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Abstract: Mesenchymal stem cells (MSCs) are one of the most promising cell populations for tissue 
engineering and regenerative medicine. Of utmost importance to MSC research is identification of 
MSC sources that are easily obtainable and stable. Several studies have shown that MSCs can be 
isolated from amniotic fluid. The sheep is one of the main types of farm animal, and it has many 
biophysical and biochemical similarities to humans. Here, we obtained MSCs from ovine amniotic 
fluid and determined the expansion capacity, surface and intracellular marker expression, karyotype, 
and multilineage differentiation ability of these ovine amniotic fluid mesenchymal stem cells (oAF-
MSCs). Moreover, expression levels of differentiation markers were measured using reverse 
transcription-qPCR (RT-qPCR). Our phenotypic analysis shows that the isolated oAF-MSCs are 
indeed MSCs.
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Introduction

Mesenchymal stem cells (MSCs) are non-hematopoi-
etic stromal cells that can be isolated from various tissues 
including the bone marrow, cartilage, synovium, adipose 
tissue, placenta, umbilical blood, and vasculature [31, 
32]. MSCs are self-renewing, multipotent progenitor 
cells, that can differentiate into multiple cell types in-
cluding osteogenic, chondrogenic, adipogenic, and myo-
genic cells [16, 20, 21, 48]. They are considered to be 
one of the most promising cell sources for therapeutic 
drugs and tissue engineering. advantages of their use 
include safety, convenient collection procedure, reduced 
rejection potential, and transplantation with less risk and 
attrition in the donor [3, 36, 44]. MSCs isolated from 

fetal tissues may be more plastic and stable and offer an 
available alternative to their recipient [27].

Isolation of MSCs from amniotic fluid has been re-
ported for a number of mammals including human, buf-
falo, and horse [5, 10, 11, 14, 19, 24]. Amniotic fluid–
derived stem (aFS) cells isolated during pregnancy for 
prenatal genetic tests are an efficient source of cells with 
therapeutic potential [10]. aFS cells are widely multi-
potent, express some pluripotency markers, and can be 
differentiated within the tissues of the three germ layers 
[8]. Their properties, such as low immunogenicity, the 
inability to form tumors, easy accessibility, and the ab-
sence of ethical problems associated with their use, make 
them ideal candidates for regenerative medicine [4, 29].

The sheep is one of the main types of farm animal and 
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has many biophysical and biochemical similarities to 
humans. of its many unique features, its size, character, 
and similarities to humans make it a reasonable tool for 
preclinical evaluation and optimization of extensive 
biotechnological developments [18, 35]. The sheep is 
also a reliable animal model for chondrogenesis research 
both in vivo [46] and in vitro [47]. Moreover, large ani-
mals form an optimal preclinical model in which to study 
various diseases, such as bone disease. in this context, 
amniotic fluid-derived mesenchymal stem cells from 
sheep (oaFMSCs) used in allotransplantation of injured 
achilles tendon led to matrix organization and tissue 
regeneration [6, 7].

isolation and characterization of oaF-MSCs has pre-
viously been reported [26]. Shaw et al. also found that 
oaF-MSCs could differentiate into osteogenic and ad-
ipogenic cells in 2011. The cells they identified were 
nucleofected with a GFP reporter gene in a transient and 
stable prolonged manner and maintain the features of 
pluripotent stem cells [38]. Furthermore, oaF-MSCs 
have been used in tissue renovation such as the repair of 
diaphragmatic tendon [42] and prenatal tracheal recon-
struction [17].

our lab concentrate on transgenic breeding of sheep 
and goats [41, 45]. as the majority of attempts to estab-
lish ESC lines from large animals, especially ungulate 
mammals, have failed, we tried to use more suitable cells 
as the donor of nuclei, such as the oaF-MSCs we just 
isolated. We also successfully reprogrammed sheep fi-
broblasts into pluripotent cells under drug-inducible 
expression of mouse-derived defined factors in 2011 
[23]. But the efficiency was low. Li et al. generated in-
duced pluripotent stem cells from human amniotic fluid 
cells by reprogramming with two factors under feeder-
free conditions [33]. We attempted to increase the induc-
ing efficiency by looking for a more suitable cell type.

