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T cells are indisputably critical mediators of atherosclerotic cardiovascular disease (CVD),
where they secrete pro-inflammatory cytokines that promote vascular pathology. Equally
well-established is the fact that autoimmune diseases, which are mediated by
autoreactive T cells, substantially increase the risk of developing CVD. Indeed, as
immunomodulatory treatments have become more effective at treating end-organ
pathology, CVD has become a leading cause of death in patients with autoimmune
diseases. Despite this, investigators have only recently begun to probe the mechanisms
by which autoreactive T cells promote CVD in the context of autoimmune diseases. T cells
are best-studied in the pathogenesis of systemic vasculitides, where they react to self-
antigen in the vessel wall. However, newer studies indicate that T cells also contribute to
the increased CVD risk associated with lupus and rheumatoid arthritis. Given the central
role of T-cell-derived cytokines in the pathogenesis of psoriasis, the role of these factors in
psoriatic CVD is also under investigation. In the future, T cells are likely to represent major
targets for the prevention and treatment of CVD in patients with autoimmune diseases.
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INTRODUCTION

Atherosclerotic cardiovascular disease (CVD) is one of the leading causes of morbidity and
mortality in the United States and globally (1, 2). Over the last several decades, inflammation has
emerged as a key driver of atherosclerotic CVD, as well as a major therapeutic target (3, 4). In
particular, a large body of preclinical and clinical studies implicate CD4+ and CD8+ T cells in the
pathogenesis of atherosclerotic CVD (2). T cells are enriched in atherosclerotic plaque, where they
recognize lipid- and endothelial-derived antigenic peptides and secrete proinflammatory cytokines
(2, 5–7). Moreover, adoptive transfer of effector T cells promotes atherogenesis in murine models,
whereas transfer of regulatory T (Treg) cells is protective (8–10). Taken together, these and other
studies clearly establish that T cell-mediated immunity is a major modulatory of atherosclerotic
CVD pathogenesis (2, 11–13).

Systemic autoimmune diseases are characterized by aberrant adaptive immune responses to
autoantigens. Autoreactive T cells play a central role in the pathogenesis of autoimmunity. Severe early-
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onset autoimmunity is a prominent feature of immune dysregulation
syndromes caused by mutations in T cell specific genes such as
FOXP3 and CTLA4. Moreover, common autoimmune diseases are
strongly associated with polymorphisms in genes that are
preferentially expressed in T cells (14). A large body of human and
murine studies has established multiple mechanisms by which T cell
dysfunction promotes systemic autoimmunity in a variety of
common rheumatic diseases including rheumatoid arthritis (RA),
systemic lupus erythematosus (SLE), myositis, psoriasis/psoriatic
arthritis, and vasculitis (15).

Considering the major pathogenic role of T cells in both
atherosclerosis and systemic autoimmunity, it is perhaps
unsurprising that autoimmune diseases represent a major risk
factor for CVD (15, 16). Furthermore, CV risk is reduced in
patients with rheumatic diseases who achieve clinical remission.
This observation has led to multiple studies testing the efficacy of
anti-inflammatory therapies as a primary prevention strategy for
CVD in patients with autoimmune disease (17–21). In order to
select the most promising therapeutic targets, it is critical to
understand the specific mechanisms by which T cells interact
with other dysregulated populations to promote CVD in patients
with autoimmunity. This review will focus on the mechanistic
evidence implicating T cells as drivers of vascular inflammation,
starting with primary vasculitides and then focusing on three
prototypic systemic autoimmune diseases: RA, SLE, and psoriasis.
We will also briefly review the efficacy of T-cell-directed therapies in
the treatment of autoimmunity-associated vascular dysfunction.
OVERVIEW OF T CELLS IN PRIMARY
VASCULITIDES

