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TECHNICAL ADVANCE

Aggregation‑and‑Attention Network 
for brain tumor segmentation
Chih‑Wei Lin1,2,3,4*  , Yu Hong2,4 and Jinfu Liu1,2,4 

Abstract 

Background:  Glioma is a malignant brain tumor; its location is complex and is difficult to remove surgically. To diag‑
nosis the brain tumor, doctors can precisely diagnose and localize the disease using medical images. However, the 
computer-assisted diagnosis for the brain tumor diagnosis is still the problem because the rough segmentation of the 
brain tumor makes the internal grade of the tumor incorrect.

Methods:  In this paper, we proposed an Aggregation-and-Attention Network for brain tumor segmentation. The 
proposed network takes the U-Net as the backbone, aggregates multi-scale semantic information, and focuses on 
crucial information to perform brain tumor segmentation. To this end, we proposed an enhanced down-sampling 
module and Up-Sampling Layer to compensate for the information loss. The multi-scale connection module is to con‑
struct the multi-receptive semantic fusion between encoder and decoder. Furthermore, we designed a dual-attention 
fusion module that can extract and enhance the spatial relationship of magnetic resonance imaging and applied the 
strategy of deep supervision in different parts of the proposed network.

Results:  Experimental results show that the performance of the proposed framework is the best on the BraTS2020 
dataset, compared with the-state-of-art networks. The performance of the proposed framework surpasses all the 
comparison networks, and its average accuracies of the four indexes are 0.860, 0.885, 0.932, and 1.2325, respectively.

Conclusions:  The framework and modules of the proposed framework are scientific and practical, which can extract 
and aggregate useful semantic information and enhance the ability of glioma segmentation.
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Background
The brain is an essential organ in humans, responsible 
for controlling and coordinating body metabolism and 
activity, and also plays a function in cognition, think-
ing, and learning [1]. Glioma has emerged as one of the 
most major brain diseases that impair human health. It is 
closely related to the abnormal organization seen in the 
human brain [2, 3]. Modern medicine can help doctors 
judge the type and severity of brain tumors by acquiring 
information about brain tissue in non-invasive ways, such 

as medical imaging technology [4]. For example, mag-
netic resonance imaging (MRI) has high contrast in soft 
tissue imaging, such as nerve, blood vessel, and muscles, 
compared with other imaging techniques and can pro-
vide brain images with various modalities from the same 
patient [5]. Therefore, the study on image segmentation 
of brain tumors mainly focused on MRI [6, 7].

The requirement for rapid and accurate identification 
of diseases by computer technology is increasing due 
to the complexity of brain lesions [8]. Therefore, image 
segmentation is critical research in the field of com-
puter vision. It refers to dividing an image into several 
non-overlapping subareas according to the pixel fea-
tures, which satisfies the image discrimination require-
ments of glioma. The traditional methods of brain MRI 
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segmentation mainly include threshold segmentation 
[9, 10], region segmentation [11, 12], and clustering 
analysis [13]. The common feature of these methods 
mainly relies on prior knowledge and low-level seman-
tics to achieve simple brain segmentation tasks. How-
ever, the traditional segmentation methods cannot 
satisfy high accuracy requirements due to increased 
MRI resolution and content complexity.

In recent years, deep learning technology has gradu-
ally matured, leading to the emergence of models and 
algorithms for brain tumor segmentation based on 
a convolutional neural network (CNN) [14]. Unlike 
traditional segmentation methods, CNN does not 
require prior knowledge and can automatically extract 
and learn glioma features from different MRI modali-
ties. U-Net [15] is the most common and effective 
basic framework with encoding–decoding structure, 
with uses skip connection to achieve the transmis-
sion of features between encoding and decoding. The 
current network of related medical image segmenta-
tion is improved based on U-Net. One is to improve 
the structure within encoding or decoding; for exam-
ple, Res-Unet [16] increases the depth of the model 
by adding the skip connections in sampling modules. 
MultiRes U-Net [17] proposed a MultiRes Block, refer-
ring to Inception, to replace the basic modules. Others 
are optimizing the skip-connection between encoder 
and decoder; for example, U-Net++ [18] replaced 
the original long connections using short, dense con-
nections similar to DenseNet [19], reducing semantic 
inconsistencies, U-Net 3+ [20] introduced full-scale 
skip-connections and made full use of multi-scale 
information in the encoder-decoder. In addition, there 
are some new sub-decoder routes to improve the 
network segmentation effect. Jiarui [21] studied the 
Variational Autoencoder (VAE) [22] and a two-stage 

cascaded U-net [23] structure to propose an end-to-
end improved 3D-UNet.

These networks provide good segmentation results, 
but they are still inadequate for the segmentation tasks of 
brain tumors due to the process of network convolution 
often ignores the relationship between different modali-
ties. Therefore, it is necessary to extract the feature differ-
ences between glioma and normal tissue and distinguish 
the differences between different grades of tumors within 
glioma. Furthermore, to separate precise tissue contours, 
the network requires extracting multi-scale semantic 
information as much as possible while reducing infor-
mation loss during the convolution process. As shown 
in Fig. 1, existing networks, such as U-Net and CE-Net, 
cannot accurately segment the grade and contour of 
the brain. In order to solve these problems, we propose 
a novel network named Aggregation-and-Attention 
Network (AANet), which makes full use of features to 
improve segmentation performance. Its main contribu-
tions are as follows:

•	 We proposed an Aggregation-and-Attention Net-
work (AANet), including the enhanced down-sam-
pling (EDS) module, the multi-scale connection 
(MSC) module, and the dual-attention fusion (DAF) 
module.