Here, we isolated MSCs from ovine amniotic fluid and 
systematically characterized their multilineage differen-
tiation ability, especially the variation tendency of dif-
ferentiation marker gene expression. The oaF-MSCs 
were expanded until the 3rd passage and then frozen. 
Subsequently, we measured the proliferation capacity of 
all samples at the 5th and 20th passage, and examined 
the karyotype of 20th passage cells, and we found that 
the chromosome number remained normal. after thaw-
ing, passage 3 cells were expanded by two more pas-
sages, and we then analyzed the expression of cell sur-
face and intracellular markers and potential to 

differentiate into osteoblasts, chondrocytes, and adipo-
cytes. Expression levels of differentiation markers were 
measured using quantitative reverse transcription PCR 
(RT-qPCR).

Materials and Methods

Animals
Pregnant sheep were obtained from the Experimental 

animal Center at inner Mongolia university, hohhot, 
China. all studies were performed with the approval of 
the Experimental animal Committee of inner Mongolia 
university.

Isolation and cultivation of oAF-MSCs
Cells were selected solely on the ability to adhere to 

plastic. isolated cells attached to plastic culture dishes 
more readily (Fig. 1). Under anesthesia, amniotic fluid 
samples were obtained by cesarean section from preg-
nant sheep at the full-term stage of gestation. Samples 
were centrifuged at 230 × g for 5 min. Cells were then 
resuspended at a density of 5 × 104/ml in MSC-specific 
medium containing DMEM-F12 (hyClone; Thermo 
Scientific, Beijing, China), 10% FBS (Gibco, Carlsbad), 
1% GlutaMAX (Gibco), 1 µM dexamethasone (DSMS; 
Solarbio, Beijing, China), 2 ng/ml fibroblast growth 

Fig. 1. Karyotype analysis of aF-MSCs obtained from the ovine 
fetus. (a) Primary cultured cells of the sample. (B) Mor-
phology of oaF-MSCs at passage 5. (C) Morphology of 
oaF-MSCs after culture in vitro for 20 passages. (D) 
Karyotype analysis of passage 20 diploid cells. The normal 
chromosome complement of 54 pairs was detected.
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factor-basic (bFGF; PeproTech inc., Rocky hill, nJ, 
uSa), 10 ng/ml epidermal growth factor (EGF, Sigma, 
St. Louis, MO, USA), and 1% penicillin-streptomycin 
and plated in 9 cm diameter dishes in a humidified at-
mosphere with 5% CO2 at 37°C. The culture medium 
was replaced every 3 days. once adherent cells reached 
80–90% confluency, they were harvested using 0.25% 
trypsin/1 mM EDTa solution (Sigma) and subcultured 
at a ratio of 1:2. Third-passage cells were frozen for 
testing.

Karyotype analysis
Passage 20 oAF-MSCs (at 80% confluency) were used 

for karyotype analysis. Cells were treated with 0.1 mg/
ml colchicine and incubated in a humidified atmosphere 
with 5% CO2 at 37°C for 3.5 h. Cells were harvested 
using 0.25% trypsin/1 mM EDTA solution, centrifuged 
at 230 × g for 5 min, mixed with 8 ml 0.075 M KCl, and 
incubated at 37°C for 30 min. Next, cells were fixed in 
methyl alcohol/ethanoic acid (3:1) for 30 min incuba-
tions and then resuspended in 1 ml methyl alcohol/etha-
noic acid (3:1). Chromosome karyotypes were deter-
mined by dropping the cell suspension onto prechilled 
glass slides [15].

Immunofluorescence staining of surface markers and 
intracellular marker

Passage 5 oAF-MSCs (at 60–80% confluency) cul-
tured on coverslips in 6-well culture plates, were washed 
with PBS. After fixation for 30 min at room temperature 
in 2% paraformaldehyde/PBS (pH 7.4, Sigma) fixing 
solution, only the intracellular marker group needed 
permeation with 1% Triton for 25–30 min. Cells were 
blocked with blocking solution (1% BSA in PBS) for 1 
h at room temperature and then incubated overnight with 
primary antibodies at 4°C. The primary antibodies in-
cluded anti-mouse CD29, CD13, CD44, CD45, CD90, 
CD106, and oCT4 (Boster Biological Technology, Wu-
han, China), and all were diluted with PBS at 1:100. 
Coverslips for negative controls were incubated with 
PBS. after washing with PBS, all coverslips were treat-
ed with sheep anti-rabbit igG secondary antibody (Boster 
Biological Technology) for 2 h, and then the slides (in-
cluding negative controls) were counterstained with 
4’,6-diamidino-2-phenylindole (DaPi; SouthernBiotech, 
Birmingham, aL, uSa) for 30 min.

