.   BipedalWalker-v2 using deep deterministic policy gradient. 1× 10 fold macro averaged results. 
Confidence interval of 2σ .

Activation functions
100 reward ( ×10

3 
Epochs)

250 reward ( ×10
3 

Epochs)
40 distance ( ×10

3 
Epochs)

88 distance ( ×10
3

Epochs)
Training time 
( ×10

3s)

UAF 0.86± 0.21 0.96± 0.19 0.77± 0.13 0.83± 0.19 6.98± 2.38

LeakyReLU 0.85± 0.16 0.99± 0.16 0.77± 0.14 0.82± 0.15 6.14± 1.72

ReLU 0.89± 0.16 0.99± 0.19 0.80± 0.17 0.83± 0.18 5.53± 0.86

Softplus 0.84± 0.53 0.99± 0.59 0.68± 0.33 0.75± 0.29 4.94± 2.69

Sigmoid 0.82± 0.21 1.00± 0.41 0.72± 0.23 0.79± 0.27 5.93± 1.98

ELU 0.93± 0.16 1.17± 0.45 0.82± 0.22 0.87± 0.13 5.86± 2.05

Tanh 0.92± 0.20 1.22± 0.48 0.83± 0.15 0.90± 0.20 4.46± 2.27

Mish 0.99± 0.23 1.29± 0.25 0.89± 0.12 0.94± 0.13 6.95± 2.02

Identity Not reached Not reached 1.38± 0.36 1.49± 0.05 2.50± 1.29
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