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Abstract: The metalloprotease PrtV from Vibrio cholerae serves an important function for the ability

of bacteria to invade the mammalian host cell. The protein belongs to the family of M6 proteases,
with a characteristic zinc ion in the catalytic active site. PrtV constitutes a 918 amino acids (102

kDa) multidomain pre-pro-protein that undergoes several N- and C-terminal modifications to form

a catalytically active protease. We report here the NMR structure of the PrtV N-terminal domain
(residues 23–103) that contains two short a-helices in a coiled coil motif. The helices are held

together by a cluster of hydrophobic residues. Approximately 30 residues at the C-terminal end,

which were predicted to form a third helical structure, are disordered. These residues are highly
conserved within the genus Vibrio, which suggests that they might be functionally important.
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Introduction

Cholera is an infection in the small intestine caused

by the motile Gram-negative bacterium Vibrio chol-

erae.1 During an infection, V. cholerae pathogenicity

genes code for virulence factors that are directly or

indirectly involved in the virulence of the bacteria.

These factors include proteases that attack the tar-

get cells by breaking down tissue barriers and cellu-

lar matrix components.2–4 One of these proteases is

the secreted metalloprotease PrtV that exhibits a

very potent cytotoxic effect.5,6

PrtV belongs to the M6 peptidase family and is

natively expressed as a 102 kDa full-length pre-pro-

protein (918 amino acids). In addition to the signal

sequence, it consists of four domain types: the N-
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terminal domain (residues 23–103), the catalytic

active M6 domain (residues 106–749), two polycystic

kidney disease domains, PKD1 (residues 755–838)

and the PKD2 (residues 839–918).5,6 M6 constitutes

the catalytic metalloprotease domain with the charac-

teristic HexxHxxgxxD Zn21-binding motif.7 PKD

domains are found in a variety of eukaryotic and pro-

karyotic proteins and consist of relatively short

domains of 80–90 amino acids; they are usually found

in the extracellular parts of proteins where they are

involved in protein–protein or protein–carbohydrate

interactions. It has been suggested that calcium bind-

ing at the PKD1 domain controls domain linker flexi-

bility, and plays a regulatory role in the auto-

proteolytic activity of the 81 kDa pro-protein.8

Sequence analysis shows that the N-terminal domain

is present in many proteases from gammaproteobacte-

ria; however, its specific function is unidentified.

Atomic resolution structures of the N-terminal

domain are needed to elucidate how the N-terminal

domain contributes to PrtV function. In this study, we

present the NMR structure of the N-terminal domain.

Results

NMR spectroscopy of the N-terminal domain
The solution structure of the N-terminal domain was

solved at the Swedish NMR Centre (www.nmr.gu.se).

The 1H–15N heteronuclear single quantum correlation

(HSQC) NMR spectrum of the PrtV 83 amino-acid N-

terminal domain exhibited characteristics of a par-

tially folded protein. The spectrum was well dispersed,

but exhibited a signal clustering characteristic of a dis-

ordered protein. The total number of observed signals

was fewer than expected from the sequence, either due

to overlapping or broadening beyond detection. Simi-

larly, peak shapes showed a distribution from narrow

to broad, and intensities varied considerably.

NMR-derived structure of the N-terminal

domain

Structure statistics for the 20 lowest energy con-

formers are summarized in Table I. The first 8 resi-

dues from the N-terminal end and the last 32

residues from the C-terminal end of the domain

exhibited random-coil chemical shifts with non-

uniform intensities suggesting that these regions

are disordered. Remaining residues (residues 31–70)

exhibited highly dispersed chemical shifts with uni-

form intensities that indicated a folded core struc-

ture [Fig. 1(A)]. A ribbon structure, representative

of the final ensemble of NMR-derived structures of

the N-terminal domain is shown in Figure 1(B). The

main chain structure contains two alpha helices: a1

(residues Val31-Gly45) and a2 (residues Asp53-

Ser70). The first helix a1 is bent and the first turn

has a 310-helical geometry. The two helices are con-

nected by a well-defined loop region comprising resi-

dues Gln46-Ser52. The C-terminal part of a1

(residues Leu37-Gly45) packs against the C-terminal

part of a2 at an angle of about 908. This is in accord-

ance with the general rule for packing interactions

between a helices, that is, the ridges on one helix fit

into the grooves of the other, and vice versa. In this

area, the two helices are held together by hydropho-

bic interactions between conserved amino acids [Fig.

