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Simple Summary: Heat stress has seriously threatened the performance and health of dairy cows and
has become one of the most important factors restricting the development of the dairy industry. In
our previous study, we found that heat stress markedly altered the expression patterns of circRNAs in
dairy cow’s mammary gland tissue, and heat-induced circRNAs participated in the regulation of milk
fat metabolism through competing endogenous RNA (ceRNA) networks. Therefore, we evaluated the
roles of heat-induced circEZH2 in the regulation of milk fat metabolism in this study. In more detail,
we found that circEZH2 affects the proliferation, apoptosis, and lipid metabolism of mammary gland
epithelial cells, and successfully verified the targeting relationship of circEZH2-bta-miR378b-LPL and
circEZH2-bta-miR378b-CD36. This experiment expands the basic data on the role of circRNA in milk
fat regulation, and provides a theoretical basis for alleviating heat stress in dairy cows.

Abstract: In this study, we evaluated the roles of heat-induced circEZH2 in the regulation of milk fat
metabolism. CircEZH2 overexpression increased HC11 cell proliferation and decreased apoptosis.
These changes were accompanied by increased expression of proliferation marker proteins (PCNA,
Cyclin D, and Cyclin E) and the anti-apoptotic protein Bcl2, while expression of the pro-apoptotic pro-
teins Bax and cleaved-caspase was reduced. SiRNA-mediated silencing of EZH2 in HC11 cells had the
opposite effects. CircEZH2 overexpression promoted the uptake of a fluorescent fatty acid (Bodipy)
as well as expression of the fatty acid transport-related protein CD36, lipolysis-related protein LPL,
and unsaturated fatty acid metabolism-related proteins FADS1 and SCD1. Dual luciferase reporter
assays verified the targeting relationship of the two ceRNA networks, circEZH2-miR378b-LPL and
circEZH2-miR378b-CD36. This information provides further clarification of the role of circRNAs in
milk fat regulation in addition to a theoretical basis for alleviating the effects of heat stress on milk
production by dairy cows.

Keywords: circEZH2; proliferation; apoptosis; miR378b; fatty acid metabolism

1. Introduction

Milk is a natural and healthy drink, favored for its rich nutritional value, unique flavor,
and outstanding health functions. As one of the major nutrients in milk [1], milk fat not
only affects the flavor and nutritional value of milk, but also participates in the process
of nutrient metabolism that regulates human growth and development [2]. Therefore,
exploration of mechanisms regulating milk fat synthesis and fatty acid composition is
an active area of research [3]. Milk fat metabolism is a complex process regulated by
multiple genes as well as a series of regulatory factors [4]. Although some factors have
been identified using high-throughput sequencing technology, the underlying regulatory
mechanisms remain to be elucidated [5].
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Circular RNAs (circRNAs) are naturally occurring, endogenous non-coding RNA
(ncRNA) with a closed circular structure [6]. Numerous studies have shown that circRNAs
participate in regulating the growth, development, reproduction, and health of livestock,
especially in the process of animal lactation [7]. Many circRNAs that are closely related
to lactation have been found in the mammary gland tissues of humans [8], dairy cows [9],
sheep [10], goats [11], and sows [12]. These studies have shown that circRNAs play im-
portant regulatory roles in the development of animal mammary glands, milk secretion,
and the synthesis of nutrients in milk. However, the function and mechanism of related
circRNAs are still unclear.

In our previous study, we showed that heat stress markedly altered the expression
patterns of circRNAs and revealed that as a competitive endogenous circRNA, circEZH2
(circular Enhancer of zeste 2 polycomb repressive complex 2 subunit) participates in the
regulation of milk fat metabolism [13]. In this study, we hypothesized that the heat induced
circEZH2 plays an important role in the regulation of milk fat metabolism, providing
valuable insights into the mechanisms that control lactation and milk quality.

2. Materials and Methods
2.1. RNA Extraction and Real-Time Quantitative PCR

We extracted the total RNA from the HC11 mouse mammary epithelial cells using
TRIzol reagent (Invitrogen, Carlsbad, CA, USA) according to the manufacturer’s instruc-
tions, and then reverse-transcribed the RNA into cDNA using the PrimeScript RT Reagent
Kit with gDNA Eraser (TaKaRa, Dalian, China). Real-time quantitative PCR (RT-qPCR)
of related genes was carried out using the Bio-Rad CFX 96™ Real-Time Detection Sys-
tem and SYBR Green PCR Master Mix (TaKaRa). The formula for calculating relative
gene expression was calculated using the 2−∆∆Ct method and the primers are shown in
Table S1. In more detail, qPCR data were derived from six biological replicates, and the
gene glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was used as a reference gene for
normalization [9].