Cell proliferation assay for oAF-MSCs
To determine the growth characteristics of oaF-MSCs, 

passage 5 and 20 cells were seeded at a density of 2,000 
cells/ml in 96-well plates and cultured in MSC-specific 
medium for up to 7 days. next, 10 µl CCK-8 (Cell 
Counting Kit-8, Beyotime Biotechnology, China) was 
added into each well per day and incubated at 37°C for 
4 h. Light absorption values were determined at wave-
lengths of 450 and 650 nm using a Thermo Scientific 
Varioskan Flash.

Differentiation procedures
To examine the differentiation capabilities of oaF-

MSCs, they were subjected to specific induction proto-
cols. an equal number of cells were maintained in expan-
sion medium as the negative control. all cells were 
cultured for up to 21 days with medium changes every 
3–4 days.

Osteogenic induction
The ability of oaF-MSCs to differentiate into osteo-

blasts was demonstrated using silver nitrate (agno3). 
Briefly, oAF-MSCs were seeded at a density of 2,000 
cells/ml. after 24 h, expansion medium was replaced 
with osteogenic differentiation medium composed of 
Iscove’s modified DMEM (IMDM; HyClone; Thermo 
Scientific, Beijing, China), 10% FBS (HyClone; Thermo 
Scientific, Beijing, China), 1% GlutaMAX, 0.1 µM 
DSMS, 10 mM β-glycerophosphate disodium salt hy-
drate (Sigma), and 0.05 mM vitamin C (Sigma). on day 
21, osteogenic cultures were fixed with 4% paraformal-
dehyde/PBS for 40 min, and treated with 20 ng/ml 
agno3 for 30 min. after washing with PBS, cultures 
were placed under uV light for 2 h, stained with hema-
toxylin (Sigma) for 10 min, and then washed with PBS. 
Following removal of 1% hydrochloric acid/alcohol, 
0.25% ammonia spirit (Yongda, Tianjin, China) was 
added until cultures turned blue.

Chondrogenic induction
oaF-MSCs were seeded at a density of 2,000 cells/

ml, and after 24 h, expansion medium was replaced with 
differentiation chondrogenic medium composed of 
IMDM, 10% FBS, 1% GlutaMAX, 0.1 µM DSMS, 50 
µg/ml vitamin C, and 10 ng/ml transforming growth 
factor beta (TGF-β; PeproTech, Rocky Hill, NJ, USA). 
on day 21, chondrogenic cultures were washed with PBS 
and fixed with 10% formaldehyde for 45 min. Cultures 
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were then washed with pure water twice and treated with 
Alcian Blue 8GX (Aladdin, Shanghai, China) for 30 min.

Adipogenic induction
The ability of oaF-MSCs to differentiate into adipo-

blasts was demonstrated using oil red o (Ziyi Reagent 
Factory, Shanghai, China). Cultures were treated with 
adipogenic induction medium composed of IMDM, 10% 
FBS, 1% GlutaMAX, 0.1 µM DSMS, 0.5 mM 3-isobutyl-
1-methylxanthine (Sigma), 5 µg/ml insulin (Sigma), and 
60 µM indomethacin (Sigma).