•	 The EDS module decreases the lost information by 
skip-connection and fuses information for different 
convolutions in the same sampling layer.

•	 The MSC module extracts the context semantic 
information by considering the multi-receptive field, 
and that is sent to the downsampling to strengthen 
the semantic context. It is used to replace the skip 
connection.

•	 The DAF module is added to the network’s bottom to 
increase the spatial and channel information through 
segmentation.

(a) Ground Truth (b) U-Net (c) CE-Net (d) AANet
Fig. 1  The visualization of ground truth and segmentation results with various methods. a The ground truth of brain tumor in three subareas, b–c 
segmentation results of U-Net and CE-Net. d Segmentation result of the proposed network. The white boxes mark the highlighted area, where 
shows that existing networks cannot accurately segment the grade and contour of brain tumor compared to AANet
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•	 We demonstrate state-of-the-art performances of the 
proposed AANet on BraTS2020. It shows that AAU-
net could effectively extract information from brain 
MRI and segment tumors of different grades.

Method
Aggregation‑and‑Attention Network
The framework of the proposed Aggregation-and-Atten-
tion Network (AANet) for brain tumor segmentation is 
shown in Fig. 2. The network designed three main parts 
based on U-Net: enhanced down-sampling (EDS) mod-

ule, multi-scale connection (MSC) module, and dual-
attention fusion (DAF) module. First, the EDS module is 
constructed in the encoder, which fuses features of dif-
ferent locations within the same module to reduce infor-
mation loss and improves encoding quality with deep 
supervision. Second, the DAF module is added at the 
bottom of encoding and decoding to highlight the criti-
cal feature information for location, channel, and fusion. 
Moreover, we replace the skip connection with the MSC 
module to transmit richer context semantic information. 
The decoding process is similar to encoding but only 
adds residual connection and deep supervision. These 
modules significantly improve the segmentation capabil-
ity of the network. The details of the proposed module 
structures will be described in the following subsections.

Enhanced down‑sampling (EDS) module
The encoding process of U-Net plays an important role. 
The output of each down-sampling layer serves as the 
information basis for subsequent convolution and is also 

one of the input sources for the up-sampling layer in 
decoding. The network gradually extracts abstract high-
level semantic information from rough low-level seman-
tic information by adding more convolution and pooling 
operations but still has the problem of information loss. 
Therefore, we proposed the EDS module, which has two 
aspects: (1) compensating for information loss and (2) 
controlling encoding quality, to overcome these issues.

The architecture of the EDS module is presented in 
Fig. 3. In Fig. 3, Xs ∈  RC×H×W is the input with the spa-
tial size s, and Hs ∈  RC/2×H/2×W/2 is the output and be pre-
sented as:

where Gs and Rs are the feature maps during convolution, 
F(·,·) indicates convolution operation, σ denotes batch 
normalization, w is the convolution weight, β is the con-
volution bias, and l and M presents ReLU activation and 
max pooling, respectively. The Eq.  (1) is also applied in 
the US Layer to fuse features in the encoder.
G1
s  is the low-level feature and G2

s  is the higher-level 
feature within Gs in which the previous studies usually 
ignored the differences between G1

s  and G2
s  . For brain 

tumor segmentation, low-level semantics can optimize 
the details within the tumor, while high-level semantics 
can help segment the tumor’s global area and contour. 
Therefore, the G1

s  and G2
s  are fused as:

where A ∈  RC×H×W is the fusion feature, v is the convo-
lution weight, g indicates the bias of convolution opera-
tion, ⊕  presents feature concatenating, and U is the 
upsampling operation. In addition, we design the deep 

(1)Hs = M(Gs + Rs) = M(l(σ (F(w2
s , l(σ (F(w

1
s ,Xs))))))+ l(σ (F(w3

s ,Xs)))+ βs)

(2)A = U(l(σ (F(v1s ,G
1
s )))⊕ l(σ (F(v2s ,G

2
s )))+ gs)

Fig. 2  Architecture of the proposed AANet
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supervision for A to achieve the goal of controlling fea-
ture quality.

Multi‑scale connection (MSC) module
The skip connections between the same scale of encod-
ing and decoding are the structural component of U-Net, 
where features from encoding are incorporated into the 
decoding process. The purpose is to merge the detail fea-
tures extracted from encoding into decoding and restore 
the advanced semantic information through decoding 
operations. However, directly extracting the output fea-
tures from encoding for simple addition cannot control 
the quality of the features, causing invalid noise features 
to spread in the network. Moreover, the context semantic 
information contained in the different levels of features is 
not fully explored.

In order to deliver high-quality features in the form 
of skip connections, we take A ∈ RC×H×W from the EDS 

module as input, and the output AMSC  ∈  RC×H×W will 
send to the corresponding up-sampling layers, the calcu-
lating process can be formulated as:

where Aʹ indicates the fusion feature, which concatenates 
Ak×k, Ak×k is A through k × k convolution layers, p and d 
denote the size of padding and dilated rate, ⊕ presents 
feature concatenating, m is convolution weight, and α is 
convolution bias. The architecture of the MSC module is 
presented in Fig. 4.