2.2. Identification of circRNA

To verify the structural homology of mouse and cow circEZH2, we designed a pair of
divergent primers that crossed the cyclization site and a pair of convergent primers that
did not cross the cyclization site. The authenticity of circEZH2 head and tail splicing was
preliminarily verified by electrophoretic separation and Sanger sequencing of the PCR
products. To further confirm the presence of circEZH2, we treated total RNA with RNase R
enzyme at 37 ◦C for 10 min and analyzed the RNA expression levels of circular RNA and
its linear mRNA by RT-qPCR. The primer sequences used in this experiment are shown in
Table S1.

2.3. Plasmid Construction and Oligonucleotide Synthesis

To construct the circEZH2 overexpression plasmid, the full-length sequence of circEZH2
was amplified by adding BamHI and KpnI restriction enzyme sites and protective bases
at both ends of the primers. The full-length sequence of circEZH2 was inserted into the
pCD2.1-ciR vector (Geneseed, Guangzhou, China) by double enzyme digestion followed
by ligation with T4 DNA Ligase (TaKaRa). Based on shared miRNA regulatory elements,
two pairs of circEZH2-miRNA-mRNA networks were discovered by miRanda (http://
mirtoolsgallery.tech/mirtoolsgallery/node/1055; Accessed date: 5 May 2020): circEZH2-
miR-378b-CD36 and circEZH2-miR-378b-LPL. The pmirGLO plasmid (Promega, Madison,
WI, USA) was used to design the luciferase reporter constructs containing the miR-378b
target sites originating from the 3′-UTR region of lipoprotein lipase (LPL) and CD36 genes,
and circEZH2. The wild-type (LPL-WT, CD36-WT, and circEZH2-WT), mutant (LPL-MUT,
CD36-MUT, and circEZH2-MUT) and deletion (LPL-DEL, CD36-DEL, and circEZH2-DEL)
sequences that contained miR-378b binding sites in LPL, CD36, and circEZH2 were designed
and synthesized (Sangon Biotech, Shanghai, China), and restriction enzymes XbaI and

http://mirtoolsgallery.tech/mirtoolsgallery/node/1055
http://mirtoolsgallery.tech/mirtoolsgallery/node/1055


Animals 2022, 12, 718 3 of 17

XhoI sequences were added at both ends of the sequence. Finally, these sequences were
ligated into the multiple cloning regions in the 3′-UTR of the Renilla luciferase gene. The
primer sequences used in this experiment are shown in Table S1. To further explore the
function of circEZH2, we also designed and synthesized three interference sequences
targeting the circEZH2 junction site, miR-378b mimics (for miRNA overexpression) and
miR-378b inhibitor (for miRNA downexpression) (Genepharma, Suzhou, China) as shown
in Table S1.

2.4. Cell Culture and Transfection

The HC11 mouse mammary epithelial cell line was purchased from the Chinese
Collection of Authenticated Cell Cultures (Beijing, China). After resuscitation, the cells
were cultured in a RPMI-1640 medium (Gibco, Grand Island, NY, USA) supplemented
with 10% fetal bovine serum (FBS) (Gibco) and 10 ng/mL EGF at 37 ◦C under 5% CO2;
the medium was changed every 48 h. Adherent HC11 cells were released from the tissue
culture flask by trypsinization and seeded into a 12-well plate (approximately 1 × 105 cells
per well). After reaching confluence, the medium was replaced with EGF-free HC11
medium and the cells were cultured for a further 2 days before HC11 differentiation was
induced by the addition of 5 µg/mL insulin (Sigma Adlrich, Wisconsin, WI, USA), 100 nM
dexamethasone (Sigma) and 5 µg/mL prolactin (Sigma).

At 75% confluence, the stably adherent cells were transfected with plasmid or miR-
378b mimics using Lipofectamine 2000 transfection reagent (Invitrogen). After 48 h, the
cells were collected for further analysis; three biological replicates were prepared for
each treatment.