Total RNA isolation and RT-qPCR
The potential of oaF-MSCs to differentiate into os-

teoblasts, chondrocytes, and adipocytes was determined 
by RT-qPCR analysis of expression levels of differen-
tiation markers (Table 1). The marker genes have been 
reported previously [19]. RT-qPCR primers were syn-
thesized by Takara Bio, Shiga, Japan (Table 1). Total 
Rna was extracted from fully digested cells using 
TRizol (invitrogen Life Technologies, Carlsbad, Ca, 
uSa), according to the manufacturer’s instructions. To 
eliminate potential genomic Dna interference, Rna 
samples were treated with 15 u of Dnase i (Rnase-free; 
Takara Bio, Shiga, Japan). First-strand cDna synthesis 
was performed on both differentiated and control oaF-
MSC cultures using a PrimeScriptTM RT Master Mix kit 
(Takara Bio). RT-qPCR was performed using SYBR® 
Premix Ex Taq™ ii (Takara Bio) and an analytik Jena 
qTower 2.0. Relative gene expression levels were nor-
malized to GAPDH and calculated using the 2−ΔΔCt 
method.

Image analysis
Light and epifluorescence microscopy were performed 

using a Leica DMi3000 B microscope (Leica, heer-

brugg, Switzerland) with appropriate filters. Images were 
captured using Leica application Suite V4. Growth curve 
images were created using origin 8.6 (http://www.origin-
lab.com/)

Statistical analysis
Statistical analysis was performed using the Pearson 

correlation test in iBM SPSS Statistics 19.0. P val-
ues<0.05 were considered statistically significant 
(*P<0.05 and **P<0.01 indicate statistically significant 
differences).

Results

Phenotype and karyotype analysis
in subculture of oaF-MSCs, we found that the adher-

ence of passage 20 cells was enhanced, increasing their 
digestion time from 1 min to 3 or 4 min. The chromo-
somes of 50 cells were counted. The karyotype of 46 
diploid oaF-MSCs remained normal, with 54 chromo-
some pairs, twice that of somatic cells (Fig. 1).

Expression of MSC surface markers
To characterize oaF-MSCs, we analyzed the expres-

sion of six MSC surface markers and one intracellular 
marker by immunofluorescence staining. The oAF-MSCs 
were positive for CD13, CD29, CD44, CD90, CD106, 
and oCT4 and negative for CD45 (Fig. 2).

Expansion capacity
Growth curves of passage 5 showed significantly high 

expansion capacity on days 1–7. After the 1st day, the 
cells began to grow and entered a plateau phase on the 
5th day (Fig. 3a). But the passage 20 showed lower 
expansion capacity (Fig. 3B).

Table 1. Primers used in this study

Gene accession no. Forward primer Reverse primer Product 
length (bp)

GAPDH u94889.1 aCCaCTGTCCaCGCCaTCaC GCCTGCTTCaCCaCCTTCTT 269
BGLAP DQ418490 CCCaGGaGGGaGGTGTGTG CTaGaCCGGGCCGTaGaaGC 99
BGN nM-001009201.1 GaaCGGGaGCCTGaGTTTTCT aCTTTGGTGaTGTTGTTGGTGTG 138
LUM nM_173934.1 aGaaTTaaCGaaaGCaGGGTCaaG GCCaaGaGGaGaGGaaaCaCa 84
PPARG nM_001100921.1 aCGGGaaaGaCGaCaGaCaaa aaaCTGaCaCCCCTGGaaGaTG 150
SCD aJ001048.1 GCTGGCaCaTCaaCTTTaCCaC TTTCCTCTCCaGTTCTTTTCaTCC 123

GenBank accession numbers of the sequences used for primer design. Primer sequences and product lengths are shown.
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Differentiation capacity
Deposition of calcium salt and formation of calcium 

nodes were also apparent (Fig. 4a). in chondrogenic 
media, oaF-MSCs showed stronger alcian Blue staining 
(Fig. 4C). under adipogenic conditions, oaF-MSCs 
exhibited microscopic cytoplasmic lipid droplets (Fig. 
4E).

The expression of adipogenic, osteogenic, and chon-
drogenic markers were analyzed on days 7, 14, and 21 

post induction. Expression patterns of five specific mark-
ers detected by RT-qPCR in control and differentiated 
samples are shown (Fig. 5). The relative expression of 
each sample at the three test points was calculated for 
three independent experimental replicates. Fitted lines 
show the correlation between gene expression patterns 
and induction time for each sample. Expression of the 
osteogenic marker, bone gamma-carboxyglutamate (gla) 
protein (BGLAP; or osteocalcin) increased throughout 

Fig. 2. Determination of specific MSC surface markers in oAF-MSCs. Specific markers were detected by immunocyto-
chemistry (iCC). antibodies against CD13, CD29, CD44, CD90, CD106, and oCT4 showed positive staining, which 
was indicated by green fluorescence (FITC). CD45 was negative. NC, negative control. Nuclei were stained with 
DAPI (blue fluorescence).