A review of T-cell mediated inflammation in autoimmunity-
associated CVD would be incomplete without a discussion of T
cells in the context of primary vasculitides. Vasculitides are a group
of heterogenous disorders classified according the size of the vessel
they predominantly affect: small-, medium-, and large vessel (22).
Vasculitis can develop as secondary to various underlying medical
conditions or constitute a primary autoimmune disease, where the
vasculature is the target of immune-mediated pathology. The
etiology and pathogenesis of primary vasculitis are not completely
understood, but accumulating evidence has suggested a pathogenic
role for T cells. This role has been most extensively explored in two
prototypical vasculitic disorders that will be the focus of this review:
the small-vessel disease antineutrophil cytoplasmic antibody
(ANCA)–associated vasculitis (AAV) and the large-vessel
vasculitis giant cell arteritis (GCA).
T CELLS IN ANCA-ASSOCIATED
VASCULITIS

The AAV comprise three clinical syndromes: granulomatosis with
polyangiitis (GPA), microscopic polyangiitis (MPA) and
eosinophilic granulomatosis with polyangiitis (EGPA). Because T
Frontiers in Immunology | www.frontiersin.org 2
cells are critical orchestrators of antigen-specific autoimmunity, T
cell dysfunction in the context of AAV is thought to directly
promote disease (Figure 1A) (23). CD4+ T cells are considered
particularly important to disease pathogenesis, since effector
memory CD4+ T (TEM) cells are persistently expanded in AAV
(24, 25). Indeed, TEM cells migrate from the peripheral circulation
into inflamed tissues during recurrent disease, indicating that they
may drive disease relapse (26–28). Moreover, AAV-associated TEM

cells express natural killer group 2D (NKG2D) receptor, giving
them the capacity to mediate vascular injury through cytotoxicity
(29, 30). Taken together, this suggests a central role for CD4+ T cells
in AAV-associated vascular inflammation. As in atherosclerotic
CVD, CD4+ T cell dysfunction AAV can occur through three
broad mechanisms: dysregulated T helper (Th) differentiation,
CD4+CD28− T cell expansion, and impaired regulatory T cell
(Treg) function.

CD4+ T cells differentiate into various effector subsets (Th1,
Th2, Th17, Th9, Th22, T follicular helper or Tfh), each of which
mediates a discrete immunological response through the
secretion of subset-specific effector cytokines (31). Studies have
revealed a shift toward Th2 response in patients with generalized
GPA with systemic vasculitis, whereas a Th1 response is seen in
localized GPA with predominantly nasal lesions (32, 33). GPA is
also associated with Tfh expansion, which may contribute to
ANCA autoantibody production, whereas Th2 and Th17
expansion have been observed in EGPA (34–37). Proteinase-3
(PR3), the key pathogenic antigen associated with GPA, can itself
modulate Th differentiation: PR3-expressing apoptotic cells
promote a Th2/Th9 response, while PR3-ANCA promotes
Th17 differentiation (38).

Expansion of the proinflammatory and cytotoxic CD4+CD28−
T cell subset has been consistently reported in GPA (39–43). CD4
+CD28− T cell expansion is associated with latent cytomegalovirus
(CMV) infection and confers a poor prognosis (39, 40). However, it
is not yet apparent whether CD4+CD28− T cells contribute to
AAV-associated vascular inflammation, or whether they worsen
outcomes through other mechanisms (41, 44). For example, CD4+
CD28− T cell expansion is associated with impaired immunological
responses to vaccination, which could increase infection-related
morbidity (39, 40).

In contrast to T effector cells, Tregs are key negative
regulators of inflammation that promote immune tolerance
(45). Several studies have described reduced Treg frequency in
AAV, but others have reported increased numbers, possibly due
to the different methodologies of identifying human Tregs (36,
46–50). Moreover, functional Treg impairment is seen in active
AAV and improves during disease remission (46–50). Treg
impairment may arise from utilization of a hypofunctional
isoform of the Treg-associated master transcription factor
Forkhead box P3 (FoxP3), or from enhanced conversion into
pathogenic Th17 effector cells (47, 51).