2.5. Western Blot Analysis

HC11 cells (mouse mammary gland cells) were lysed, total proteins were extracted
with Radio immunoprecipitation assay (RIPA) reagent (Thermo Scientific, Waltham, MA,
USA) containing protease inhibitors, and the protein concentration was determined using
the Bicinchoninic acid (BCA) protein assay kit (Nanjing Jiancheng Institute of Bioengineer-
ing, Nanjing, China). All extracted proteins were diluted with sodium dodecyl sulfate
(SDS) buffer and boiled at 95 ◦C for 10 min. Equal amounts of proteins were separated
by SDS polyacrylamide gel electrophoresis and transferred to a polyvinylidene fluoride
(PVDF) membrane (Millipore, Bedford, MA, USA). Membranes were then probed with
primary antibodies for the detection of CyclinD, CyclinE, PCNA, Bax, Bcl2, Caspase3, CD36,
FADS1, and SCD1. The membranes were then incubated for 30 min at 37 ◦C with goat
anti-rabbit HRP conjugate antibody (Sangon Biotech, Shanghai, China) and goat anti-mouse
HRP conjugate antibody (Sangon Biotech). Finally, the protein bands were quantified by
densitometry using Image J software V1.8 (National Institutes of Health, Bethesda, MD,
USA). All results were expressed as target protein/internal reference protein.

2.6. Cell Proliferation Analysis

Cell proliferation was determined by Cell Counting Kit-8 (CCK-8) assay (Bioss,
Woburn, MA, USA). Cells were seeded in a 96-well cell culture plate (5 × 103 cells per
well), and transfected for 24 h, 48 h, and 72 h. Subsequently, the cells with CCK-8 reagent
were then incubated for about 2 h. The optical density (OD) in each well was measured at
450 nm using a multifunctional microplate reader (Bio-Rad, Hercules, CA, USA).

2.7. Flow Cytometry Analysis

Two days after transfection, adherent cells were released by digestion with trypsin
in the absence of EDTA (Gibco); the digestion reaction was terminated by the addition
of RPMI-1640 medium containing 10% FBS. The cell suspension was then centrifuged at
2000× g for 5 min at 4 ◦C. The cell pellet was then washed twice with 1 mL ice-cold 1×PBS
(Gibco) and resuspended in RPMI-1640 medium. After counting, Annexin V solution
and propidium iodide staining solution were added to the cell suspension (MultiSciences,
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Hangzhou, China) and incubated for 15 min at 20 ◦C in the dark. The cell samples were then
fixed by incubation overnight with 70% alcohol (Damao, Tianjin, China). After washing the
cell pellets with pre-chilled 5% PBS solution, 0.5 mL PI/RNase Staining buffer (Beyotime,
Shanghai, China) was added to each sample, and the cells were incubated for 30 min at
37 ◦C in the dark. Cell cycle analysis was then performed using a CytoFLEX flow cytometer
(Beckman Coulter, Miami, FL, USA).

2.8. Fluorescent Fatty Acid Uptake Assay

The HC11 cell line was digested and seeded into a 96-well plate (approximately
5 × 103 cells per well). Following stable adherence and culture to 75% confluence, the cells
were transfected with the plasmid and cultured for a further 24 h. Before the assay, the
cells were starved in serum-free medium for 12 h, and then incubated with Bodipy-C12
(Thermo Fisher Scientific, Bedford, MA, USA) for 5 min at 37 ◦C without light. After
quenching the extracellular fluorescence with trypan blue reagent (Gibco), the absorbance
was measured by multifunctional microplate reader and recorded using an inverted flu-
orescence microscope (FSM-Precision, Suzhou, China), and the value was normalized to
CCK8 analysis.

2.9. Double Luciferase Activity Analysis

HeLa cells were seeded into a 96-well plate (approximately 5 × 103 cells per well) and
cultured in Dulbecco’s Modified Eagle Medium (DMEM) high-glucose medium at 37 ◦C
under 5% CO2. Following stable adherence and culture to 75% confluence, the cells were
transfected with the reporter gene plasmid vector and miR-378b mimics and cultured for a
further 48 h. Luciferase activity was then determined by measuring the absorbance using a
multifunctional microplate reader.

2.10. Prediction of Translation Function

We used the IRESfinder software (https://github.com/topics/iresfinder; Accessed
date: 10 October 2020) to predict the internal ribosome entry site (IRES) region of
circEZH2 [14] and searched for IRES sequence activity using the circRNADb database [15].
We then used the ORF_finder software (https://www.ncbi.nlm.nih.gov/orffinder/; Ac-
cessed date: 10 October 2020) to predict the coding region of circEZH2, with an ORF
sequence of at least 300 bp in length (allowed to span one back-splice joint) [16].

2.11. Statistical Analysis

All statistical analysis was performed using SPSS 20.0 software (SPSS Inc., Chicago,
IL, USA) and graphs were generated using GraphPad Prism 5.0 software (GraphPad
Software Inc., San Diego, CA, USA). Data were expressed as mean and standard deviation
(mean ± SD). The differences between treatment groups were analyzed using independent
t-tests and p < 0.05 were set as the thresholds for statistical significance.