Fig. 3. Growth curves of oaF-MSCs at passage 5. The expansion capacity of oaF-MSCs is shown. Cells at passage 5 from 
the three samples obtained began to grow after the 1st day, and entered a plateau phase on the 5th day (a), and 
passage 20 cells showed decreased proliferative ability (B).
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the culture period. During chondrogenic induction, big-
lycan (BGN) and lumican (LUM) were significantly 
upregulated. Expression of adipogenic markers was also 
analyzed, with the stearoyl-Coa desaturase (SCD) 

mRna and peroxisome proliferator-activated receptor 
gamma (PPARG) expression levels maximally increased 
to 7.1- and 2,035-fold, respectively.

Fig. 4. Staining for osteogenic, chondrogenic, and adipogenic differentiation of oaF-MSCs. Deposition of calcium salt 
and formation of calcium nodes was observed (a). Cells in chondrogenic media displayed stronger alcian Blue 
staining than negative controls (C). Cells under adipogenic induction showed cytoplasmic lipid droplets (E). B, D, 
and F represent negative controls for each differentiated sample, respectively.

Fig. 5. RT-qPCR analysis: Specific markers were detected by RT-qPCR. Fitted lines represent the correlation between gene 
expression patterns and induction time for each sample. Dashed lines indicate 95% confidence intervals. Pearson 
correlation coefficients (r) are shown. *Correlation with P<0.05. **Significant correlation with P<0.01.
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Discussion

Cell-based therapies rely on cell injection and tissue 
engineering, and are promising approaches to tissue 
repair or regeneration. among all the cell types studied 
for this purpose, MSCs remain one of the most favorable 
cell sources because of their easy availability [9, 15, 39, 
46]. however, most research on MSCs has been per-
formed on cells derived from bone marrow and adipose 
tissue. Fetal cells isolated from amniotic fluid can be 
cultured in vitro for chromosomal, biochemical, and 
molecular biological analyses [40] and are worthy of 
research and the recent attention they have received. in 
this report, we described isolation, cultivation, and char-
acterization of a fibroblast-like population from adult 
sheep amniotic fluid.

The basic criteria to define human MSCs, provided by 
the Mesenchymal and Tissue Stem Cell Committee of 
the international Society for Cellular Therapy, are as 
follows: (1) plastic adhesion when maintained in stan-
dard culture conditions; (2) expression of CD73, CD90, 
and CD105 and lack of expression of the hematopoietic 
markers, CD34, CD14 or CD11b, CD79 alpha or CD19, 
hLa-DR, and CD45 surface molecules; and (3) capable 
of differentiating into osteoblasts, adipocytes, and chon-
droblasts in vitro [12]. The isolated MSCs that we ob-
tained easily attached to plastic culture dishes, and 
therefore they fulfill the plastic adhesion conditions.

We isolated oaF-MSCs that had low generation times 
and high proliferation capacity, with passage 5 cells en-
tering a plateau phase on the 5th day. MSCs isolated 
from porcine amniotic fluid enter a plateau phase after 
the 6th day [5], while those obtained from sheep adipose 
tissue enter a plateau phase after the 8th day of culture 
[13]. ovine bone marrow-derived MSCs enter a plateau 
phase on the 10th day [34]. overall, the proliferation 
ability of MSCs varies between species and tissues. But 
the proliferative ability was decreased with the increase 
of passage in oaF-MSCs. This is concordant with previ-
ous studies carried out by Colosimo et al [6]. They also 
showed that the karyotypes obtained by oaF-MSCs at 
passages 1 and 20 were normal, but they did not report 
the percentage cells with a normal chromosome pair. We 
tested 50 cells, and the percentage of cells with a normal 
chromosome pair was 92% when cells were subcultured 
to passage 20. The adherence of passage 20 cells was 
enhanced, increasing their digestion time from 1 min to 
3 or 4 min. Colosimo et al suggest that long-term in 

vitro expansion may cause significant alterations in phe-
notypic features and plasticity of oaF-MSCs.

