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Kibble-Zurek mechanism (KZM) uses critical scaling to predict density of topological defects and other
excitations created in second order phase transitions. We point out that simply inserting asymptotic critical
exponents deduced from the immediate vicinity of the critical point to obtain predictions can lead to results
that are inconsistent with a more careful KZM analysis based on causality – on the comparison of the
relaxation time of the order parameter with the ‘‘time distance’’ from the critical point. As a result, scaling of
quench-generated excitations with quench rates can exhibit behavior that is locally (i.e., in the neighborhood
of any given quench rate) well approximated by the power law, but with exponents that depend on that rate,
and that are quite different from the naive prediction based on the critical exponents relevant for
asymptotically long quench times. Kosterlitz-Thouless scaling (that governs e.g. Mott insulator to
superfluid transition in the Bose-Hubbard model in one dimension) is investigated as an example of this
phenomenon.

T
he study of the dynamics of second-order phase transitions started with the observation by Kibble1,2 that, in
the cosmological setting, as a result of relativistic causality, distinct domains of the nascent Universe will
choose different broken symmetry vacua. Their incompatibility, characterized by the relevant homotopy

group, will typically lead to topological defects that may have observable consequences.
In condensed matter (where the relativistic casual horizon is no longer a useful constraint) one can nevertheless

define3–5 a sonic horizon that plays a similar role. The usual approach to estimating the size of the sonic horizon
relies on the scaling of the relaxation time and of the healing length that are summed up by the critical exponents.
Critical exponents define the universality class of the transition, and this usually enables prediction of the scaling
exponent that governs the number of the generated excitations (e.g., the density of topological defects) as a
function of the quench timescale tQ for a wide range of quench rates.

Here we point out that this simple procedure fails in an interesting and unexpected manner for the Kosterlitz-
Thouless universality class. That is, one can expect that - in the asymptotic regime where the transition is
extremely slow - critical exponents will suffice for such predictions. However, while for the quench rates attain-
able in the laboratory one may still expect an approximate power law that relates density of excitations to the
quench rate, the exponent that characterizes it will begin to approach predictions based on the critical exponents
only asymptotically, and for unrealistically (one might even say, astronomically) large values of the ‘‘sonic
horizon’’. Nevertheless, we show that the application of KZM can lead to predictions that are valid before the
asymptotic regime characterized by the critical exponents becomes relevant.

Timescale t̂ at which the ‘‘reflexes’’ of the order parameter of the system, quantified by the relaxation time t, are
too slow for its state to remain in approximate equilibrium with its momentary Hamiltonian (or free energy)
controlled from the outside by the experimenter plays a key role. It is obtained from the equation3–5:

t t̂
� �� �

~ t̂
� ��

_ t̂
� �

ð1Þ

that compares relaxation time t with the rate of change of the dimensionless distance from the critical point, e.g.
~ Tc{Tð Þ=Tc where Tc is the critical temperature. When tð Þ is taken to vary on a quench timescale tQ as
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tð Þ~t=tQ ð2Þ

equation (1) leads to:

t t̂
� �� �

~t̂: ð3Þ

In phase transitions where the critical slowing down and critical
opalescence can be characterized by power law dependencies of
relaxation time and healing length,

tð Þ~t0=j jnz, jð Þ~j0=j jn, ð4Þ

equation (1) can be imidiately solved:

t̂~t0 tQ=t0ð Þ
nz

1znz, ^~ t0=tQð Þ
1

1znz: ð5Þ

Above, n and z are the spatial and dynamical critical exponents that
characterize the universality class of the transition, while t0 and j0

are dimensionful parameters determined by the microphysics. This
leads to the characteristic scale

ĵ~j0 tQ=t0ð Þ
n

1znz: ð6Þ

It gives the size of the domains that break symmetry in unison, and,
hence, dictates the density of topological defects left behind by the
transition.

Basic tenets of the above Kibble-Zurek mechanism have been
confirmed by numerical simulations6–18, and, to a lesser degree
(and with more caveats) by experiments19–36 in a variety of settings.
Refinements include phase transition in inhomogeneous systems
(see37 for recent overview) and applications of KZM that go beyond
topological defect creation (see e.g.38–41). Recent reviews related to
KZM are also available42–46.