3. Results
3.1. Homology of Mouse CircEZH2 with Bovine Sequences

The mouse circEZH2 sequence was shown to consist of 899 bases encoded by 2–8 exons
(Figure 1A). We used cDNA and gDNA isolated from mouse mammary epithelial HC11
cells as templates for amplification of circEZH2 with convergent primers, while successful
amplification using cDNA as a template was achieved only using the divergent primers
(Figure 1B,C). The circEZH2 circularization site was confirmed by Sanger sequencing
(Figure 1D) and found to be similar to the homologous bovine sequence. Generally, circRNA
is more resistant to external stimuli due to its ring structure. Linear RNA molecules are
susceptible to exonuclease R digestion, while circRNA is resistant. Therefore, RNase R was
used to identify the circRNA candidates [17]. Agarose gel electrophoresis and RT-qPCR
analysis revealed that there was no significant difference in circEZH2 expression different
between the RNase R-treated and mock groups, while the expression of linear parental

https://github.com/topics/iresfinder
https://www.ncbi.nlm.nih.gov/orffinder/
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genes decreased significantly in the treated group (Figure 1E,F), further confirming the
successful cyclization of circEZH2.
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Figure 1. Validation of mouse circEZH2. (A) Schematic diagram of circEZH2. (B) Schematic diagram
of divergent primer and convergent primer design. (C) Identification of circEZH2 by divergent
primers and convergent primers. Divergent primers amplify circEZH2 in cDNA but not genomic
DNA (gDNA). (D) Sanger sequencing results using divergent primer pairs. (E) RNase R enzyme
digestion electrophoresis. (F) qRT-PCR analysis of RNA expression. Data represent means± standard
deviation, *, p < 0.05; **, p < 0.01.

3.2. Construction of the CircEZH2 Overexpression Vector and Interference Sequences

To explore the function of circEZH2, we used specific primers to synthesize the full-
length sequence of circEZH2 (Figure 2A) and ligated it into the pCD2.1-ciR vector, which
also contains the green fluorescent protein (GFP) expression sequence. Successful construc-
tion of the circEZH2 overexpression plasmid (OE-circEZH2) was verified by restriction
enzyme digestion (Figure 2B) and Sanger sequencing (Additional File S1). Effective trans-
fection of HC11 cells with the empty vector and OE-circEZH2 plasmid was confirmed by
detection of GFP protein expression by fluorescence microscopy (Figure 2C). Subsequently,
RT-qPCR analysis showed that circEZH2 expression increased significantly in transfected
HC11 cells (Figure 2D). In contrast, RT-qPCR analysis showed significant reduction in the
expression of circEZH2 in HC11 cells following transfection with the three short interfering
RNA (siRNA) sequences compared with the levels detected in cells transfected with the
negative control (NC) (Figure 2E). Of these, circEZH2-siRNA1 (si-circEZH2) exhibited the
highest interference efficiency and was used in subsequent experiments.
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Figure 2. Construction of circEZH2 overexpression vector and interference sequence. (A) Agarose
electrophoresis of full-length circEZH2. (B) Agarose electrophoresis following double enzyme
digestion of circEZH2 overexpression vector and empty vector. (C) The GFP protein expression
tested by fluorescence microscopy. (D) qRT-PCR analysis of the expression efficiency of the circEZH2
overexpression vector. (E) qRT-PCR analysis of the efficiency of the interference sequences. Data
represent means ± standard deviation, **, p < 0.01.

3.3. CircEZH2 Affects HC11 Cell Proliferation and Apoptosis

CCK8 assays were used to assess HC11 cell proliferation at 24 h, 48 h, and 72 h
after transfection with the OE-circEZH2 plasmid or empty vector. The OD value of the
OE-circEZH2 group was significantly higher than that of the empty plasmid group at
each time-point, implying that the cell proliferation efficiency was significantly improved
(Figure 3A). Flow cytometric analysis also showed that the proportion of cells in the G0/G1
phase was significantly reduced in the OE-circEZH2 group, while the proportion of cells in
the S phase and G2/M phase was significantly increased (Figure 3B,C). Overexpression
of circEZH2 in HC11 cells promoted the expression of the proliferation marker proteins
PCNA, CyclinD, CyclinE, and the anti-apoptotic protein Bcl2, while expression of the
pro-apoptotic proteins Bax and Cleaved-caspase 3 was inhibited (Figure 3D,E).
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Figure 3. CircEZH2 overexpression vector affects cell proliferation and apoptosis. (A) CCK8 analysis
of HC11 cell proliferation. (B) Flow cytometric analysis of cell cycle distribution. (C) Quantitative
analysis of cell cycle distribution. (D) Western blot analysis of the expression of proliferation- and
apoptosis-related proteins. (E) Quantitative analysis of the expression of proliferation- and apoptosis-
related proteins. Data represent means ± standard deviation, *, p < 0.05; **, p < 0.01.