(3)A′
= A1×1 ⊕ A

p,d=6
3×3 ⊕ A

p,d=12
3×3 ⊕ A

p,d=18
3×3

(4)AMSC = l
(

σ
(

F
(

m,A′
)))

+ α

Fig. 3  The architecture of the EDS module

Fig. 4  The architecture of the MSC module
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Dual‑attention fusion (DAF) module
The U-Net increases the number of convolution kernels 
to 1024 at the bottom connection to increase high-level 
information. However, the 3 × 3 convolution operation 
extracts features through a limited field of view with-
out considering the correlation between the feature 
locations and channels. Therefore, we propose a Dual-
Attention fusion (DAF) module, which applies two 
3 × 3 convolutions for high-level semantic information, 
together with dual-attention heads to acquire position-
ally and channel attention features, respectively. The 
structure is shown in Fig. 5.

The dual attention head includes a positional atten-
tion module and a channel attention module, as 

presented in Fig. 6. The positional attention (PA) mod-
ule is on the upper half of Fig.  6. In Fig.  6, we toked 
X4
s ∈ RC×H×W as input and obtained the output EA 

∈   RC×H×W from the PA module. This process of PA is 
summarized as:

where S ∈ R(H×W)×(H×W) is spatial attention map, sji is 
used to measure the correlation between position i and 

(5)S ∈ RH×W×H×W
: sji =

exp
(

Ai · Bj

)

∑N
i=1 exp

(

Ai · Bj

)

(6)EA ∈ RC×H×W
: EAj = α

N
∑

i=1

(

sjiCi

)

+ (X4
s )j

Fig. 5  The architecture of the DAF module

Fig. 6  The architecture of the dual-attention head
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position j, and the larger the value of sji means the higher 
the correlation. A  ∈ RC×(H×W), B ∈ RC×(H×W), and C ∈ R
C×(H×W) indicate the different metric through 1 × 1 con-
volution followed by reshaping from X4

s  . EA is the posi-
tion attention feature; EAj represents the weighted sum 
of original features with the feature correlation between 
position j and all positions, integrating contextual loca-
tion information into each point. α denotes scale factor.

The channel attention module locates on the lower half 
of Fig. 6, which does not use convolution to maintain the 
relationship between channels. The channel Attention 
module generates the output CA ∈ RB×C×H×W and its 
procedure is summarized as:

where M ∈ RC×C is channel attention map, mji is used 
to measure the correlation between channel i and chan-
nel j, and the larger the value of mji means the higher the 
correlation. A ∈ RB×(H×W)×C and C ∈ RB×C×(H×W) indi-
cate the different metric reshape from X4

s  , while B ∈ R
B×(H×W)×C is reshaped followed by mapping from X4

s  . 
Representing the weighted sum of original features with 
the feature correlation between channel j and all chan-
nels, which integrates the semantic dependence between 
channels into the feature map. β denotes scale factor.

Up‑Sampling Layer
Up-Sampling (US) Layer is similar to the EDS module’s 
horizontal structure, described in “Enhanced down-sam-
pling (EDS) module” section, and its structure is shown 
in Fig. 7. In Fig. 7, the residual connection is adopted in 

(7)M ∈ RC×C
: mji =

exp
(

Ai · Bj

)

∑C
i=1 exp

(

Ai · Bj

)

(8)CA ∈ RC×H×W
: CAj = β

C
∑

i=1

(

mjiCi

)

+ (X4
s )j

both US Layer and EDS modules, but the input sources 
are different. US Layers receive both feature maps from 
the previous US layer and MSC module at the same level. 
These feature maps firstly concatenate and executes 
Eq.  (1). Mainly, deep supervision is also applied to con-
trol decoder quality.

Loss function
This paper combines two kinds of loss functions to evalu-
ate the segmentation effect: Binary Cross-Entropy (LBCE) 
and Dice loss (LDice).

The equation of LBCE is defined as:

where yi denotes the prediction of pixel i (i = 1,…, N). If 
the prediction is consistent with the ground truth, then 
yi = 1, otherwise yi = 0. p(yi) is the probability when yi = 1.

LDice can be calculated by:

where T is the ground truth, P the prediction results, ε is 
the smoothing factor。

The final loss function used is designed as:

where α is constant and be set as 0.5.
We also apply L to evaluate the network when it car-

ries out deep supervision. The total loss of model (Ltotal) 
consists of four parts: the loss of the EDS module (Ldown), 
the loss of DAF module (Ldual), the loss of US layers (Lup), 
and the loss of final result (Lresult), and be formulated as:

(9)

LBCE = −
1

N

N
∑

i=1

yi · log(p(yi))+
(

1− yi
)

· log(1− p(yi))

(10)LDice =
2×

∑

T · P
∑

T 2 +
∑

P2 + ε

(11)L = αLBCE + LDice

Fig. 7  The architecture of the dual-attention head



Page 7 of 12Lin et al. BMC Med Imaging          (2021) 21:109 	

where λ1 and λ2 are constant, which are utilized to bal-
ance the contribution of each loss.

Results
In this section, we first introduce the dataset and param-
eters of the proposed network. Then we compare the 
performance of the proposed network with several 
state-of-the-art networks to prove the efficiency of our 
network.

Datasets and preprocessing
The BraTS2020 is an open dataset for brain tumor seg-
mentation, which contains four modalities: the native 
(T1), T2-weighted (T2), the post-contrast T1-weighted 
(T1ce), and fluid-attenuated inversion recovery (FLAIR) 
images, [24–26]. In addition, there are three regions in 
one modality: the green area presents for the peritumoral 
edema (ED), the yellow area presents for the GD-enhanc-
ing tumor (ET), and the red area presents the Necrotic 
and Non-Enhancing Tumor (NCR/NET), as shown in 
Fig. 7.

