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The total scattering method is the simultaneous study of both the real- and

reciprocal-space representations of diffraction data. While conventional Bragg-

scattering analysis (employing methods such as Rietveld refinement) provides

insight into the average structure of the material, pair distribution function

(PDF) analysis allows for a more focused study of the local atomic arrangement

of a material. Generically speaking, a PDF is generated by Fourier transforming

the total measured reciprocal-space diffraction data (Bragg and diffuse) into a

real-space representation. However, the details of the transformation employed

and, by consequence, the resultant appearance and weighting of the real-space

representation of the system can vary between different research communities.

As the worldwide total scattering community continues to grow, these subtle

differences in nomenclature and data representation have led to conflicting and

confusing descriptions of how the PDF is defined and calculated. This paper

provides a consistent derivation of many of these different forms of the PDF and

the transformations required to bridge between them. Some general considera-

tions and advice for total scattering practitioners in selecting and defining the

appropriate choice of PDF in their own research are presented. This

contribution aims to benefit people starting in the field or trying to compare

their results with those of other researchers.

1. Introduction

Pair distribution function (PDF) analysis is a broad term

encompassing the use of experimentally generated atomic pair

density functions in real space to study short-range order in

materials. The approach has its roots in the work of Warren

and co-workers, who developed it to study the short- and

intermediate-range structure of glasses (Warren, 1934, 1937).

Notable extensions have included work on molecular liquids

(Narten, 1972), the study of glasses and crystalline materials

(Srolovitz et al., 1981), the study of liquids and glasses with

neutron diffraction (Wright et al., 1989; Wright, 1990, 1994),

the use of high-energy X-rays (Egelstaff, 1967; Root et al.,

1986; Neuefeind & Poulsen, 1995; Neuefeind et al., 1996), the

adoption of the technique for reverse Monte Carlo (RMC)

methods (McGreevy & Pusztai, 1988; McGreevy, 1995, 2001),

and the application to nanostructured and disordered crys-

talline materials (Billinge, 1992; Egami & Billinge, 2012).

These advancements and their applications to materials are

distinguished in a number of review articles and text books

appearing in the past two decades, for liquids and glasses

(Neuefeind, 2002; Egelstaff, 2003; Kohara & Suzuya, 2003;

Fischer et al., 2005; Kohara et al., 2007; Benmore, 2012), and

for disordered crystalline and nanostructured materials
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(Egami, 2007; Billinge & Kanatzidis, 2004; Billinge, 2004;

Billinge & Levin, 2007; Young & Goodwin, 2011; Egami &

Billinge, 2012; Playford et al., 2014; Hou et al., 2018).

The PDF is a probability distribution function that

measures the probability of finding pairs of atoms separated

by a given distance. There are many different forms of the

PDF with subtly different functional forms, units, normal-

izations and use in research communities, but they all contain

the same information: the probability of finding atoms sepa-

rated by a distance (Dinnebier & Billinge, 2008). For example,

from a statistical mechanics definition of the radial distribu-

tion function, this probability can be given relative to the ideal

gas state, where no correlations exist. Therefore, deviations in

such a distribution function will give a factor to multiply the

bulk density by to get a local density (McQuarrie, 2000). All

the different forms of the PDF give information about the

changes in local density with distance and thus insight into the

local structure.

The use of PDF analysis has grown exponentially from a

specialized technique employed for the study of liquids,

glasses and other amorphous materials [where Rietveld (1969)

analysis is not possible] to one that encompasses disordered

materials more broadly through the study of local atomic

structure and disorder in nanocrystalline and crystalline

materials. As various material communities have adopted

PDF analysis, they have refined the methodology and devel-

oped corresponding analysis software to address their specific

scientific needs. The weighting and normalization of different

features, either from the measured reciprocal-space data or

modeled real-space atomic coordinates, has led to no less than

eight different published forms of real-space distribution

function (Keen, 2001), which can all claim in one way or

another to be analogous to the PDF. Despite being function-

ally similar, the differences between these varied forms has led

to some confusion and redundancy across the different

communities.