The opposite results were obtained after transfecting HC11 cells with NC and si-
circEZH2. CCK8 assays were used to assess HC11 cell proliferation at 24 h, 48 h, and 72 h
after transfection with si-circEZH2 or NC. The OD value of the si-circEZH2 group was
significantly lower than that in the NC group at each time-point (Figure 4A). Furthermore,
flow cytometric cell cycle analysis revealed an increased proportion of cells in G0/G1
phase in the si-circEZH2 group, while the proportion of cells in the S phase and G2/M
phase was reduced compared with the NC group (Figure 4B,C). Western blot and qRT-
PCR analyses confirmed siRNA-mediated silencing of circEZH2 resulted in significantly
increased expression of Bax and Cleaved-caspase 3, while the expression of PCNA, CyclinD,
CyclinE, and Bcl2 was inhibited (Figure 4D,E).
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Figure 4. Silencing of circEZH2 expression affects cell proliferation and apoptosis. (A) CCK8 analysis
of HC11 cell proliferation. (B) Flow cytometric analysis of cell cycle distribution (C) Quantitative
analysis of cell cycle distribution. (D) Western blot analysis of the expression of proliferation- and
apoptosis-related proteins. (E) Quantitative analysis of the expression of proliferation- and apoptosis-
related proteins. Data represent means ± standard deviation, *, p < 0.05; **, p < 0.01.

3.4. CircEZH2 Affects Cell Lipid Metabolism

In our previous study, we showed that heat stress reduced the total amount of oleic
acid and unsaturated fatty acids in milk produced by dairy cows, and provided evidence
that implicated circEZH2 in milk fat metabolism [13]. Therefore, in the current study,
we further explored the role of circEZH2 in milk fat metabolism. Bodipy-C12, which
is a red fluorescent derivative of lauric acid, is widely used in the study of fatty acid
uptake [18], transport [19], and metabolism [20] in cells. The fluorescence intensity of HC11
cells transfected with OE-circEZH2 was significantly higher than that of the NC group
(Figure 5A,B), indicating that circEZH2 overexpression significantly improved the fatty acid
uptake capacity of these cells. Western blot and qRT-PCR analyses showed that circEZH2
overexpression significantly promoted the expression of fatty acid metabolism-related
proteins (CD36, FADS1, LPL and SCD1) in HC11 cells (Figure 5C,D). The opposite results
were obtained following siRNA-mediated silencing of circEZH2. In fluorescent fatty acid
uptake assays, the red fluorescence of the si-circRNA group was significantly decreased
compared with that in the NC group (Figure 5E,F). Western blot and qRT-PCR analyses
confirmed that the expression of fatty acid metabolism-related proteins (CD36, FADS1, LPL
and SCD1) was also inhibited (Figure 5G,H).
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(C,G) Western blot analysis of lipid metabolism-related protein expression. (D,H) Quantitative
analysis of lipid metabolism-related protein expression. Data represent means ± standard deviation;
**, p < 0.01.

3.5. CircEZH2 Relieves the Negative Effects of Heat Stress

At ambient temperatures, the expression of heat stress proteins in the cell is very low.
However, when cells are subjected to heat stress, the concentration of heat stress proteins
(especially HSP70) increases rapidly [21]. After exposure of HC11 cells C to 42 ◦C for 6 h,
RT-qPCR analysis showed that HSP70 expression increased significantly in responded to
heat stress (Figure 6A). Using this model, we found that circEZH2 expression also decreased
significantly in HC11 cells exposed to heat stress (Figure 6B), which was consistent with
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our previous observations in vivo [13]. Furthermore, Western blot and qRT-PCR analyses
showed that heat stress resulted in decreased expression of PCNA, CyclinD, CyclinE, and
Bcl2, while the expression of Bax and Cleaved-caspase increased (Figure 6C,D). Similarly,
heat stress also reduced the expression of CD36, FADS1, LPL, and SCD1 proteins in
HC11 cells (Figure 6E,F). However, circEZH2 overexpression increased the expression
of PCNA, CyclinD, CyclinE, and Bcl2 proteins in HC11 cells under heat stress, while the
expression of Bax and Cleaved-caspase 3 was inhibited (Figure 6C,D). In addition, circEZH2
overexpression increased the expression of CD36, FADS1, LPL, and SCD1 proteins in HC11
under heat stress, indicating that it effectively alleviates the adverse effects of heat stress
on cell lipid metabolism (Figure 6E,F). These findings indicate that circEZH2 restores
the proliferation ability and inhibits apoptosis of HC11 cells under heat stress as well as
alleviating the adverse effects of heat stress on lipid metabolism.
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Figure 6. CircEZH2 relieves the negative effects of heat stress. (A) qRT-PCR analysis of HSP70 ex-
pression. (B) qRT-PCR analysis of circEZH2 expression. (C,D) Western blot analysis of the expression
of proliferation- and apoptosis-related proteins under hear stress. (E,F) Western blot analysis of the
expression of lipid metabolism-related proteins under heat stress. Data represent means ± standard
deviation, *, p < 0.05; **, p < 0.01.
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3.6. Analysis of the CircEZH2 Competitive Regulatory Network