The dataset contains three subsets, training, valida-
tion, and testing subsets. Training, validation, and test-
ing subsets have 369, 125, and 166 MRIs with a size of 
240 × 240 × 155, respectively. However, the validation 
and testing subset do not have corresponding ground 
truth. Therefore, we redivide the training data to achieve 
training and testing in different models. First, we nor-
malized the original data to N(0,1) and then cropped 
with the center point as the original point to obtain the 
data blocks with a size of 155 × 160 × 160. Next, we slice 
data blocks along the Z-axis and generates 155 brain 
images of 160 × 160 for each sequence. Then, according 
to the order of slicing, we extract one slice from the four 
sequences respectively and combine the images into the 
size of 160 × 160 × 4.

(12)Ltotal = �1

(

Ldown + Lup
)

+ �2Ldual + Lresult
Implementation details
To ensure the comparability of experimental results, we 
set the training step as 100 with batch size 16 and use two 
GPU on both the proposed network and other networks. 
In order to prevent overfitting, we consider the strategy 
of the early stop and set the stop threshold as 20 based on 
the trend of validation accuracy. Moreover, we use Adam 
with an initial learning rate of 3e-4 as the network opti-
mizer and set λ1 and λ2 as 0.4 and 0.2. For the training 
data of BraTS2020, we redivided the data set proportion-
ally to obtain 17,519, 4,379, and 5,735 for training, valida-
tion, and testing. Notice that we use the same parameters 
setting and loss function as shown in Eq. 12 for all net-
works in the experiments.

Evaluation
We take four indexes to evaluate the segmentation accu-
racy for a comprehensive and objective evaluation of the 
results: Dice Coefficient, Precision, Sensitivity, and Haus-
dorff Distance. These indexes are defined as follows:

where TP, FP, and FN indicate true positive, false posi-
tive, and false negative. dH(·) denotes the operation of 
taking the minimum and the maximum. L and P present 
ground truths and predictions.

The main target of BraTS2020 is to consider the seg-
mentation results of three-part: enhancing tumor (ET), 

(13)Dice Coefficient =
2× TP

2× TP + FP + FN

(14)Precision =
TP

TP + FP

(15)Sensitivity =
TP

TP + FN

(16)Hausdorff Distance = dH (L,P)

(a) T1 (b) T2 (c) T1ce (d) FLAIR (e) Label on T1
Fig. 8  Visualization of one patient in four modalities in BraTS2020 training Dataset. (a) T1 MRI, (b) T2 MRI, (c) T1ce, (d) FLAIR MRI, and the label shown 
in T1 MRI
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core tumor (CT), and whole tumor (WT) in which ET, 
CT, WT represents as “red,” “red + yellow,” and “red + yel-
low + green” as shown in Fig.  8. Therefore, we evaluate 
the segmentation results of each part with these four 
indexes.

Performance comparison
To demonstrate the performance of the proposed net-
work, we compare several state-of-the-art networks with 
open-source code. We selected classic networks including 
FCN8s, U-Net, SegNet, andPSPNet; networks released 
in recent years like Refinenet, Deeplabv3, UNet2+, and 
DeepResUnet, the most advanced networks like CE-Net, 
CLCINet, and UNet3+, as the comparisons.

The comparison results are shown in Table  1. In 
Table  1, our network, AANet, achieves a remarkable 
performance on ET, CT, and WT with various indexes 
in which the AANet’s precision and Hausdorff are 1.41% 
and 0.66 higher than U-Net on ET. Although our method 
is 0.08% lower than the best approach (RefineNet) on 
CT with the Sensitivity index, it is better than other net-
works’ results on WT, CT, and ET with various indexes.

Figure  9 shows the visualization results of the seg-
mentation with different networks. FCN8s, PSPNet, 
and DeeplabV3 could only segment the general area of 
glioma, which differed significantly compared to the 
ground truth. SegNet, RefineNet, and CE-Net further 
refined the boundary contour of different tissues in gli-
oma but did not segment the scattered edema area. On 
the other hand, UNet2+, DeepResUnet, CLCINet, and 
UNet3 + were very close to the ground truth, sensitive 
to discrete edema areas, and prone to segmentation con-
fusion between different tumor regions. On this basis, 

AANet can restore the tortuous contour at the junction 
of different tumor regions and divide different tumor 
regions accurately and achieve a better overall segmen-
tation effect. Therefore, AANet has a better MRI seg-
mentation effect for a brain tumor compared with other 
networks.

Discussion
We conduct the ablation experiments, including (1) 
effectiveness of basic modules, (2) ablation of MSC mod-
ules position, (3) comparison of DAF modules to verify 
the scientificity of each module.

Effective of basic modules
We firstly take the U-Net as the baseline, which is our 
backbone, to demonstrate the effect of the proposed 
modules and present the results in Table 2. We add the 
proposed modules step by step with only Lresult and then 
use deep supervisions with Ldown and Lup. In Table 2, the 
networks with the proposed modules achieve significant 
improvements compare to the baseline. EDS module 
plays a vital role in boosting the network’s performance 
mostly, which is 3.9% higher than U-Net in the mean 
of Dice. It reflects that the EDS module can extract and 
transport useful information during training.