This contribution aims to untangle many of these semantic

and terminological confusions through a consistent derivation

of the relationships between many different forms of the PDF,

demonstrated through simple examples. We reintroduce many

fundamental concepts and formalisms, and directly relate

them to the physical and distinguishing features they repre-

sent.

The equations are presented here with neutron scattering

formalism, where there is no Q dependence in the atomic

scattering lengths. The added complexity brought by Q-

dependent X-ray form factors (Narten, 1972) has been,

broadly, addressed in three approaches: explicit corrections

during data normalization (Qiu, Thompson & Billinge, 2004),

ad hoc or approximative corrections (Juhás et al., 2013; Bill-

inge & Farrow, 2013) during data normalization, or leaving the

data uncorrected and instead forward calculating the effects in

a refined model (Gereben et al., 2007; Tucker et al., 2007). The

variability of these different approaches and their implications

are outside the scope of this paper. Herein, the presented

derivations assume that the reduction of X-ray scattering data

successfully mitigates the effects of these form factors.

For the remainder of this text, the authors make the

following assumptions which are being made explicit with the

aim of aiding the reader even further in seeing the bridge

between various conventions. First, the term ‘total scattering’

was adopted for the PDF method within the past few decades

to bring attention to the fact that it provides an examination of

both Bragg and diffuse scattering. The modern adoption of

this colloquial name should be distinguished from the foun-

dational terminology ‘total scattering’ in use by the general

time-of-flight neutron scattering community (Squires, 2012).

Note also that most neutron and X-ray PDF measurements

are energy-integrated scattering functions. Throughout this

manuscript ‘total scattering’ will be used to refer to the PDF

technique in general. Second, as will be further explained in

Section 3, the I(Q) presented here is proportional to the

differential cross section. Note that I(Q) is different from the

measured intensity often employed in Rietveld refinements,

sometimes utilizing the same nomenclature (Rietveld, 1969).

Previous work went into great detail on the derivation and

conversion of different functional forms of the PDF, and is

widely cited in the community (Keen, 2001; Fischer et al.,

2005). Subtle differences in nomenclature of various approa-

ches have led to some confusion in the PDF communities,

particularly when converting between the different formal-

isms. This manuscript expands on this work, beginning with

the conventions of the disordered crystalline material

communities (Egami & Billinge, 2012) and bridging to other

derivations. Visual comparisons of various functional forms

guide the reader and frame discussion of each use case. Effort

has been made to reference both initial derivations and

examples of utilization in scientific literature.

The derivations and examples in this paper are presented

first in reciprocal space then in real space. A collection of

appendices provide both reference and further detail

supporting the derivations. Appendix A provides a list of

simple conversions between the various real-space functions.

Appendix B provides details of the molecular dynamics

simulations used for the liquid example data. Appendix C is an

overview of the process of converting from measured inten-

sities to differential cross sections to provide a frame of

reference for understanding experimental concerns. Appendix

D details calculation of the normalized Laue term employed in

some formalisms, while Appendix E details calculation of the

number density. Appendix F provides a brief overview of

partial structure functions.

2. Methods

To illustrate the different functions contained herein, we have

simulated neutron nuclear scattering data for two systems of

representative material types: bulk binary oxide manganese

oxide (MnO) (Sasaki et al., 1979) for crystalline and disor-

dered materials; and liquid argon (Ar) (Yarnell et al., 1973) for

liquid, amorphous and glass materials. Mn has a negative

neutron scattering length and O has a positive one, which

emphasizes certain differentiating characteristics of various

forms of the PDF. MnO has a magnetic structure that will be
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ignored to allow for focusing on the atomic structure. Simu-

lated data from liquid argon (Ar) are also included as a

monatomic example. Note that the term ‘monatomic system’

here assumes a single element with a single isotope for

neutron scattering and a single element with a single charge

state for X-ray scattering.