Many studies have demonstrated that circRNAs function as miRNA sponges and
play an important role in regulating mRNA expression [22]. Based on shared miRNA
regulatory elements, two pairs of circEZH2-miRNA-mRNA networks were discovered:
circEZH2-miR-378b-CD36 and circEZH2-miR-378b-LPL (Figure 7A). We then designed and
synthesized miR-378b mimics and inhibitors and used RT-qPCR to confirm the efficiency
of HC11 cell transfection (Figure 7B). Compared with the NC group, the expression of
LPL and CD36 proteins decreased significantly after miR-378b mimics transfection. In
contrast, the expression of LPL and CD36 proteins increased significantly after treatment
with miR-378b inhibitor (Figure 7C,D). Co-transfection of miR-378b mimics and circEZH2
revealed that circEZH2 effectively alleviated the inhibitory effect of miR-378b mimics on
LPL and CD36 expression (Figure 7E,F), thus confirming the existence of a connection
between the competitive regulatory networks.
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Figure 7. Prediction of circEZH2 competitive regulatory network. (A) Schematic diagram of tar-
get relationship prediction. (B) qRT-PCR analysis of the efficiency of miR-378b mimics and in-
hibitor. (C,D) Western blot analysis of the changes in LPL and CD36 protein expression following
co-transfection with miR-378b and circEZH2. (E,F) Western blot analysis of the changes in LPL and
CD36 protein expression following co-transfection with or miR-378b and circEZH2. Data represent
means ± standard deviation, *, p < 0.05; **, p < 0.01.
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3.7. Verification of Target Relationship and Prediction of Translation Ability

We further confirmed the direct target relationships with dual luciferase reporter as-
says. We designed and synthesized wild-type, mutant, and deleted sequences for circEZH2,
LPL, and CD36 that are complementary to the miR-378b sequence and ligated these se-
quences into the pmirGLO vector. Co-transfection of HeLa cells with the miR-378b mimics
and the constructed plasmids showed that miR-378b overexpression significantly reduced
the luciferase activity in the circEZH2-WT group, but had no significant effect on the
luciferase activity in the circEZH2-DEL and circEZH2-MUT groups (Figure 8A). Using
this system, we showed that miR-378b overexpression had similar effects on the luciferase
activity of the cells with constructs expressing CD36 (Figure 8B) and LPL (Figure 8C). These
results indicated that miR-378b directly regulated circEZH2, LPL and CD36 expression,
and confirmed the authenticity of circEZH2-miR-378b-LPL and circEZH2-miR-378b-CD36
ceRNA networks.
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These results indicated that circEZH2 directly regulates LPL and CD36 expression
via ceRNA networks, although the mechanism underlying the effects on cell proliferation,
apoptosis, and unsaturated fatty acid metabolism (FADS1 and SCD1) are still unclear. It
has been reported that circRNAs have many potential functions, including alternative
splicing of mRNA [23], and interactions with RNA-binding proteins (RBPs) to act as a
protein sponge [24]. In recent years, the functions of circRNA-encoded proteins have
become a research hotspot [25]. In general, circRNAs lack a 5′-cap and canonical ORF
(ORF > 100 amino acids) due to their unique loop structure. Consequently, circRNAs were
always thought to be devoid of protein coding ability [26]. However, recent studies have
shown that some circRNAs have translation functions and can directly recruit ribosomes to
initiate translation through the internal ribosome entry site (IRES) [27]. Here, we identified
two IRES fragments on the candidate circEZH2 sequence using the IRESfinder (https:
//github.com/topics/iresfinder; Accessed date: 10 October 2020). Through ORF finder
software (https://www.ncbi.nlm.nih.gov/orffinder/; Accessed date: 10 October 2020)
analysis, we found that circEZH2 has an initiation codon and terminator near the splicing
site, which can form an ORF (Figure 8D). The target sequence may have coding ability and
encode a 290 amino acid circEZH2 polypeptide (Figure 8E).