Furthermore, the network with deep supervision 
achieves the best results in all indexes, demonstrating the 
benefits of controlling the feature quality. Networks with 
Ldown and Lup achieve optimal in most indexes and subop-
timal in other indexes. Therefore, we simultaneously con-
sider these four modules with deep supervision in AANet 
as our framework.

Table 1  Comparison on different networks with various indexes

The best results are marked with bold
** ↑ Indicates that the greater the index value, the better the network segmentation performance.↓ Indicates that the smaller the index value, the better

The network segmentation performance

Method Year Dice Coefficient↑ Precision↑ Sensitivity↑ Hausdorff Distance↓

WT CT ET WT CT ET WT CT ET WT CT ET

FCN8s [27] 2015 0.5621 0.8317 0.4954 0.5644 0.8848 0.4896 0.9509 0.9037 0.9224 2.1830 1.1101 2.3330

UNet [15] 2015 0.7711 0.8386 0.6984 0.7806 0.9098 0.6767 0.9206 0.8799 0.8873 1.9039 1.2931 2.1166

SegNet [28] 2016 0.7655 0.8398 0.6907 0.7872 0.9260 0.6904 0.9279 0.8669 0.9066 1.3939 1.1268 1.9274

PSPNet [29] 2016 0.8177 0.8597 0.7394 0.8469 0.9394 0.7506 0.9013 0.8716 0.8629 1.6102 1.0735 1.7431

Refinenet [30] 2017 0.6974 0.8641 0.6371 0.7029 0.9165 0.6344 0.9472 0.9127 0.9212 1.7706 1.0306 1.9197

DeepLabV3 [31] 2017 0.6438 0.8484 0.5670 0.653 0.9166 0.5673 0.9250 0.8854 0.8852 2.2162 1.1124 2.3405

UNet 2 + [18] 2018 0.7881 0.8679 0.7253 0.8091 0.9323 0.7306 0.9369 0.8953 0.9168 1.4899 1.0451 1.6639

DeepResUNet [32] 2018 0.8061 0.8869 0.7510 0.8205 0.9456 0.7513 0.9452 0.9089 0.9289 1.4491 0.9693 1.5954

CE-Net [33] 2019 0.7299 0.857 0.6706 0.7423 0.9114 0.6725 0.9390 0.9038 0.9160 1.6851 1.0729 1.8375

CLCINet [10] 2019 0.7502 0.8562 0.6952 0.7585 0.917 0.6934 0.9514 0.9092 0.9334 1.6435 1.0452 1.7664

UNet 3 + [20] 2020 0.7992 0.8762 0.7412 0.8122 0.9379 0.7380 0.9472 0.9044 0.9322 1.4692 0.9968 1.6368

AANet - 0.8691 0.8956 0.8142 0.8855 0.9516 0.8177 0.9496 0.9119 0.9335 1.3078 0.9336 1.4561
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(a)T1 (b)T1GD (c)T2 (d)FLAIR              (e)lable             (f)FCN8s (g)UNet

(h)PSPNet       (i)SegNet (j)RefineNet    (k)DeepLabV3  (l)UNet2+ (m)CE-Net (n)CLCINet 

(o)DeepResUNet (p)UNet3+ (q)AANet   
Fig. 9  Visualization of segmentation results with different networks

Table 2  The ablation experiments of basic modules

The best results are marked with bold
** ↑ indicates that the greater the index value, the better the network segmentation performance.↓ indicates that the smaller the index value, the better

The network segmentation performance. The Ldual in the DAF module is considered as an inherent attribute

EDS UPL DAF MSC Ldown Lup Dice↑ Precision↑ Sensitivity↑ Hausdorff↓

WT CT ET WT CT ET WT CT ET WT CT ET

Baseline 0.771 0.839 0.698 0.781 0.910 0.677 0.921 0.880 0.887 1.904 1.293 2.117

 +  0.800 0.883 0.741 0.814 0.937 0.743 0.946 0.913 0.926 1.488 0.981 1.650

 +   +  0.808 0.880 0.751 0.828 0.935 0.760 0.943 0.913 0.922 1.423 0.986 1.569

 +   +   +  0.818 0.874 0.758 0.836 0.932 0.760 0.944 0.902 0.926 1.401 1.033 1.574

 +   +   +   +  0.829 0.868 0.770 0.841 0.924 0.770 0.946 0.904 0.925 1.397 1.064 1.560

 +   +   +   +   +  0.849 0.891 0.849 0.860 0.945 0.792 0.952 0.913 0.934 1.360 0.929 1.507

 +   +   +   +   +   +  0.869 0.896 0.814 0.886 0.952 0.818 0.950 0.912 0.934 1.308 0.934 1.456

Table 3  The ablation experiments of MCS module’s position

The best results are marked with bold
** 1 ~ 4 are the positions of the MSC module. The smaller the feature map processed by the MSC module, the larger the corresponding position number value. For 
example, 1 represents the position connected with the first EDS module with the largest feature map