2(A,B)]. A space-filling representation of the N-

terminal domain reveals a cluster of hydrophobic

and basic residues at the N- and C-terminal ends of

the folded structure, whereas the loop region of the

motif is more negatively charged [Fig. 1(C)].

Discussion

The secreted metalloprotease PrtV is a potent viru-

lence protein of V. cholerae causing immediate cyto-

toxic effects during infection.6 The function of its N-

terminal domain is unknown, but its sequence is

highly conserved among members of the genus Vibrio,

and it also exists in proteases from other gammapro-

teobacteria like Moriella and Marinomonas [Fig.

2(A)]. The solution structure of the N-terminal

domain comprises a coiled-coil of two well-defined hel-

ices that correspond to two of the three predicted sec-

ondary structural elements [Fig. 2(B)]. Interestingly,

the predicted third helix that is flexible in the NMR

structure comprises more conserved residues than the

folded helix a2. Structural similarity searches using

the DALI server12 identified no real hits. The top

DALI hits with z-scores below 3 and sequence identity

less than 10% comprised high mobility group (HMG)

proteins [e.g., pdb code 3nm9 and 1j3c, Fig. 2(C)].

Interestingly, these DNA-binding proteins have

extended C-terminal helices rich in lysines and argi-

nines that interact with the DNA minor groove. A hel-

ical wheel of residues 62–95 in the N-terminal domain

shows that the predicted C-terminal helix would be

Table I. Structural Statistics for the Ensemble of 20
Calculated Structures of PrtV N-Terminal Domain

Restraints for structure calculation
NOE restraints (total) 656

Intra (|i-j|50) 222
Medium (1�|i 2 j|�4) 385
Long (|i 2 j|>4Þ 49

Hydrogen bond restraints 52
Dihedral angle constraints 48

Cyana target function 2.2
Ramachandran plot (residues 31–70)

Most favored regions 95.8%
Additionally allowed regions 4.2%
Generously allowed regions 0.0%
Disallowed regions 0.0%

RMSD of atom position (residues 31–70)
All backbone atoms:

a-helical regions 0.7 6 0.25 Å
All heavy atoms:

a-helical regions 1.4 6 0.25 Å
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amphiphilic with aligned lysine residues forming a

highly positively charged side [Fig. 2(D)]. This led us

to test the DNA-binding ability of the N-terminal

domain; however, the domain does not seem to bind

unspecifically to the minor groove DNA [Fig. 2(E)].

Possibly the conserved and positively charged lysine

residues provide a region involved in membrane asso-

ciation (e.g., anchored to the membrane via lysine

snorkeling)—this hypothesis needs to be tested.

Methods

Expression and purification of N-terminal

domain
The cloning, expression, and purification of the PrtV

N domain construct (residues 23–103) is described

elsewhere.13 In brief, the N-terminal domain was

cloned into the pET1a-TrxA vector14 and overex-

pressed in E. coli Bl21 (DE3) pLysS (Novagen) cells.

The protein was purified by affinity chromatography

on a Ni-NTA agarose column (Qiagen), cation

exchange chromatography on a MonoS 5/5 column

(GE Healthcare), followed by a Superdex 200-16/60

size exclusion column (GE Healthcare). The protein is

very soluble and can be concentrated to>100 mg/mL.

Pure fractions of the PrtV N domain were pooled and

concentrated to 20 mg/mL in 20 mM Tris pH 7.5 and

100 mM NaCl. From 1 L media �10 mg of protein was

obtained.

Electrophoretic mobility shift assay
DNA–protein interaction was examined by a gel retar-

dation assay using purified N-terminal PrtV protein.

As substrates for DNA binding, 400 bp PCR products

containing the promoter regions of vca0107 and

vc0017 genes of V. cholerae wild type strain A1552

were used. A known H-NS binding promoter and puri-

fied H-NS protein (4 and 12 mM) were used as the posi-

tive control in the electrophoretic mobility shift assay.

The reaction buffer containing 25 mM 4-(2-hydrox-

yethyl)-1-piperazineethanesulfonic acid (HEPES) (pH

7.3), 0.1 mM ethylenediaminetetraacetic acid (EDTA),

5 mM dithiothreitol (DTT), 10% glycerol, 50 mM KCl,

and 0.1 mg of poly(dIdC) non-specific competitor DNA

was used for the assay. Purified PrtV protein (4 and

12 mM) or H-NS protein (4 and 12 mM) were incubated

with 100 ng of PCR products for 20 min at 208C. Sam-

ples were loaded onto a 6% Tris-glycine gel and DNA

was visualized by ethidium bromide staining.