4. Discussion

With the intensification of the global greenhouse effect, heat stress has seriously
threatened the performance and health of dairy cows. To date, some studies have indicated
that the negative effects of heat stress can be alleviated through physical prevention [28]
and nutritional regulation [29]. However, the molecular mechanism of cow lactation has not
been fully elucidated. Mammary gland development and activation of lactation are not only
regulated by hormones, growth factors, and nutrient supply [30], but also closely related
to the genetic changes in the mammals [31]. In recent years, with the rapid development
of bioinformatics, it has been discovered that a new type of non-coding RNAs (circRNAs)
exists in large amounts in mammary gland tissue [10]. Heat stress has been shown to affect
the lactation performance of animals and change the expression of circRNAs in mammary
gland tissue [32]. Therefore, it is speculated that circRNAs may be involved in the process
of lactation regulation [33].

Numerous circRNAs have been identified in the mammary gland tissue of dairy cows,
and changes in expression have been detected during the period of lactation period [9].
Among these, circCSN1S1 expression is positively correlated with milk production and
regulates casein secretion through its interaction with miR-2284 [34]. High-throughput
sequencing of dairy cow mammary gland tissues in the early and peak periods of lactation
revealed that a variety of circRNAs are related to milk fat metabolism and significantly
increase the transcription of milk fat synthesis-related genes [35]. For example, circ09863
binds to miR-27a-3p to accelerate triglyceride (TG) accumulation and increase the propor-
tion of unsaturated fatty acids in milk [36]. Although circRNAs have been shown to play a
role in lactation, the underlying mechanism is not yet clear. Therefore, in this study, we
investigated the changes in the expression of circEZH2 in mammary cells under heat stress
further elucidate its role in the mechanism by which milk fats are regulated.

It has been reported that the lactation ability of mammals correlates positively with
the number and viability of mammary epithelial cells [37]. Heat stress can destroy the
structure of proteins [38], damage the function of cell mitochondria, inhibit proliferation
and promote apoptosis of bovine mammary epithelial cells [39]. Therefore, the decrease
in milk production and milk quality of dairy cows in summer is probably caused by the
inhibitory effects of heat stress on the proliferation of mammary cells and the induction of
apoptosis, which, in turn, reduces the number and viability of mammary epithelial cells.
In this study, we found that heat stress caused a significant decrease in the expression
of cell proliferation-related proteins (PCNA, CyclinD, and CyclinE) and anti-apoptotic
protein (Bcl2) in HC11 cells, while the expression of apoptosis-related proteins (Bax and
Cleaved-caspase) was significantly increased. These findings are consistent with those

https://github.com/topics/iresfinder
https://github.com/topics/iresfinder
https://www.ncbi.nlm.nih.gov/orffinder/
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of previous studies, and further confirm that high temperature causes serious damage to
mammary gland epithelial cells [40]. In this study, we showed that circEZH2 overexpression
significantly promoted cell proliferation and inhibited apoptosis, which greatly alleviated
the adverse effects of heat stress in HC11 cells.

Generally, the metabolism of fatty acids in mammary gland involves a complex
network of reactions, including a series of processes, such as de novo synthesis of fatty
acids, uptake and transport of fatty acids, formation of triglycerides, and formation and
secretion of lipid droplets, with numerous enzymes playing extremely important roles [41].
In our previous study, we found that heat stress significantly reduced the expression of
LPL, CD36, SCD1, and FADS1 in the mammary glands of dairy cows [13]. As a key enzyme
involved in lipid metabolism, LPL hydrolyzes serum triglycerides into glycerol and free
fatty acids, which are a key factor in the intake of exogenous fatty acids [42]. CD36 also
plays an important role in the process of fatty acid transport. It not only promotes the
transmembrane transport of fatty acids, but also regulates the rate of fatty acid uptake by
cells [43]. In our previous analysis of milk components, we found that milk fat levels are
significantly reduced under heat stress. We speculate that the reduction in the expression
of LPL and CD36 caused by heat stress leads to a decrease in fatty acid intake. The fatty
acid desaturases SCD1 and the fatty acid deoxygenase FADS1 have a marked influence
on the synthesis of unsaturated fatty acids [44,45]. This was confirmed in our previous
study of the fatty acid profile of milk. Heat stress causing a decrease in the expression of
SCD1 and FADS1, reduced the content of decorating enzymes in the mammary gland, and
significantly reduced the content of unsaturated fatty acids in milk [13]. These results were
also verified in our cell studies, with heat stress found to significantly reduce the expression
of LPL, CD36, SCD1, and FADS1 proteins. Furthermore, through circEZH2 overexpression
and siRNA-mediated silencing, we showed that circEZH2 was positively correlated with
the expression of CD36, FADS1, LPL, and SCD1. CircEZH2 overexpression also effectively
alleviated the adverse effects of heat stress on fat metabolism, which successfully verified
the important role of circEZH2 in lipid metabolism.