1 2 3 4 Dice↑ Precision↑ Sensitivity↑ Hausdorff↓

WT CT ET WT CT ET WT CT ET WT CT ET

Baseline 0.806 0.886 0.750 0.814 0.938 0.745 0.954 0.913 0.938 1.485 0.942 1.633

√ 0.856 0.890 0.799 0.872 0.941 0.803 0.947 0.913 0.929 1.343 0.940 1.498

√ √ 0.846 0.890 0.790 0.858 0.949 0.788 0.951 0.907 0.937 1.371 0.953 1.526

√ √ √ 0.844 0.896 0.791 0.855 0.946 0.792 0.951 0.919 0.932 1.373 0.924 1.513

√ √ √ √ 0.869 0.896 0.814 0.886 0.952 0.818 0.950 0.912 0.934 1.308 0.934 1.456
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Ablation of MSC modules position
To understand the effect of the proposed MCS module, 
we consider taking various numbers of the MCS mod-
ules, setting them at different positions of the network, 
and demonstrating the analyzing results in Table 3. In 
Table 3, the network with four MSC modules achieves 
the best segmentation results with all indexes except 
for the Sensitivity index. However, the network’s per-
formance with four-position MSC modules is 0.4% 
lower than baseline in the WT and ET of Sensitivity 
and is 0.7% lower than the network with three-position 
MSC modules in CT of Sensitivity. The main reason 
is that the Sensitivity index focuses on presenting the 
model’s ability to identify positive examples. Moreover, 
the semantic information captured by the MSC mod-
ule is becoming increasingly scarce with the reduction 
of the size of the feature map. Furthermore, the dilated 
convolution may capture invalid information and thus 
affect the prediction of the true positive.

Comparison of DAF modules
In this subsection, we analyze three variants of the 
DAF (DAF1, DAF2, and DAF3) module, demonstrate 
the frameworks of these variants in Fig.  10, and pre-
sent the quantitative results in Table  4. In Fig.  10, 
DAF1 is the standard version used in AANet; DAF2 
separately adds EA and CA with another feature map 
and then concatenates two parts; DAF3 absorbs the 
characteristics of DAF1 and DAF2. In Table  4, DAF1 
outperforms the other two DAFs in most segmentation 

results. Although DAF3 also achieved the best accu-
racy in some regions of indexes, the calculation param-
eters are more outstanding than DAF1. Therefore, we 
adopt DAF1 as the underlying structure of AANet.

Conclusion
This paper proposes an effective Aggregation-and-
Attention Network (AANet) for Brain Tumor Segmenta-
tion based on U-Net. In order to solve the problems of 
unclear boundary and easy confusion of tumor division 
in the segmentation processing, we first proposed an 
enhanced down-sampling (EDS) module, which compen-
sates for the loss of information and controls the coding 
quality. Moreover, we design the multi-scale connection 
(MSC) module to replace the skip-connection. The MSC 
module considers the multi-receptive field to extract 
the context semantic information, and that is sent to 
the downsampling to strengthen the semantic context. 
The dual attention fusion (DAF) module is designed to 
increase the attention information of positions and chan-
nels. Experimental results show that the performance 
of the proposed AANet is better than the most com-
monly used and advanced network frameworks on the 
BraTS2020 dataset.

To the best of our knowledge, there are existing intel-
ligent recognition technologies to solve the problems 
of tumor cell recognition [34–36] but lost the intelli-
gent segmentation technology to identify brain tumor 
cells existing in the brain edema area. Moreover, intel-
ligent segmentation technology has been applied in 
the segmentation of COVID-19 infected areas of the 

Fig. 10  The architecture of DAFs

Table 4  The comparison of DAF modules’ variants

The best results are marked with bold

Module Dice↑ Precision↑ Sensitivity↑ Hausdorff↓

WT CT ET WT CT ET WT CT ET WT CT ET

DAF1 0.869 0.896 0.814 0.886 0.952 0.818 0.950 0.912 0.934 1.308 0.934 1.456
DAF2 0.853 0.891 0.796 0.870 0.949 0.799 0.947 0.910 0.930 1.346 0.944 1.493

DAF3 0.857 0.898 0.800 0.871 0.950 0.803 0.950 0.912 0.930 1.333 0.919 1.480
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lung on CT and X-ray images [37], similar to judging 
whether there are tumor cells in non-enhanced tumors 
and tumor edema areas. Therefore, we will attempt to 
collect the histopathological image of glioma in non-
enhanced tumors and tumor edema areas to construct 
a glioma tumor cells dataset and verify the ability of 
AANET in cell segmentation to improve our segmenta-
tion algorithm in the future.

Abbreviations
AANet: Aggregation-and-Attention Network; EDS module: Enhanced down-
sampling module; US Layer: Up-Sampling Layer; MSC module: Multi-scale 
connection module; DAF module: Dual-attention fusion module; CNN: Convo‑
lutional neural network; VAE: Variational Autoencoder; PA: Positional attention; 
CA: Channel attention; ED: Peritumoral edema; ET: Enhancing tumor; NCR/
NET: Necrotic and Non-Enhancing Tumor; CT: Core tumor; WT: Whole tumor; 
ET: Enhanced tumor.

Acknowledgements
Not applicable.

Authors information
Chih-Wei Lin received the B.S. degree in civil engineering and the B.E. degree 
in computer science and information engineering from Tamkang University, 
Taipei, in 2004, the M.S. degrees in civil engineering and in computer science 
and information engineering from National Central University, Taoyuan, 
Taiwan, in 2007, and the Ph.D. degree in computer science and information 
engineering from National Taiwan University, Taipei, in 2015. He has been with 
the College of Computer and Information Sciences, Fujian Agriculture and 
Forestry University, Fuzhou, China, since 2015. His research interests include 
image analysis, biometric verification, medical imaging, video surveillance, 
machine learning, and deep learning.