To generate the presented MnO data, real-space patterns

were simulated with the PDFgui software (Farrow et al., 2007)

using the crystal structure in Table 1. Patterns were calculated

for 0 � r � 160 Å with a bin width of �r = 0.01 Å. This pattern

was then inverse transformed to generate the presented reci-

procal-space data.

To generate the Ar data, molecular dynamics simulations

were performed using the Large-Scale Atomistic/Molecular

Massively Parallel Simulator (LAMMPS) open-source code

(Plimpton, 1995, 2018). Details of the simulations are provided

in Appendix B.

3. Reciprocal-space functions

We begin the derivation assuming data in the form of the fully

corrected and normalized scattering intensity, I(Q), obtained

from experimentally measured intensities. Interestingly,

Debye himself, along with Menke, performed the first PDF

experiments using X-ray scattering in 1930 to obtain such data

(Debye, 1930). The details for a protocol used to reduce such

measured data to fully corrected patterns based on literature

and reduction software manuals can be found in Appendix C.

I(Q) can be directly related to a set of atomic coordinates

through the Debye (1915) scattering equation:

IðQÞ ¼
X
��

bcoh;� bcoh;�

sinðQr��Þ

Qr��
; ð1Þ

where bcoh,� is the coherent scattering length of atom � and

r�� = |r�� r�| is the interatomic pairwise vector of atoms � and

� (Lovesey, 1986; Farrow & Billinge, 2009; Page et al., 2011).

Debye’s formalism, slightly modified to include the effects of

thermal atomic displacements through a Debye–Waller term

��� (Debye, 1913; Waller, 1923), is written as

IðQÞ ¼
X
��

bcoh;� bcoh;�

sinðQr��Þ

Qr��
exp
��2

��Q2

2

� �
: ð2Þ

In this formalism I(Q) is the scattering from the sample as a

whole. The total scattering community most commonly

employs I(Q)/N (the differential cross section), where N is the

number of atoms illuminated in the sample (described further

in Appendix E).

Peak profile refinement methods (e.g. Rietveld analysis)

most commonly define the scattering per sample, rather than

scattering per atom. This convention can be traced back to

Rietveld’s initial aims of fitting models against the peak

profiles of the relative intensities as directly generated from

instrument measurements. Use of an arbitrary scale factor

during modeling was convenient and sufficient for this

purpose. The total scattering formalism, on the other hand,

allows for a fully atomistic model comparison with data.

Accurate corrections to remove experiment artifacts are

required to compare the data with atomistic models, the

importance of which has been shown elsewhere (Egelstaff,

1992; Wright, 1994; Fischer et al., 2005). However, in practice,

many practitioners studying crystalline materials also apply an

arbitrary scale factor to data during modeling (Farrow et al.,

2016). In fact, the departure of a scale factor from unity for

standard (known) samples is sometimes applied as a quality

criterion for assessing the success of data reduction proce-

dures (Peterson et al., 2003).

When defined only through isotropic atomic displacement

parameters (commonly referred to as Uiso), the Debye–Waller

term ��� can be written as (Jeong et al., 1999, 2003; Proffen &

Billinge, 1999)

��� ¼ �2
� þ �

2
�

� �1=2
; ð3Þ

where �� and �� are the amplitudes of the uncorrelated

thermal motion of atoms � and �. This relationship is more

complicated in the case of anisotropic atomic displacement

(Dunitz et al., 1988; Jeong et al., 2003), but its effect on the

normalized intensity is similar: exponential dampening of the

Bragg intensities at high Q.