A limited body of data suggests that CD8+ T cells may also
play a role in AAV. CD8+ T cells promote glomerular injury in
murine MPA, and circulating CD8+CD28− T cells are expanded
in GPA (52, 53). A subset of circulating T cells expressing both
CD4 and CD8 has also been described in the context of human
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disease, although the function of this subset is incompletely
characterized (54). CD4+CD8+ double-positive T cells are
expanded in GPA and exhibit a memory phenotype, with co-
expression of CD28 and NKG2D (53). Future investigations will
be needed to define the role CD4+CD8+ double-positive cells in
the pathogenesis of AAV.
T CELLS IN GIANT CELL ARTERITIS

GCA is a large-vessel vasculitis of unknown etiology that occurs
mainly in individuals over age 50 (55). The pathological hallmark
of GCA is granulomatous arterial wall inflammation, with
infiltration of T lymphocytes, macrophages, dendritic cells
(DCs) and multinucleated giant cells (56). While the
pathogenesis of GCA is incompletely understood, over two
decades of work implicate CD4+ T helper cells as major drivers
of the pathological immune response (Figure 1B) (57–60).

GCA patients have marked expansions of Th1 and Th17 cells,
which are thought to differentiate from a common precursor but
promote two discrete pathologies (60, 61). Th17 cells promote
neutrophil and macrophage recruitment, and Th17 expansion
correlates strongly with signs of active inflammation. Th17
Frontiers in Immunology | www.frontiersin.org 3
expansion also normalizes promptly with corticosteroid treatment,
implying that Th17 cells primarily induce acute vessel inflammation
(60). Conversely, Th1 expansion is associated with chronic
persistent inflammation and vascular remodeling (60, 62). The
Th1 effector cytokine IFN-g activates macrophages and promotes
giant cell formation (60). IFN-g-stimulated macrophages also
secrete platelet-derived growth factor (PDGF) and vascular
endothelial growth factor (VEGF), which induce vascular
hyperplasia and neoangiogenesis, ultimately causing luminal
occlusion and ischemia (63–65). Notably, the Th1 responses in
GCA are resistant to corticosteroid treatment which may explain
why even patients in remission are at a high risk of subsequent
vascular events (62, 66).

Reduced Treg frequency and Treg dysfunction have also been
reported in GCA, though these findings are complicated by the
different methodologies used to identify human Tregs in various
studies (62, 67). As in AAV, Tregs derived from GCA patients
have impaired suppressive ability and utilize the hypofunctional
FoxP3 isoform (68). Treg plasticity has also been implicated in
GCA pathogenesis, as FoxP3+T cells expressing the Th17-
associated cytokine IL-17A have been identified in temporal
artery biopsies (69, 70). Unexpectedly, temporal artery
expression of IL-17A is associated with a favorable prognosis,
FIGURE 1 | The role of T cells in primary vasculitides. T cells promote vascular inflammation in primary vasculitides through a variety of mechanisms. Expansion of
proinflammatory T helper (Th)-1 and Th17 subsets is associated with both ANCA-associated vasculitis (A) and giant cell arteritis (B). Regulatory T cells are also
hypofunctional in both vasculitides and display increased plasticity, or conversion to Th17 cells. Th17 cells recruit neutrophils and macrophages to promote acute
vascular inflammation, whereas Th1 cells regulate macrophages to promote chronic damage. In ANCA-associated vasculitis (A), T follicular helper (Tfh) cells promote
the production of anti-neutrophil cytoplasmic antibodies (ANCA), which induce vascular inflammation. Th2 and Th9 cells produce IL-4, IL-13, IL-5, and IL-9, which
promote eosinophilic vascular inflammation. CD4+CD28− and CD8+CD28− cells produce atherogenic cytokines such as TNF-a and IFN-g, as well as directly
damaging the vasculature by releasing cytotoxic molecules. Mechanisms of T cell dysfunction specific to giant cell arteritis (B) include enhanced CD8-mediated
cytotoxicity and reduced anti-inflammatory function of CD8+ Tregs. This is due to reduced production of NOX2-containing exosomes, which inhibit the proliferation
of Th1 and Th17 cells.
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indicating that IL-17A+ Tregs may retain at least some
suppressive capacity (71).