Our aim here is to note that when the critical slowing down is
given by a more complicated dependence then the simple power law
of Eq. (4), the resulting t̂ and, therefore, ĵ will vary in a way that
cannot be fully characterized by the critical exponents that otherwise
suffice to predict their scaling with the quench rate. That is, topo-
logical defects or other excitations left behind by the quench will
approach the scaling predicted by the critical exponents, Eq. (16),
only asymptotically, and begin to conform with it only in the regime
of extremely slow transitions that may be well out of the reach of
laboratory experiments. In the regime of faster quenches that may be
accessible to experiments a power law may still be locally a reasonable
fit, although its exponent will vary slowly, approaching the asymp-
totic prediction only very gradually.

Results
Kibble-Zurek mechanism in the Kosterlitz-Thouless universality
class. This conclusion about the local power law dependence that
approaches scaling dictated by the asymptotic vales of critical
exponents is exemplified by the Kosterlitz-Thouless (KT)
transition47–49. There the non-polynomial scaling of the healing
length

j~j0 exp a
. ffiffiffiffiffi
j j

p� �
, ð7Þ

where a^1, is captured by stating that the spatial critical exponent
n 5 ‘, see e.g.50. This is a brief and dramatic way to sum up the faster
than polynomial divergence of j, but it may tempt one to misuse Eqs.
(15,16). Thus, formally, one could insert n 5 ‘ relevant for the KT
universality class into Eq. (16) to obtain:

ĵ~j0 tQ=t0ð Þ1=z: ð8Þ

This equation may be (as we shall see below) asymptotically valid, but
is unlikely to have the same range of validity as Eqs. (15,16) regarded
as the consequence of Eq. (1). In particular, for large tQ the exponent

n

1zzn
approaches 1/z, reflected in Eq. (8), only gradually.

To see why, consider the equation for the relaxation time t / jz in
the KT universality class:

tð Þ~t0 exp za
. ffiffiffiffiffi
j j

p� �
ð9Þ

and assume, as before, ~t=tQ. Equations (1) and (9) yield

t0 exp za

� ffiffiffiffiffiffiffiffiffiffi
t̂
�

tQ

q	 

~t̂: ð10Þ

Thus, t̂ is now a solution of a transcendental equation. It can be
obtained as

t̂
�

t0~ tQ=t0ð Þ za=2ð Þ
W za=2ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffi
tQ=t0

p� �
 !2

, ð11Þ

where W is the Lambert function. The above solution is plotted for
different values of za/2 in Fig. 1A,B. This relation has been derived
before and tested by numerical simulations in a 2D classical model in
Ref. 51.

Figure 1C shows that the slope of unity for the dependence of t̂ on

tQ (and, therefore, ĵ on t
1=z
Q ) is attained only for tQ many orders of

magnitude larger than t0 – for exceedingly slow quenches that are
unlikely to be experimentally accessible. For even reasonably slow
quenches the effective power law would be significantly less than 1,
typically as small as ,0.5 for tQ , 10t0, gradually increasing to
0.8…0.9 as tQ/t0 grows to ,1010 or so.

Therefore, in transitions that exhibit KT-like non-polynomial
scalings and result in symmetry breaking, the asymptotic behavior
one might have inferred from the critical exponents sets in only in
the regime that appears to be out of reach of experiments. For
instance, the system would have to be large compared to the
ĵ*1010j0, which means (when we take modest j0 , 10210 m)
that the size of the homogeneous system undergoing the transition
should be large compared to ĵ, say *103ĵ, or, in other words,
kilometers!

A similar difference between the critical limit and the critical
regime, although with less dramatic consequences, arises near the
para-to-ferro transition in the random Ising chain53–55:

H~{
X

l

Jls
z
l sz

lz1{
X

l

hls
x
l , ð12Þ

where Jl and hl are randomly chosen ferromagnetic couplings and
transverse magnetic fields respectively. Here in turn n 5 2 is a solid
number and it is the dynamical exponent that diverges in the critical
regime52:

z~
1

2j j : ð13Þ

The limit ?0, where z R ‘, implies ĵ*t0
Q, i.e., a correlation length

that does not depend on the quench time at all. However, a more
careful analysis of the equation (1), employing the full formula (13)
instead of just its critical limit, leads to a prediction that there is
actually a slow logarithmic dependence on tQ, a conclusion that
was confirmed by simulations in Refs. 53–55.

A similar care proves beneficial for a non-linear quench

tð Þ~ tj j
tQ

	 
r

sign tð Þ ð14Þ

considered e.g. in Ref. 56. Here sign is the sign function and r . 0 is
an exponent. Equation (1) yields

t̂^t0 tQ=t0ð Þ
nz

1znz, ^̂ t0=tQð Þ
r

1znz, ð15Þ

and the characteristic scale of length
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ĵ^j0 tQ=t0ð Þ
rn

1znz: ð16Þ

Again, this simple but careful argument leads to the same conclusion
as the calculations in Ref. 56.