Another form of the normalized and corrected scattering

data is the ‘structure function’, S(Q). This form of the scat-

tering data is employed in the generation of many atomic pair–

pair representations of data, which accounts for its widespread

description in past work (Yarnell et al., 1973; Billinge &

Egami, 1993; Keen, 2001; Peterson et al., 2003; Farrow &

Billinge, 2009; Page et al., 2011; Olds et al., 2015) where details

of the derivation can be found. The structure function is

related to the normalized I(Q) function through the rela-

tionship

SðQÞ ¼
IðQÞ

Nhbcohi
2
�
hb2

toti � hbcohi
2

hbcohi
2

; ð4Þ

where hb2
toti ¼ h�toti=4� is the average total scattering power

of the system, �tot is the total cross section and hbcohi
2 is the

average coherent scattering power of all atoms in the sample.

Appendix D provides a more complete discussion of the total

scattering length term, hb2
toti. The second term in equation (4)

contributes a constant factor called the normalized Laue

monatomic diffuse scattering term. The normalized Laue

term, often written simply as L, is

L ¼
hb2

toti � hbcohi
2

hbcohi
2 : ð5Þ
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Table 1
Summary of structure of MnO used for examples (Sasaki et al., 1979).

The structure is Fm3m with a lattice constant of 4.446 (1) Å.

Atom (x, y, z) (fractional units) Beq (Å2)

Mn2+ (0.0, 0.0, 0.0) 0.617 (5)
O2� (0.5, 0.5, 0.5) 0.72 (1)



L is zero in the case of single-element scattering (though not

strictly so for neutron scattering, since naturally abundant

elemental samples often comprise a mix of isotopes). L is

calculated for our simulated examples in Appendix D.

The limits of S(Q) are

lim
Q!1

SðQÞ ¼ 1 ð6Þ

and

lim
Q!0

SðQÞ ¼ �; ð7Þ

where � is unitless and proportional to the isothermal

compressibility of the sample (Lovesey, 1986; Egelstaff, 1992;

Wang et al., 2014). Thermodynamically, � is defined as

� ¼ kBT
@�

@P

� �
T

¼ �0	kBT; ð8Þ

where 	 is the isothermal compressibility (equal to the inverse

of the bulk modulus, K0), �0 is the number density, kB is

Boltzman’s constant, T is temperature and P is pressure. This

is only strictly correct for monatomic, homogeneous, isotropic

systems and is incorrect for a fluid close to its critical point.

Additional details and references for more complex cases such

as mixtures of molecular liquids and ions in aqueous solution

are given by Fischer et al. (2005). The isothermal compressi-

bility can be calculated as

	 ¼ �
1

V

@V

@P

� �
T

¼
h�2

vi

VkBT
; ð9Þ

where V is the volume and �2
v is the variance of the volume. �

is often negligible (Bhatia & Thornton, 1970; Wagner, 1985;

Egelstaff, 1992; Keen, 2001), as shown in Table 2 for our

simulated examples. Note that in cases where nanostructured

features exist (such as materials where small-angle scattering

is present) the measured low-Q behavior will deviate (Mildner

& Carpenter, 1984; Farrow & Billinge, 2009; Olds et al., 2015).

The ‘reduced total scattering structure function’ is defined

as

FðQÞ ¼ Q½SðQÞ � 1�: ð10Þ

This representation of reciprocal-space data has a limit of 0 at

high Q and is linearly weighted by Q, such that noise and

resolution are highlighted features that have dramatic effects

on the resultant real-space PDF). Another advantage to this

formalism is that associated uncertainties increase linearly

with Q (Egami & Billinge, 2012; Olds et al., 2018).

In the derivations of Keen (2001), a similar function also

referred to as F(Q) is presented. This alternative function,

here referred to as FK(Q), is scaled by hbcohi
2 and not by Q.

Thus, these three reciprocal-space function are related as

FKðQÞ ¼ hbcohi
2
½SðQÞ � 1� ¼

hbcohi
2

Q
FðQÞ: ð11Þ

The normalized and corrected intensity, I(Q), is related to

F(Q) and FK(Q) as

FðQÞ ¼
Q

hbcohi
2

IðQÞ

N
� hb2

toti

� �
ð12Þ

and

FKðQÞ ¼
IðQÞ

N
� hb2

toti: ð13Þ

A visual comparison of S(Q), F(Q) and FK(Q) is shown for the

case of MnO in Fig. 1 and for the case of Ar in Fig. 2. A
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Table 2
� for the materials chosen at room temperature (300 K).