Although the role of CD8+ T cells in large vessel vasculitis is
less clearly defined, CD8+ dysfunction and CD8+-specific
transcriptomic changes have been reported in association with
GCA (72, 73). CD8+ cells can also function as regulatory cells
and promote immune tolerance, like their CD4+ counterparts
(74). CD8+ Treg function is impaired in elderly individuals, with
the highest degree of impairment seen in elderly individuals with
GCA (75). This is thought to result from reduced production of
NADPH oxidase 2 (NOX2), which CD8+ Tregs release in
exosomes to dampen CD4+ proliferation and resultant
autoimmunity (75).
T CELLS IN CVD ASSOCIATED WITH
RHEUMATOID ARTHRITIS (RA)

Rheumatoid arthritis (RA) is an autoimmune disease with a
United States prevalence of 0.5 to 1 (76). Although joint
destruction is the hallmark of RA, almost 50% of patients
develop devastating extra-articular manifestations, including
CVD (77). The association between RA and CVD is extremely
well-established, with multiple studies demonstrating a 1.5-fold
increased risk of CVD in RA patients (17, 78, 79). Traditional CV
risk factors clearly contribute to CVD in RA patients, including
hyperlipidemia, obesity, and smoking. However, traditional CV
risk factors do not fully account for the increased CVD risk
burden in RA, RA disease severity correlates with CVD, and
immunomodulatory treatments reduce the risk of CVD in RA
patients (17, 78, 79). Observational studies suggest that
abatacept, a T cell immunomodulator, is more effective at
preventing CVD in RA patients than TNF inhibitors, which
act on multiple immune cell populations (17). Taken together,
these data strongly implicate primary immune dysregulation,
including T cell dysfunction, as a central driver of CVD in RA
patients (Figure 2A).

T cells are central drivers of RA disease pathogenesis, promoting
joint destruction through various mechanisms including secretion
of proinflammatory cytokines, B cell activation, regulatory T cell
dysfunction, and direct cytotoxicity – many of the same
mechanisms implicated in CVD pathogenesis (2, 80, 81).
Terminally differentiated TEM CD4+ and CD8+ T cells are
expanded and correlate significantly with coronary artery
calcifications in RA patients, suggesting a pathogenic role (82).
RA is also characterized by CD4+CD28− cell expansion, which is
closely tied to the development of atherosclerotic CVD (83, 84).
Accordingly, the frequency of circulating CD4+CD28− cells
significantly correlates with preclinical atherosclerosis in RA
patients, indicating that these cells may be major inducers of RA-
associated CVD (84, 85). CD8+CD28− cells have also been
described in association with RA-associated CVD, although the
role of this subset is not as clearly defined (86).

Like primary vasculitides, RA is characterized by expanded
proinflammatory Th1 and Th17 cells (81). In murine
autoimmune arthritis models, pathogenic Th17 cells interact
Frontiers in Immunology | www.frontiersin.org 4
with vascular endothelial cells to promote both angiogenesis
and joint destruction through production of placental growth
factor, which correlates with IL-17A levels in RA patients (87).
This provides strong mechanistic evidence that Th17 cells can
promote RA-associated vascular injury. A subset of angiogenic T
cells, characterized by coexpression of CD3/CD31/CXCR4, can
also attenuate vascular injury by promoting endothelial repair
(88). Two studies have analyzed the frequency of angiogenic T
cells in RA patients, with discrepant results (36, 88). This could
be related to differences in patient populations: one study focused
on European patients with a high risk of CVD whereas the other
investigated Asian patients with very few CV risk factors. This
would be consistent with prior observations that RA-associated
CVD is driven by complex interactions between traditional CV
risk factors and systemic inflammatory mediators (89).
T CELLS IN CVD ASSOCIATED
WITH PSORIASIS

Psoriasis is a T-cell-mediated autoimmune disease whose hallmark
symptom is chronic skin inflammation. Psoriasis has a prevalence of
2% to 3% and causes extracutaneous disease in up to 30% of patients
(90). Psoriasis is associated with a number of comorbid conditions
that increase the risk of atherosclerotic CVD, including metabolic
syndrome and chronic kidney disease. As in other autoimmune
conditions, CVD risk in psoriasis patients correlates with disease
severity and improves with immunomodulatory therapy (91, 92).
An extensive body of work over the last several decades has shown
that psoriasis is a T-cell-mediated disease, with Th17 cells emerging
as the central drivers of cutaneous pathology (90). Accordingly,
blockade of Th17-derived IL-17A and the Th17-inducing cytokine
IL-23A are both highly efficacious for skin disease in most patients
with psoriasis (93).