Kibble-Zurek mechanism in the Bose-Hubbard model. We
emphasize that KT scaling is encountered in systems other than
the classic KT transition in two dimensions (in which generation
of vortex pairs occurs via thermal activation as the system is
heated). Thus, while for the sake of definiteness, the discussion
above was in the framework of finite temperature phase
transitions, the universal character of the arguments makes the
conclusions applicable also to quantum phase transitions in the
ground state at zero temperature. The most celebrated example of
the quantum KT universality class with z 5 1 is the 1D Bose-
Hubbard model57:

H~{J
X

l

b{lz1blzb{l blz1

� �
z

1
2

U
X

l

nl nl{1ð Þ, ð17Þ

where bl is a bosonic annihilation operator at site l and nl~b{l bl is an
occupation number operator. At a commensurate filling of 1 particle
per site, the ground state of the model undergoes a K-T quantum
phase transition from a localized Mott phase at J , Jc to a superfluid
phase at J . Jc. The energy gap on the Mott side of the transition is

D~D0 exp {
affiffiffiffiffiffiffiffiffiffiffi

xc{x
p

	 

: ð18Þ

Here x 5 J/U is a dimensionless ratio of the hopping rate J to the
interaction strength U. Using Ref. 58, it is possible to estimate: xc 5

0.26, D0 5 0.2 J, and a 5 0.3.

Any quench from the Mott to the superfluid phase can be linear-
ized near the phase transition

tð Þ~ xc{x
xc

~{t=tQ: ð19Þ

The evolution ceases to be adiabatic at t~{t̂ when the reaction time
D21 of the system equals the time remaining to the transition jtj:

exp
affiffiffiffiffiffi
xc
p
	 


~D0 t̂: ð20Þ

Its solution is

D0

.
D̂~

tQ=t0ð Þ
W

ffiffiffiffiffiffiffiffiffiffiffiffi
tQ=t0

p� �2 , ð21Þ

where the characteristic timescale is

t0~
4xc

a2D0
: ð22Þ

This inverse gap is proportional to the correlation length set at {t̂:

ĵ^j0 D0

.
D̂

� �z
~j0 D0

.
D̂

� �
: ð23Þ

This correlation length is plotted in Figure 2.
To summarize, the equation (7) applies in the critical regime

where =1 and not only in the limit ?0. When the last limit is
taken in, say, the Bose-Hubbard model, then the equation implies a
steep power law ĵ*t1

Q, but a careful application of Eq. (7) in the
whole critical regime shows that the steep power law is reached only
for rather ‘‘astronomical’’ values of tQ and, especially, of ĵ that can

Figure 1 | In the textbook version of the Kibble-Zurek mechanism, the time t̂ when the time evolution ceases to be adiabatic satisfies a power law

t̂!t
nz= 1znzð Þ
Q . In a log-log plot this power law becomes a linear function log10 t̂

�
t0

� �
~

nz
1znz

log10 tQ=t0ð Þzconst, where t0 is a characteristic timescale of

the system. In (A), we plot t̂ for a Kosterlitz-Thouless transition in function of tQ over many decades of the argument. This function may appear linear

locally, i.e., in a range of one or two decades, but it actually becomes linear only for very slow quenches, and, consequently, for ‘‘astronomical’’ values of

the frozen-out domain size ĵ, Eq. (16). Indeed, in (B), we focus on the narrow range of tQ 5 100…2t0 that are small enough for a realistic experiment. These

plots may be reasonably approximated by linear functions. In (C), a local slope dlog10 t̂
�

t0
� ��

dlog10 tQ=t0ð Þ of the log-log plot in panel A in function of

tQ. The slope 1, predicted in the critical limit when formally n R ‘, is achieved but only for tQ in the ‘‘astronomical’’ regime. When we focus on more

realistic tQ, as in panel D, the local slope turns out to be significantly lower than in the critical limit.
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hardly be achieved in a realistic experiment. For more realistic
quench times there is no power law, although in a narrow range of
tQ there may appear to be one but with a much reduced exponent.