The bulk modulus for MnO is taken from the article by Zhang (1999).

Material K0 = 1/	 (GPa) �0 (atoms Å�3) �

Ar 0.552 0.02138 0.046
MnO 148 0.0455 0.0013

Figure 1
Comparison of reciprocal-space representations of MnO total scattering
data: (a), (b) S(Q), (c), (d) F(Q) = Q[S(Q) � 1], and (e), ( f ) FK(Q) =
hbcohi

2[S(Q) � 1]. The upper plots show an overview of the various
functions. The asymptotes are highlighted with dashed lines. In this
specific case, hbcohi

2 = 1.074 fm2 such that the difference between S(Q)
and FK(Q) coincidentally appears to be a vertical shift of one (1). Also
note that for MnO � = 0.0013, which appears to be zero on the scale of
this figure.

Figure 2
Comparison of reciprocal-space representations of Ar total scattering
data: (a), (b) S(Q), (c), (d) F(Q) = Q[S(Q) � 1], and (e), ( f ) FK(Q) =
hbcohi

2[S(Q) � 1]. The upper plots show an overview of the various
functions. The asymptotes are highlighted with dashed lines.



summary of the limiting behaviors of these functions and I(Q)

can be found in Table 3.

4. Real-space distribution functions

The pair distribution function is a general concept describing

the distribution of distances between pairs of objects

contained in a volume. Zernike & Prins (1927) were the first to

report the theoretical expression for the atomic density at a

given separation in real space via their Fourier transform

relationship, leading to the origin of the PDF formalisms. Yet,

throughout the years of literature on the PDF, many different

functional forms have spawned from this origin.

When defined independently of the atomic origin, �, this is

termed a radial distribution function (RDF), an entity that

finds prevalent use as a descriptor for the atomic structure of

amorphous, liquid, disordered and nanocrystalline materials.

The same name can be associated with different functional

forms, ever increasing confusion. For example, the name

‘radial distribution function’ is associated with both equation

(14) and equation (22) in previous literature (Thorpe et al.,

1998; McQuarrie, 2000). In this section, we derive and relate a

number of functions used in various research communities for

representing real-space PDFs (see Figs. 3 and 4 below). These

are generally related by multiplicative or additive constants

and thus contain the same underlying information. We will

explain some of the relative merits and related preferences for

these formalisms at the close of the section.

A conceptually different quantity is the RDF which,

containing no relationship to scattering weights and thus not

directly measurable, is presented here for comparison. We

begin by defining a configuration of N atoms arranged such

that each atom has a position defined through the vector r�.

The interatomic distance between any pair of atoms, � and �,

is thus r�� = |r� � r�|. An unweighted radial distribution

function, labeled here RDF(r), can be constructed through the

sum of Dirac delta functions, �, which describe the full set of

these pair–pair distances [of which there will be N(N � 1)/2

total pairs]. RDF(r) can be written as

RDFðrÞ ¼
1

N

X
��

�ðr� r��Þ: ð14Þ

A radial PDF can be generated from the measured scattering

intensities of various physical measurements, including light

scattering, electron diffraction, X-ray diffraction and neutron

diffraction, with the last three all used to produce atom–atom

PDFs. RDF(r) is straightforward to calculate but is only

straightforward to measure with monatomic systems. More

easily measured, radiation-specific PDFs can be calculated

from atomic models by accounting for the scattering power of

each atom. This results in the weighted radial distribution

function, R(r), defined as

RðrÞ ¼
1

N

X
��

bcoh;�bcoh;�

hbcohi
2
�ðr� r��Þ: ð15Þ

For the case of monatomic systems, the weighting prefactor

becomes unity and R(r) simplifies to the equation for RDF(r).