Given the centrality of Th17 cells to both atherosclerotic CVD
and psoriatic skin disease, it is reasonable to conclude that Th17
cells link psoriatic immunopathology and inflammatory CVD
(Figure 2B). Accordingly, Th17 cells from murine psoriatic skin
lesions migrate to the arterial wall, where they promote
atherogenesis by regulating high density lipoprotein (HDL)
trafficking and collagen accumulation (94). Moreover, blocking
IL-17A and IL-23 prevented psoriasis-related thrombosis in
preclinical studies (95, 96). Subsequently, a number of late phase
clinical trials tested the effects of blocking IL-17A and IL-23 on
aortic vascular inflammation in patients with psoriasis. Although
the immunomodulatory treatments caused transient improvements
in inflammation, these changes were not sustained (20, 21, 92). This
may be due to the role of other T helper subsets in psoriatic CVD, or
because these large studies evaluated aortic inflammation instead of
a more sensitive primary outcome measure such as coronary artery
plaque burden. Indeed, more recent data has shown that biologic
therapy reduces coronary plaque and coronary inflammation over a
1-year period of treatment (18, 97). Additional studies are
ongoing that will use a variety of outcome measures, including
aortic inflammation and carotid artery pulse wave velocity
(NCT02144857, NCT03478280).
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Due to the prominent role of Th17 cells in psoriasis, most
mechanistic studies of psoriatic CVD have focused on the Th17
lineage and its associated cytokines. However, other T cell subsets
have also emerged as potential modulators of atherogenesis in
patients with psoriasis (Figure 2B). As for many other
immunological disorders, several of these studies have focused on
the role of CD4+CD28− cells. Circulating and skin-resident CD4
+CD28− cells have been identified in patients with psoriasis, but
their functions have not yet been defined in this population (98, 99).
iNKT cells, which respond to lipids presented by the CD1d family of
antigen-presenting molecules, have also been identified in psoriatic
skin (100). In addition to iNKT cells, CD1-restricted cells comprise
multiple other subtypes with various specialized immunological
functions (101). Autoreactive CD1a-restricted T cells recognize lipid
autoantigens in patients with psoriasis, providing a potential link
Frontiers in Immunology | www.frontiersin.org 5
between skin inflammation and CVD (102). CD1b-autoreactive
cells promote murine psoriatic skin inflammation but have not been
found to induce atherogenesis (103). As more information emerges
about the roles of CD1-restricted T cells in human immunity, these
cells may emerge as major links between cutaneous disease and
atherogenesis in patients with psoriasis.
T CELLS IN CVD ASSOCIATED
WITH SYSTEMIC LUPUS
ERYTHEMATOSUS (SLE)

Systemic lupus erythematosus (SLE) is a chronic systemic
autoimmune disease with a prevalence of 30 to 50 per 100,000
FIGURE 2 | The role of T cells in autoimmunity-associated cardiovascular disease (CVD). T cell dysfunction has been implicated in CVD associated with rheumatoid
arthritis (RA, A), psoriasis (B), and systemic lupus erythematosus (SLE, C). Mechanisms common to all three autoimmune diseases include expansion of CD4+CD28
− cells, which produce atherogenic cytokines such as TNF-a and IFN-g, and release cytotoxic molecules that damage the vasculature. Proinflammatory T helper (Th)-
1 cells are expanded in RA (A) and in SLE (C); Th1-mediated atherogenesis is enhanced by the SLE-associated cytokine IFN-1. Th17 cells are expanded in all three
autoimmune diseases and are particularly important for psoriatic CVD. Th17 differentiation is enhanced by the psoriasis-associated cytokine IL-23 and inhibited by
regulatory T cells (Tregs). Treg dysfunction and plasticity, or conversion to Th17 cells, are implicated in CVD associated with RA, SLE, and psoriasis. In SLE, the
Treg-derived cytokine IL-10 synergizes with the dendritic cell-derived cytokine IFN-1 to promote atherogenesis. Angiogenic T cells and CD1-restricted T cells such as
invariant natural killer T (iNKT) cells can directly mediate endothelial damage and repair. Dysfunction of these subsets is seen in RA, SLE, and psoriasis.
October 2020 | Volume 11 | Article 588776
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(104). SLE is typified by a combination of innate and adaptive
immune dysregulation, which act in concert to promote disease
pathogenesis (104). T cells have an essential role in SLE
pathogenesis, with T effectors directly promoting SLE and
Tregs attenuating end-organ pathology (105–107). Like RA,
SLE is associated with a significantly increased risk of CVD
not entirely explained by traditional risk factors (104).