it has been reported that haFSCs express surface an-
tigens including CD117, CD44, CD90, and CD29 but 
not CD45 and CD34 [28]. MSCs obtained from ovine 
bone marrow were positive for CD9, CD44, CD54, 
CD73, CD90, CD105, and CD166 but negative for CD45 
[34]. Moreover, oaF-MSCs obtained by Shaw et al. 
(2011) were strongly positive for CD44, CD58, and 
CD166 and were negative for CD14, CD31, and CD45 
[38]. The cells obtained by Colosimo et al. expressed 
CD166 antigen at low levels and CD29 and CD58 anti-
gens at intermediate levels but did not display any he-
matopoietic markers (CD14, CD31, CD45) or the surface 
antigen CD49f [6]. We also analyzed the MSC phenotype 
for surface and intracellular markers by immunocyto-
chemistry and obtained oaF-MSCs that were positive 
for CD29, CD13, CD44, CD90, CD106, and oCT4 and 
negative for the hematopoietic marker CD45, as are hu-
man MSCs.

Colosimo et al. showed that the osteogenic differen-
tiation potential of oaF-MSCs does not drastically 
change from passage 1 to 20 of during subculture. We 
examined the potential of oaF-MSCs to differentiate 
into osteoblasts, chondrocytes, and adipocytes at passage 
5 and the variation tendency of differentiation marker 
gene expression. For osteogenic induction, osteogenic 
mineralization was confirmed on the last day of osteo-
genic culture conditions (21 days), with calcium salt and 
calcium node formation shown by agno3. BGLAP was 
upregulated during differentiation (Fig. 5). BGLaP plays 
a major role in developing osteoblasts [2, 43].

We examined chondrogenesis using Alcian Blue 8GX 
staining. Stronger blue staining was observed in induced 
cultures compared with negative controls. The marker 
genes, BGN and LUM, were also analyzed. Biglycan is 
the protein encoded by BGN, and it plays a role in col-
lagen fibril assembly and muscle regeneration. LUM 
encodes a member of the small leucine-rich proteoglycan 
(SLRP) family that includes decorin, biglycan, fibro-
modulin, and osteoglycin, and it may be involved in 
regulation of collagen fibril organization [30]. During 
chondrogenic induction, RT-qPCR expression analysis 
of ovine peripheral blood-derived MSCs did not iden-
tify any variation in BGN gene expression levels, but 
LUM was found to be upregulated on the 21st day of 
culture [25]. However, we observed significantly up-
regulated expression of both genes (P<0.01 and P<0.05, 
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respectively). The difference in the results may be as-
sociated with the different cell sources.

ovine bone marrow-derived MSCs can be differenti-
ated into adipocytes that show cytoplasmic lipid droplets. 
adipogenic marker genes have been analyzed previ-
ously [28, 34]. Similarly, we also observed adipogenic 
differentiation (Fig. 5). We examined expression of two 
adipogenic markers by RT-qPCR. SCD is expressed 
uniquely in adipose cells and functions as a crucial ele-
ment in adipocyte metabolism by catalyzing synthesis 
of polyunsaturated fatty acids [22]. in our study, SCD 
expression was upregulated under adipogenic conditions. 
PPaRG is an essential regulator of lipogenesis [1, 37], 
and PPARG expression was slightly upregulated (7.3-
fold) in ovine peripheral blood-derived MSCs [25]. in 
contrast, we found a drastic increase of 2,035-fold in 
oaF-MSCs under adipogenic induction for 21 days. This 
discrepancy in results may be attributed to different cell 
sources or species.

We show that the oaF-MSCs obtained from ovine 
amniotic fluid are multipotential progenitor cells with 
the capacity to differentiate into numerous cell types 
including osteogenic, chondrogenic, and adipogenic 
cells. These cells express MSC markers and show high 
expansion capacity. Our findings provide an experimen-
tal basis for the research and application of oaF-MSCs 
in other fields such as sheep transgenic breeding and 
regenerative medicine.
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