A similar formalism often encountered is the density

function, �(r), which is the radial distribution function

normalized by the surface area of a sphere of radius r, such

that (Warren, 1990)

�ðrÞ ¼
RðrÞ

4�r2
: ð16Þ

For isotropic and three-dimensional systems, the density

function can be directly related to S(Q) through the following

pair of transforms (Warren, 1990; Billinge, 1992):

SðQÞ � 1 ¼
4�

Q

Z1

0

½�ðrÞ � �0� r sinðQrÞ dr ð17Þ

and

�ðrÞ ¼ �0 þ
1

2�2r

Z1

0

Q½SðQÞ � 1� sinðQrÞ dQ: ð18Þ

The heavily used form of the PDF encountered in disordered

crystalline material literature is the reduced pair distribution

function, G(r) (Egami & Billinge, 2012), which is defined in

relation to the density function as

GðrÞ ¼ 4�r �ðrÞ � �0
0ðrÞ
� 	

: ð19Þ

Here, �0 is the average number density of N atoms in the

volume V such that �0 = N/V, and 
0(r) is the characteristic

shape function or nanoparticle form factor (Guinier &

Fournet, 1955; Azaroff, 1968; Farrow & Billinge, 2009; Olds et

al., 2015). In the case of bulk materials, 
(r) = 1.0, and thus the

term is often neglected in the literature.

This reduced pair distribution function can be generated

from reciprocal-space data via the sine transform of F(Q),

such that

GðrÞ ¼
2

�

Z1

0

FðQÞ sinðQrÞ dQ: ð20Þ

Therefore, the Fourier inversion theorem holds that

FðQÞ ¼
R1
0

GðrÞ sinðQrÞ dr: ð21Þ

An alternative formalism of the PDF often encountered in

studies of amorphous and liquid materials is g(r). It is

frequently called the pair distribution function by the liquids/
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Table 3
Limits of reciprocal-space functions.

Although atoms are normally not included in the unit definition, they are
included here for clarity.

Function Low-Q behavior High-Q behavior Units

I(Q) N½hbcohi
2
ð�� 1Þ þ hb2

toti� Nhb2
toti Barn atom

S(Q) � 1 Unitless
F(Q) (� � 1)Q 0 Å�1

FK(Q) hbcohi
2(� � 1) 0 Barn



amorphous community and the pair density function by the

disordered crystalline materials community (Benmore, 2012).

g(r) is functionally identical to the density function �(r);

however, it has been scaled by the average number density,

resulting in the relationship

gðrÞ ¼ �ðrÞ=�0: ð22Þ

Note that the g(r) function is related to isothermal compres-

sibility, defined in equation (9), via

	 ¼
1

�0kBT
1þ �0

R1
0

4�r2½gðrÞ � 1� dr

� �
: ð23Þ

Up to this point, all described atomic PDFs have assumed a

sum over all atom–atom pairs in a defined volume. However,

one can define a ‘partial PDF’, g��(r), which includes contri-

butions from only those atoms in a given pair type. By defi-

nition, the sum of all possible partial PDFs will reconstruct the

corresponding all-atom PDF. The most common convention

requires that ‘Faber–Ziman partial structure factors’ be

calculated for each atom pair. Yet other formalisms exist, each

with their respective advantages. The Bhatia–Thornton

formalism is an alternative representation of the system as the

mean square fluctuations in the particle number, fluctuations

in concentration and the correlation between these two

correlations (Bhatia & Thornton, 1970). These can be, for a

two-component system, directly mapped to Faber–Ziman

using the equations in Bhatia and Thornton’s seminal 1970

work. The Ashcroft–Langreth formalism is another that is

commonly used in theoretical and computational work owing

to its connection to direct correlation functions (Ashcroft &

Langreth, 1967). The mapping of the Ashcroft–Langreth to

the Faber–Ziman equations is most readily accessible in

equation 2.35 of the review paper by Fischer et al. (2005) The

connection to the Faber–Ziman partial structure factors and

both the total scattering structure factor and partial pair

distribution functions is presented in Appendix F. The

weighted sum of the partial PDFs will result in a g(r) such that

gðrÞ ¼
P
�

P
�

W�� g��ðrÞ; ð24Þ

where W�� is the associated weighting factor for the pair of

atoms � and �. Note that g��(r) is a ‘true’ distribution function

as it does not include weighting by scattering lengths.