Discussion
We have seen that, in some cases, using KZM requires more than just
inserting critical exponents (that are valid only asymptotically close
to the critical point). Rather, to estimate the scale ĵ one must make
sure that the key idea behind KZM - the scaling of the sonic horizon
that results from the critical slowing down - is accurately described by
the critical exponents in the regime probed by the experiment. This
may seem like a straightforward requirement, but, as we have seen,
there are situations where it may not be easy to satisfy.

The example with Kosterlitz-Thouless scaling we have just dis-
cussed may be extreme in that the scaling represented by the
asymptotic values of critical exponents is attained only in the limit
that is – FAPP – unreachable in the laboratory. Nevertheless, the
KZM-like analysis based on the actual dependence of the gap on
enables prediction of the scaling modified to suit the range of the
experimentally implementable quench rates.

Key quantity for such considerations is ,̂ the point where the
behavior of the system changes character, and the corresponding t̂
that defines the sonic horizon. However, even before one evaluates
such subtleties exemplified by the KT transition, it is useful to verify
the KZM prerequisite, i.e., whether transition starts and ends suffi-
ciently far from the critical point to justify appeal to KZM. In experi-
ments that involve emulation of condensed matter systems using e.g.
trapped ions or BEC’s and optical lattices this may be far from
straightforward, as experimental constraints may force relatively
short quench timescales (i.e., modest values of tQ/t0) which means

that ^ may be too large – sonic horizon may be defined too far from
the critical point – to expect near-critical scalings to be relevant.
Similar remark applies to sizes of systems: Unless sonic horizon
*ĵ is small compared to the size of the system, scalings predicted
by homogeneous KZM will not apply (although – given certain addi-
tional assumptions – one may be able to deduce their modified
versions37).

A related and interesting issue is how does KZM fail when the
assumptions are only approximately satisfied or even violated.
Experiments such as59 suggest that this might be a ‘‘soft failure’’,
i.e., some features of KZM (e.g., power law dependences) may still
apply even while detailed predictions (exponents of these power
laws) are unlikely to hold.

There are also indications that even when the requirement of
starting and ending the quench on the outside of the { ,̂z^½ � inter-
val is satisfied only on one side, KZM like scaling may still emerge.
While this is beyond the scope of the original KZM assumptions, it is
clearly worthy of a more detailed investigation.

Indeed, the Bose-Hubbard model is ‘‘gapless’’ on the superfluid
side, so in this sense only the {^ on the Mott insulator side is well
defined. Yet, recent experiment suggests that59 that power laws may
approximate the post-quench state of the system, although (at vari-
ance with KZM) their slopes appear to depend on where the system
starts and ends the quench. Given that the investigated quench times
were short tQ^t0ð Þ, so that quenches likely started and/or ended
inside the { ,̂z^½ � interval, this is no surprise.

One further complication that is worth noting is that the ‘‘ori-
ginal’’ KZM was focused on predicting densities of topologically
protected objects. More recent extensions use it to predict other
properties of the system following continuous phase transitions.

Figure 2 | In (A), a log-log plot of the correlation length ĵ in function of the quench time tQ. In the textbook Kibble-Zurek mechanism there is a power

law ĵ!t
n= 1zznð Þ
Q . In a log-log scale this power law would look like a linear function: log10 ĵ

.
j0

� �
~

n

1zzn
log10 tQ=t0ð Þzconst. Our non-linear log-log

plot can be reasonably approximated by a linear function locally, i.e., over a range of one or two orders of magnitude, but a local slope of this linearized

approximation depends on the order of magnitude of tQ, as shown in panel (B). Fig. B shows the local slope d log10 ĵ
.

j0

� �.
d log10 tQ=t0ð Þ of the log-log

plot in panel A in function of tQ. For tQ R ‘ the slope tends to 1, as predicted in the critical limit, but for any tQ that is reasonable experimentally it is

significantly less than 1. For instance, the slope 0.9 is eventually reached at the ‘‘astronomical’’ tQ^1010t0, but for a reasonable tQ 5 100…2t0 the

slope drops to a mere 0.2…0.5.
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Thus, the size of the sonic horizon has been used to estimate coher-
ence length in the post-transition Bose-Hubbard superfluid. This is,
again, an interesting extension, and there are settings (e.g., quantum
Ising) where the numerical results (e.g., behavior of entanglement
entropy38) has been observed. However, as one moves away from the
stable and well defined topological defects in integrable systems to
less well defined and less stable characteristics (like coherence length
in Bose-Hubbard systems that exhibit more complicated behavior),
KZM may still yield useful ‘‘guidelines’’, but regarding it as prediction
without further justification requires courage.
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