An emerging body of evidence implicates T cell dysfunction
as a key cause of atherogenesis in patients with SLE (Figure 2C).
Aberrant T cell activation is a prominent feature of SLE-
associated CVD, and adoptively transferred CD4+ T cells are
sufficient to induce murine SLE-associated atherogenesis (108,
109). Additionally, T cell immunomodulation is an effective
therapeutic strategy for CVD in SLE models and is even
superior to lipid lowering therapy (110, 111). Atherogenic
CD4+ T cells that express the Th1 marker CXCR3 are
expanded in SLE, where they migrate to the arterial wall and
directly induce vascular pathology. This process is enhanced by
Type 1 interferon (IFN-I) signaling, which is a hallmark feature
of immune dysregulation in SLE (112). IFN-I derives primarily
from plasmacytoid dendritic cells, demonstrating that innate
immune dysregulation and T-cell-driven atherogenesis are
closely linked in patients with SLE (112). T cells from SLE
patients also display enhanced reactivity to plasma b2
glycoprotein I, leading to immune-mediated hypercoagulability,
endothelial cell dysfunction, and subclinical atherosclerosis (113).

As in other autoimmune diseases, both Treg dysfunction and
abnormal T effector differentiation have been implicated in SLE-
associated CVD. Th17 expansion correlates with both disease
activity and atherosclerosis in SLE, whereas Tregs are reduced in
SLE-associated CVD (108, 114, 115). In murine SLE-associated
atherogenesis, pathogenic T effector cells are also resistant to
Treg suppression, possibly due to reduced expression of IL-10
receptor (108). IL-10 is a Treg-derived cytokine with anti-
inflammatory properties that suppresses T cell proliferation.
Intriguingly, IL-10 is elevated in SLE patients, and IL-10
potentiates IFN-I-induced endothelial dysfunction (116). This
suggests another link between CD4+ T cell dysfunction, innate
immune dysregulation, and atherogenesis. SLE is also
characterized by development of high titer autoantibodies, a
process mediated by autoreactive B cells and Tfh cells (104).
Atherogenesis promotes the differentiation of Tfh cells in lupus-
prone mice, augmenting systemic autoimmunity and providing
another link between SLE disease activity and atherogenesis (117).

A limited body of data also suggests a role for other T cell
subsets in SLE-related CVD. CD4+CD28− T cells are expanded
in SLE, but their relationship to atherogenesis is not well defined
(118). Angiogenic T cells have also been described in the context
of SLE; in contrast to RA, SLE is typified by expansion of
angiogenic CD8+ cells but not angiogenic CD4+ cells.
However, angiogenic CD8+ T cells do not correlate with SLE-
related disease activity, and their role in CVD is indeterminate
(119). Invariant natural killer T (iNKT) cells are an innate-like
subset of T cells that can rapidly produce proinflammatory or
anti-inflammatory cytokines in response to lipid antigens. In SLE
patients, iNKT cells with an anti-inflammatory phenotype are
Frontiers in Immunology | www.frontiersin.org 6
atheroprotective, and their loss confers an increased risk of CV
events (120). Future studies will be needed to dissect the roles of
these and other non-CD4+ T cell subsets in the pathogenesis of
autoimmunity-related CVD.
COMMON AND DISEASE-SPECIFIC
MECHANISMS OF AUTOIMMUNITY-
RELATED CVD