However, this is not a distribution function in the statistical

sense as the normalization isR P
�

P
�

g��ðrÞ ¼ N � 1 ’ N ð25Þ

rather than one (McQuarrie, 2000). Different communities

employ different normalization schemes for these weighting

factors. Some communities will add an ‘x’ or ‘n’ superscript to

g(r) to denote the weighting. Herein, we normalize them such

that
P

�

P
� W�� ¼ 1 unless explicitly noted otherwise. For

monatomic systems, the weighting factor is always one.

A form of confusion within the greater PDF community is

the differences between the reduced pair distribution func-

tion, G(r), and the total radial distribution function, which is

often also labeled G(r) (Keen, 2001). For clarity, we here refer

to the total radial distribution function as GK(r). This form of

the PDF is constructed from the sum of all partials, g��(r),

weighted according to concentration of atomic species, c, and

associated coherent scattering power, bcoh, such that

GKðrÞ ¼
P
�

P
�

c�c�bcoh;�bcoh;� g��ðrÞ � 1
� 	

: ð26Þ

The relationship between GK(r) and G(r) is therefore

GKðrÞ ¼
hbcohi

2

4��0

GðrÞ

r
: ð27Þ

An important note, and an example of where confusion can

occur for new practitioners, is that GK(r) in this work is

equivalent to G(R) in the review paper of Fischer et al. (2005)

This can be seen by comparing equation (27) in this work with

equation 2.40 of Fisher et al.

A third variation commonly found in the crystalline PDF

community, referred to as the differential correlation function,

D(r) (Tucker et al., 2007, 2017), is identical to G(r) apart from

a constant scaling factor such that

DðrÞ ¼ hbcohi
2GðrÞ: ð28Þ

Related to the previous note about GK(R), D(r) here is

different from the D(r) found in the review paper of Fischer et

al. (2005) The D(r) in this work is equivalent to G(R) in the

review paper of Fischer et al. This can be seen by comparing

G(r) in equation (34) in this work with equation 2.26 of Fisher

et al.

Another version of the PDF, primarily used in the liquids

and glass community and referred to as the total correlation

function, is T(r) (Soper, 1989; Hannon et al., 1990). T(r) is

related to G(r) as

TðrÞ ¼ hbcohi
2 GðrÞ þ 4�r2�0

� 	
: ð29Þ

Additional minor variations of pair distribution function

relationships can be found, but while some do surface occa-

sionally in the modern literature, many are no longer actively

utilized.

Figs. 3 and 4 graphically display examples of R(r), �(r), g(r),

GK(r), G(r) and T(r) for the cases of crystalline MnO and

liquid Ar, respectively. The inherent information content of all

forms is the same. All PDFs show atomic pair–pair correla-

tions as peaks centered at average pairwise distances in real

space, with the height of these peaks informing on the

frequency of these pairwise distances (often with the scat-

tering power of atoms involved) and the widths related to the

distribution of the pairwise distances. The functions feature

different limiting behaviors at low and high r, summarized in

Table 4. These limits, and the accompanying scaling of peak

intensities as r increases, emphasize different features of

interatomic order. Preferred usage has developed in various

research communities according to some of these distin-

guishing behaviors.

The weighted radial distribution function, R(r), shown at

the top of Figs. 3 and 4, and the radial distribution function,

RDF(r), find limited use because they rapidly increase

towards infinity with increasing r. Thus it is a challenge to
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visually inspect the local correlations on the same scale as the

mid-to-long-range correlations.