To date, most studies have shown that circRNAs can function as competitive endoge-
nous RNAs (ceRNAs) by combining with miRNAs to perform their biological functions [46].
Therefore, to explore the mechanism underlying the role of circEZH2 in milk fat metabolism,
we analyzed the targeting relationship between circEZH2-miRNA and miRNA-mRNA.
We found that the 3′-UTR of LPL and CD36 genes, and the base sequence of circEZH2,
contained fragments that are complementary to the seed sequence of miR-378b, and pre-
dicted that these might play a novel role in endogenous competitive regulation. It has
been reported that miR-378b plays a key role in the regulation of lipid metabolism in
rat liver [47]. It has been reported that miR-378 can affect lipogenesis by promoting the
expression of fatty acid metabolism-related genes such as FAS and SCD1, thereby increasing
triglyceride production and the size of lipid droplets [48]. In contrast, it has also been
speculated that miR-378 promotes lipolysis because its role in lipid metabolism is highly
related to catecholamines [49]. This study also showed that miR-378b plays a unique role in
lipid metabolism, possibly by regulating the uptake of fatty acids via the ceRNA network.
In this study, we successfully verified the target relationship between the two ceRNA
networks circEZH2-miR378b-LPL and circEZH2-miR378b-CD36 through using the dual
luciferase reporter system. The regulation of these two pairs of ceRNA networks may play
an important role in the milk fat metabolism under heat stress.

In general, circRNAs are enriched in miRNA-binding sites that play function as miRNA
sponges [50]. However, in this study, we did not predict the miRNA that interacts with
ceRNA to explain the effect of circEHZ2 on cell proliferation and apoptosis and unsaturated
fatty acid metabolism in HC11 cells. It is speculated that circEZH2 may perform these
roles through other functions, such as encoding polypeptides or proteins [51]. Therefore,
we used bioinformatics software to predict putative peptides encoded by circEZH2. This
analysis indicated that circEZH2 encodes a 298 amino acid polypeptide, which may initiate
translation through the IRES site; however, the specific mechanism requires further research.
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5. Conclusions

We found that HC11 cell proliferation is inhibited, and apoptosis is promoted following
exposure to heat stress. Lipoprotein hydrolysis, fatty acid uptake, and unsaturated fatty
acid production were also significantly reduced. Thus, we conclude that the heat stress-
related circEZH2 effectively alleviates the adverse effects of heat stress in HC11 cells
through two ceRNA competitive regulatory networks (circEZH2-miR378b-CD36, circEZH2-
miR378b-LPL) to restore cell proliferation, apoptosis, and lipid metabolism.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/ani12060718/s1. Additional File S1: (A) Schematic diagram of
the construction of the circEZH2 overexpression plasmid. (B) Sanger sequencing result after KpnI
restriction site. (C) Sanger sequencing result after BamHI restriction site. Table S1: Primers for
Real-time PCR and RT-PCR.
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circRNAs circular RNAs
ceRNA competing endogenous RNAs
EZH2 Enhancer of zeste 2 polycomb repressive complex 2 subunit
LPL Lipoprotein lipase
PCNA Proliferating cell nuclear antigen
siRNA Small interfering RNA
FADS1 Fatty acid desaturase 1
SCD1 Stearoyl-Coenzyme A desaturase 1
ncRNA non-coding RNA
RT-qPCR Real-time quantitative PCR
UTR Untranslated regions
EGF Epidermal growth factor
SDS Sodium dodecyl sulfate
PVDF Polyvinylidene fluoride
CCK-8 Cell Counting Kit-8
EDTA Ethylenediamine tetraacetic acid
FBS Fetal bovine serum
PBS Phosphate balanced normal saline
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DMEM Dulbecco’s modified eagle medium
IRES Internal ribosome entry site
ORF Open reading frame
gDNA genomic DNA
GFP Green fluorescent protein
HSP70 Heat shock protein 70
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