While this review has focused on a selected group of
representative systemic autoimmune diseases, the risk of CVD
is elevated in multiple organ-specific and systemic autoimmune
disorders (121–123). It is impossible to comprehensively address
every study linking autoimmunity to the development of CVD,
but many of the mechanisms implicated are the same ones
identified for vasculitis, RA, SLE, and psoriasis. This is perhaps
unsurprising, as many genetic variants that predispose
individuals to autoimmunity are shared between multiple
autoimmune diseases, including polymorphisms in genes
critical for T cell differentiation and function, like HLA-DRB1,
PTPN22 , and CD25 (14). Common T-cell-dependent
mechanisms of autoimmunity-associated CVD include
CD4+CD28− expansion, CD8+CD28− expansion, Treg
dysfunction, and proinflammatory cytokine production by T
effector cells (Th1, Th17). By contrast, several T cell subsets are
thought to promote CVD in the context of specific autoimmune
diseases, including angiogenic T cells (SLE, RA), iNKT cells
(psoriasis, SLE), and Tfh cells (AAV, SLE). However, it is
important to acknowledge that many T-cell-dependent
mechanisms have not yet been studied across multiple
autoimmune conditions and could be more broadly shared.
For example, IFN-1 is best studied in the context of SLE.
Accordingly, IFN-1 is described to enhance Th1-mediated
vascular damage in SLE but not in other diseases (112).
However, IFN-1 is also implicated in the pathogenesis of RA
and psoriasis (80, 124); therefore, IFN-1- may enhance T cell-
mediated CVD in RA and psoriasis. Similarly, direct immune-
mediated destruction of the vasculature is the hallmark of the
primary vasculitides but can also be seen in secondary
vasculitides related to underlying SLE or RA. Further
investigations are needed to differentiate common and disease-
specific T-cell-dependent mechanisms underlying CVD in
various autoimmune conditions.
THERAPEUTIC MODULATION OF T CELLS
IN AUTOIMMUNITY-RELATED CVD

Although T cells are clearly central to the pathogenesis of
autoimmunity-related CVD, other cell types also play a major
pathogenic role. These include dendritic cells, B cells, monocytes,
neutrophils, and platelets (80, 125, 126). Of note, many of these
cells directly interact with T cells to promote autoreactivity or
induce endothelial injury downstream of T cell dysfunction.
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Thus, various proinflammatory cytokines and factors can be
targeted both to directly repress dysfunctional T cells and to
prevent crosstalk between T cells and other critical effectors.
Most conventional disease-modifying antirheumatic drugs
(DMARDs) modulate the function of multiple immune cell
subsets, including T cells. Methotrexate, which improves CVD
in RA, psoriasis, and vasculitis, inhibits T cell activation and
promotes Treg differentiation (127, 128). Calcineurin inhibitors,
which potently block T-cell-receptor signaling, reduce markers
of atherosclerotic CVD in SLE (129, 130). Mycophenolate
mofetil also represses dysfunctional T cells and has attenuated
CVD in murine models of SLE-related atherogenesis (111).
Hydroxychloroquine, which reduces subclinical atherosclerosis
in SLE, inhibits T cells by blocking the AP-1 transcription factor
downstream of T cell receptor activation (131, 132).

T cells can also be efficiently targeted using biological and
targeted synthetic DMARDs. Tumor necrosis factor (TNF)
inhibitors, IL-6 receptor inhibitors, and JAK inhibitors all inhibit
multiple immune subsets, including pathogenic T cells; these
agents are all associated with reduced markers of CVD in
patients with systemic autoimmunity (80, 126, 128, 133, 134).
Biological DMARDs can also block T-cell-derived factors: as noted
previously, blockade of Th17-derived IL-17A may ameliorate
CVD in psoriasis, although further studies are needed (18, 19,
21, 97). Finally, the biological DMARD abatacept, which is FDA-
approved for RA and psoriatic arthritis, directly targets T cell
activation by blocking costimulation. Abatacept lowers the
frequency of CD28− T cells and reduces CVD risk in RA, with
a larger effect than TNF inhibitors and B-cell-directed therapies
(135–140). Abatacept did not prove effective in clinical trials for
SLE (141); therefore its effects on SLE-associated CVD is
unknown. Early-phase clinical trials suggest that abatacept may
also be efficacious for LVV and AAV (142, 143), with phase 3 trials
ongoing (NCT02108860, NCT04474847). Taken together, these
studies demonstrate that targeting dysfunctional T cells is a safe and
effective therapeutic strategy for the prevention and treatment of
autoimmunity-related CVD and vascular inflammation.
GENERALIZABILITY TO
ATHEROSCLEROTIC CVD IN PATIENTS
WITHOUT SYSTEMIC AUTOIMMUNITY