Yu Hong received the B.S. degree in statistics from Fujian Agriculture and 
Forestry University, China, in 2018, where she is currently pursuing the M.S. 
degree. Her research interests include pattern recognition, image processing, 
medical imaging, machine learning, and deep learning.

Jinfu Liu received the B.S. degree in mathematics from Fujian Normal 
University, China, in 1990, the M.S. degree in resources and environment from 
the Fujian Agriculture and Forestry University, China, in 1997, and the Ph.D. 
degree in resources and environment from Northeast Forestry University, 
China, in 2004. In 1990, he joined the Department of Forestry Industry, Fujian 
Agriculture and Forestry University. He is currently a Professor at the College 
of Computer and Information Sciences, Fujian Agriculture and Forestry 
University, China. His research interests are in the area of forest management, 
ecology, and wildlife conservation and utilization.

Authors’ contributions
CWL and YH designed the framework for brain tumor segmentation. CWL and 
YH designed the experiments and analyzed the results. CWL and YH analyzed 
the experimental dataset. CWL was a major contributor in writing and editing 
the manuscript. CWL and JL edited the manuscript. All authors read and 
approved the final manuscript.

Funding
This research was funded by the China Postdoctoral Science Foundation 
under Grant 2018M632565, the Channel Postdoctoral Exchange Funding 
Scheme, and the Youth Program of Humanities and Social Sciences Founda‑
tion, Ministry of Education of China under Grant 18YJCZH093.

Data availability
The datasets analyzed during the current study are available in the BraTS2020 
repository, https://​www.​cbica.​upenn.​edu/​BraTS​20/.

Ethics approval and consent to participate
Not applicable.

Consent to publish
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 College of Computer and Information Science, Fujian Agriculture and For‑
estry University, Fuzhou, China. 2 College of Forestry, Fujian Agriculture and For‑
estry University, Fuzhou, China. 3 Forestry Post-Doctoral Station of Fujian 
Agriculture and Forestry University, Fuzhou, China. 4 Key Laboratory for Ecology 
and Resource Statistics of Fujian Province, Fuzhou, China. 

Received: 27 March 2021   Accepted: 30 June 2021

References
	1.	 Othman MFB, Abdullah NB, Kamal NFB. MRI brain classification using 

support vector machine. In: 2011 fourth international conference on 
modeling, simulation and applied optimization. IEEE; 2011. p. 1–4.

	2.	 Olesen J, Leonardi M. The burden of brain diseases in Europe. Eur J Neu‑
rol. 2003;10(5):471–7.

	3.	 Claudio L, Raine CS, Brosnan CF. Evidence of persistent blood–brain 
barrier abnormalities in chronic-progressive multiple sclerosis. Acta 
Neuropathol. 1995;90(3):228–38.

	4.	 Koizumi H, Maki A, Yamamoto T, et al. Non-invasive brain-function imag‑
ing by optical topography. TrAC Trends Anal Chem. 2005;24(2):147–56.

	5.	 Balafar MA, Ramli AR, Saripan MI, et al. Review of brain MRI image seg‑
mentation methods. Artif Intell Rev. 2010;33(3):261–74.

	6.	 Xue H, Srinivasan L, Jiang S, et al. Automatic segmentation and 
reconstruction of the cortex from neonatal MRI. Neuroimage. 
2007;38(3):461–77.

	7.	 Han X, Xu C, Rettmann ME et al. Automatic segmentation editing for 
cortical surface reconstruction. In: Proceedings of SPIE—the international 
society for optical engineering; 2001.

	8.	 Despotović I, Goossens B, Philips W. MRI segmentation of the human 
brain: challenges, methods, and applications. In: Computational and 
mathematical methods in medicine, 2015; 2015.

	9.	 Otsu N. A threshold selection method from gray-level histograms. IEEE 
Trans Syst Man Cybern. 2007;9(1):62–6.

	10.	 Kapur JN, Sahoo PK, Wong AKC. A new method for gray-level picture 
thresholding using the entropy of the histogram. Comput Vis Graph 
Image Proces. 1985;29(3):273–85.

	11.	 Dogdas B, Shattuck DW, Leahy RM. Segmentation of skull and scalp in 
3-D human MRI using mathematical morphology. Hum Brain Mapp. 
2005;26(4):273–85.

	12.	 Ng HP, Ong SH, Foong KWC et al. Medical image segmentation using 
k-means clustering and improved watershed algorithm. In: 2006 IEEE 
Southwest symposium on image analysis and interpretation. IEEE; 2006. 
p. 61–5.

	13.	 Liao L, Lin T, Li B. MRI brain image segmentation and bias field correction 
based on fast spatially constrained kernel clustering approach. Pattern 
Recogn Lett. 2008;29(10):1580–8.

	14.	 Dolz J, Ayed IB, Yuan J, et al. HyperDense-Net: a hyper-densely connected 
CNN for multi-modal image segmentation. IEEE Trans Med Imaging. 
2018;38(5):1116–26.

	15.	 Ronneberger O, Fischer P, Brox T. U-Net: Convolutional networks for 
biomedical image segmentation. In: International conference on medical 
image computing and computer-assisted intervention. Cham: Springer; 
2015.

	16.	 Xiao X, Lian S, Luo Z et al. Weighted Res-UNet for high-quality retina ves‑
sel segmentation. In: 2018 9th international conference on information 
technology in medicine and education (ITME). IEEE Computer Society; 
2018.