Isotope labeling

Expression of PrtV N-terminal domain for NMR anal-

ysis was done in 1 L of M9 minimal media supple-

mented with 15NH4Cl (0.5 g/L media) as the sole

nitrogen source, 13C-glucose (1 g/L media) as the sole

carbon source, and trace elements as specified.13

Labeled PrtV N-terminal domain expression was

induced and protein purified as described for the unla-

beled protein.

Structure calculation

Samples of the recombinant PrtV N-terminal domain

(0.7 mM) were prepared in 90%/10% H2O/D2O or

Figure 1. NMR-derived structure of the PrtV N-terminal

domain. A: The 20 lowest-energy conformers of the N

domain with their backbones (residues 31–70) superimposed.

The first 8 N-terminal residues and the last 32 C-terminal res-

idues are not folded in the structure. B: Ribbon representa-

tion of the folded N-terminal domain structure closest to the

average structure. The structure is shown in two views

rotated by 908. The pink helix includes residues 31–45 (a1)

and the blue residues 53–70 (a2). C: Accessibility and elec-

trostatic potential of surfaces of the structures are presented

in (B). The loop side is more negatively charged, whereas the

N- and C-terminal side surfaces are hydrophobic/positively

charged. An interactive view is available in the electronic

version of the article.

This figure also includes an iMolecules 3D interactive version

that can be accessed via the link at the bottom of this figure’s

caption.
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Figure 2. A: Sequence alignment (Blast9) of the N-terminal domain of PrtV from V. cholerae. AET29433.1; V. caribbenthicus,

WP_009601447.1; V. nigripulchritudo, WP_004405586.1; Moritella sp. PE36, WP_006031551.1; Marinomonas sp.,

WP_009832723.1. The sequence identity to V. cholera is 59% (for 83 amino acids), 47% (for 76 amino acids), 54% (for 83 amino

acids), 43% (for 81 amino acids), respectively. The secondary structure elements from the current structure are shown in black

(H, a-helices). Secondary structure elements predicted for V. cholerae with jpred310 are shown in red (H, a-helices). Conserved

residues that build the hydrophobic core in the V. cholerae structure are highlighted in cyan. B: Packing of the N-terminal domain

hydrophobic core. C: Superposition of N-terminal model (residues 28–98, light-blue) with HMG proteins from Drosophila mela-

nogaster (orange; pdb:3nm9) and Sus scrofa (gold; pdb:1j3c). Conserved, positively charged residues in the N-terminal domain

predicted to form an a-helix are labeled. D: Helical wheel over residues 78–95 calculated with Heliqust.11 E: Gel mobility shift

assays indicated no unspecific binding of the N-terminal domain to a 400 bp PCR product containing the promoter regions of

two genes of a V. cholerae wild type strain. As a control, binding of H-NS protein to the DNA is shown.
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100% D2O with 20 mM sodium phosphate (pH 7.0).

Sequential assignment was obtained using incremen-

tal non-uniform sampling combined with targeted

acquisition on a 600 MHz Varian Inova NMR spec-

trometer with a cold probe, essentially as earlier

described.15 Side chain assignment was obtained

from 3D H(CCO)NH and (H)C(CCO)NH experiments.

Structure information was obtained from 3D 15N-

NOESY-HSQC, 3D 13C-NOESY-HSQC, and 2D

NOESY experiments obtained at 800 MHz and 900

MHz Avance III HD spectrometers equipped with

5 mm TCI cryoprobes. 15N-NOE relaxation data were

obtained as previously described. All NMR experi-

ments were performed at 108C. NMR data were proc-

essed with NMRPipe16 and analyzed using the CCPN

package.17

Structures of PrtV N-terminal domain were cal-

culated with CYANA.18 NOE distance restraints

combined with dihedral restraints and hydrogen

bond distance constraints in the alpha helices

obtained from the CSI-method19 were used to calcu-

late ensemble model structures. The 20 lowest

energy structures were selected and analyzed.

Molecular graphics were produced using

CCP4mg.20 The NMR-derived ensemble structures

of the N-terminal domain were deposited in the Pro-

tein Data Bank, with accession code 5abk. The

assigned chemical shifts have been deposited within

the BMRB database (accession number 25745).
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