In addition to their role in autoimmunity-related CVD, T cells have
an indisputable role in the pathogenesis of atherosclerotic CVD in
patients without underlying autoimmunity. Although the focus of
this review does not concern T-cell-dependent CVD in the general
population, it is worth noting that many mechanisms implicated in
autoimmunity-related CVD also promote atherogenesis in the
general population. These include Treg dysfunction/instability,
production of proatherogenic cytokines by effector T cells, and T-
cell-mediated cytotoxicity (2). The presence of these shared
mechanisms suggests that therapies efficacious for autoimmunity-
related CVDmight also be used to treat patients with atherosclerotic
CVD. Indeed, T cell modulation with mycophenolate mofetil may
be beneficial in atherosclerotic CVD (144); and clinical trials are
Frontiers in Immunology | www.frontiersin.org 7
ongoing or planned for hydroxychloroquine (NCT02648464,
NCT04161339, NCT03636152), temsirolimus (NCT03942601,
NCT04433572), tocilizumab (NCT03004703), and abatacept
(NCT04344873). However, it must also be recognized that
patients with systemic autoimmunity develop more inflammation
and T cell autoreactivity than patients with atherosclerosis (125).
Accordingly, some disease modifying antirheumatic drugs, such as
methotrexate, prevent CVD in patients with systemic autoimmunity
but not in patients with atherosclerosis (128, 145). Another T-cell-
directed strategy involves the use of tolerogenic vaccinations or low-
dose IL-2 to induce atheroprotective Tregs (2). Early phase clinical
trials are underway to evaluate the potential efficacy of these
strategies for CVD in the general population (NCT01284582,
NCT03113773, NCT03042741, NCT02508896) but thus far these
methods remain untested. Future studies are warranted to
determine the generalizability of T-cell-mediated mechanisms of
autoimmunity-related CVD to the general population, and the
efficacy of T cell immunomodulation for CVD in patients without
underlying autoimmunity.
CONCLUSIONS AND FUTURE
DIRECTIONS

Over the last several decades, T cells have emerged as major
mediators of atherosclerotic cardiovascular disease. The centrality
of T cell dysfunction to human autoimmune diseases, and the
increased risk of CVD in patients with autoimmunity, has sparked
intense interest in the role of T cell dysfunction in autoimmunity-
related vascular inflammation. A large body of evidence has
established that T cells are central mediators of vascular
inflammation in patients with systemic autoimmune diseases,
suggesting that they underlie the increased risk of CVD
associated with these disorders.

Several broad mechanisms of T cell dysfunction promote
autoimmunity-associated CVD. Aberrant T helper differentiation
leads to expansion of Th1 and Th17 cells, which migrate to the
arterial wall and promote atherogenesis. This proinflammatory
cytokine secretion is potentiated by Treg dysfunction, as well as
reduced capacity of effector T cells to respond to Treg-derived
cytokines. Cytotoxic CD4+CD28− cells also promote atherogenesis
by inducing endothelial damage through various mechanisms.
Finally, a potential role has emerged for other T cell lineages in
autoimmunity-associated CVD; these include angiogenic T cells
and CD1-restricted lipid responsive T cell subsets.

Because CVD is a major cause of morbidity and mortality in
patients with systemic autoimmunity, targeting the immunologic
drivers of vascular inflammation has the potential to substantially
improve the quality of life of these individuals (78, 92, 113).
Investigating the mechanisms of T-cell-mediated CVD in
psoriasis has already culminated in late phase clinical trials, with
additional studies ongoing (18, 20, 21). Ongoing investigations into
the mechanisms by which T cell cells promote autoimmunity-
related CVD will uncover additional therapeutic targets, allowing a
more sophisticated approach to preventing and treating CVD in
these cohorts. As systemic autoimmune diseases are present in up to
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10% of the global population, these insights are likely to have a
major public health impact (14). Ultimately, these findings may also
have broader translational relevance to atherosclerotic CVD, where
T cell dysfunction is also a major driver of vascular pathology.
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