	17.	 Ibtehaz N, Rahman MS. MultiResUNet : rethinking the U-Net architec‑
ture for multimodal biomedical image segmentation. Neural Netw. 
2020;121:74–87.

https://www.cbica.upenn.edu/BraTS20/


Page 12 of 12Lin et al. BMC Med Imaging          (2021) 21:109 

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

	18.	 Zhou Z, Siddiquee MMR, Tajbakhsh N, et al. UNet++: redesigning skip 
connections to exploit multiscale features in image segmentation. IEEE 
Trans Med Imaging. 2020;39(6):1856–67.

	19.	 Huang G, Liu Z, Van Der Maaten L et al. Densely connected convolutional 
networks. In: Proceedings of the IEEE conference on computer vision and 
pattern recognition. 2017. p. 4700–8.

	20.	 Huang H, Lin L, Tong R et al. UNet 3+: a full-scale connected UNet for 
medical image segmentation. In: ICASSP 2020—2020 IEEE international 
conference on acoustics, speech and signal processing (ICASSP). IEEE; 
2020.

	21.	 Tang J et al. Variational-autoencoder regularized 3D MultiResUNet for the 
BraTS 2020 brain tumor segmentation.

	22.	 Myronenko A. 3D MRI brain tumor segmentation using autoencoder 
regularization. In: International MICCAI brainlesion workshop. Cham: 
Springer; 2018. p. 311–20.

	23.	 Jiang Z, Ding C, Liu M et al. Two-stage cascaded U-Net: 1st place solution 
to BraTS challenge 2019 segmentation task. Brainlesion: Glioma, Multiple 
Sclerosis, Stroke and Traumatic Brain Injuries. 2020.

	24.	 Menze BH, Jakab A, Bauer S, et al. The multimodal brain tumor 
image segmentation benchmark (BRATS). IEEE Trans Med Imaging. 
2014;34(10):1993–2024.

	25.	 Bakas S, Akbari H, Sotiras A, et al. Advancing the cancer genome atlas 
glioma MRI collections with expert segmentation labels and radiomic 
features. Sci Data. 2017;4:170117.

	26.	 Bakas S, Reyes M, Jakab A et al. Identifying the best machine learning 
algorithms for brain tumor segmentation, progression assessment, and 
overall survival prediction in the BRATS challenge. arXiv preprint arXiv:​
1811.​02629. 2018.

	27.	 Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic 
segmentation. In: Proceedings of the IEEE conference on computer vision 
and pattern recognition. 2015. p. 3431–40.

	28.	 Badrinarayanan V, Kendall A, Cipolla R. Segnet: a deep convolutional 
encoder-decoder architecture for image segmentation. IEEE Trans Pattern 
Anal Mach Intell. 2017;39(12):2481–95.

	29.	 Zhao H, Shi J, Qi X et al. Pyramid scene parsing network. In: Proceedings 
of the IEEE conference on computer vision and pattern recognition. 2017. 
p. 2881–90.

	30.	 Lin G, Milan A, Shen C et al. RefineNet: multi-path refinement networks 
for high-resolution semantic segmentation. In: 2017 IEEE conference on 
computer vision and pattern recognition (CVPR). IEEE. 2017.

	31.	 Chen LC, Papandreou G, Schroff F et al. Rethinking atrous convolution for 
semantic image segmentation. arXiv preprint arXiv:​1706.​05587. 2017.

	32.	 Zhang Z, Liu Q, Wang Y. Road extraction by deep residual U-Net. IEEE 
Geosci Remote Sens Lett. 2017;PP(99):1–5.

	33.	 Gu Z, Cheng J, Fu H, et al. CE-Net: context encoder network for 2D medi‑
cal image segmentation. IEEE Trans Med Imaging. 2019;38(10):2281–92.

	34.	 Zhang YD, Satapathy SC, Guttery DS, et al. Improved breast cancer 
classification through combining graph convolutional network and 
convolutional neural network. Inf Process Manag. 2021;58(2):102439.

	35.	 Coudray N, Ocampo PS, Sakellaropoulos T, et al. Classification and muta‑
tion prediction from non–small cell lung cancer histopathology images 
using deep learning. Nat Med. 2018;24(10):1559–67.

	36.	 Rubin M, Stein O, Turko NA, et al. TOP-GAN: label-free cancer cell clas‑
sification using deep learning with a small training set. Med Image Anal. 
2019;57:176–85.

	37.	 Alom MZ, Aspiras T, Taha TM et al. Skin cancer segmentation and clas‑
sification with NABLA-N and inception recurrent residual convolutional 
networks. In: IEICE transactions on fundamentals of electronics, commu‑
nications and computer sciences. 2019. abs/​1904.​11126.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub‑
lished maps and institutional affiliations.

https://arxiv.org/abs/1811.02629
https://arxiv.org/abs/1811.02629
https://arxiv.org/abs/1706.05587
https://arxiv.org/abs/1904.11126

	Aggregation-and-Attention Network for brain tumor segmentation
	Abstract 
	Background: 
	Methods: 
	Results: 
	Conclusions: 

	Background
	Method
	Aggregation-and-Attention Network
	Enhanced down-sampling (EDS) module
	Multi-scale connection (MSC) module
	Dual-attention fusion (DAF) module
	Up-Sampling Layer
	Loss function

	Results
	Datasets and preprocessing
	Implementation details
	Evaluation
	Performance comparison

	Discussion
	Effective of basic modules
	Ablation of MSC modules position
	Comparison of DAF modules

	Conclusion
	Acknowledgements
	References