In materials which lack long-range order, few important

structural details exist at high r, and several functions are

commonly used. We introduced definitions of pair distribution

functions based on the density function, �(r), which is a

straightforward quantity to calculate from atomistic simula-

tions and models. It is shown in the panels second from the top

in Figs. 3 and 4. g(r) is simply the number density divided by

the average density, and it has found wide adoption in the

amorphous and liquids community (Benmore, 2012). The

limits of g(r) are absolutely defined to be zero prior to the first

pair correlation and 1 at high r, which in practice can aid with

data reduction and normalization procedures. An example of

g(r) can be seen in the third panel from the top of Figs. 3 and 4.

GK(r), shown fourth from the top in Figs. 3 and 4, shares many

qualitative features with g(r), and while they appear nearly

identical at first glance, they feature different units, limits and

scaling behavior (refer to Appendix A, Figs. 3 and 4, and

Table 4 for details).

To resolve certain details of local structure, researchers

occasionally find it useful to preferentially weight a structural

refinement towards features at low r, ignoring or downplaying

longer-range features. While there is nothing implicitly wrong

with this approach, this is a decision best applied at the time of

modeling and stated clearly in analysis discussions. The issue

with functions that inherently carry their own r-dependent

weighting [such as GK(r) damping as 1/r] is that they require

additional r-dependent normalization of residuals to

uniformly treat misfit at different length scales. It can be

argued that representations of the measured data should not

themselves contain such an r-dependent feature bias.

The reduced pair distribution function, G(r) (second from

the bottom in Figs. 3 and 4), is the most prevalent formalism

used in the study of disordered crystalline materials and

nanocrystalline materials and is the version of data compatible

with the popular real-space PDF modeling program PDFgui

(Farrow et al., 2016). G(r) is also sometimes used in glass or

molecular liquid studies, particularly when longer-range

ordering is present. Arguably, the most advantageous feature

of the G(r) formalism is that the amplitude of the oscillations

is independent of R value. This means that the nature of a

material’s structural coherence can be readily interpreted via

visual inspection of G(r). It also means that residual differ-
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Table 4
Limits of real-space functions.

For materials with long-range order (i.e. crystalline), the high-r behavior is
often obscured by the peaks in the distribution function. Like radians, atoms is
normally not listed as a unit, but this table explicitly mentions it for added
clarity.

Function Low-r behavior High-r behavior Units

R(r) 0 4��0r2 Atom Å�1

�(r) 0 �0 Atom Å�3

g(r) 0 1 Unitless
GK(r) �hbcohi

2 0 Barn
G(r) �4��0r 0 Atom Å�2

D(r) �4��0hbcohi
2r 0 Barn atom Å�2

T(r) 0 4��0hbcohi
2r Barn atom Å�2

N(r) 0 / r3 Atom

Figure 3
Comparison of long-range behavior of different real-space functions for
MnO. The dashed lines highlight the asymptotic behavior. Since D(r) =
hbcohi

2G(r), it is not shown.

Figure 4
Comparison of long-range behavior of different real-space functions for
Ar. The dashed lines highlight the asymptotic behavior. Since D(r) =
hbcohi

2G(r), it is not shown.



ences between models and data are equally weighted at all R

values.

It is sometimes asserted that G(r) is the most directly

calculable function from experimental data (Egami & Billinge,

2012), as it is the direct Fourier transform of S(Q) and does

not require any assumptions of number density or average

scattering power. In practice, the data reduction procedures

employed to generate G(r) typically involve a number of

optimization steps, which effectively estimate various sample-

dependent corrections either analytically (Peterson et al.,

2000; Jeong et al., 2001; Qiu, Božin et al., 2004) or via ad hoc

methods (Neuefeind et al., 2012; Juhás et al., 2013).

D(r) shares many of the same features as G(r), as it is

equivalent to hbcohi
2G(r). Because of this subtle difference,

there has been some confusion in the community about when

to use D(r) compared with G(r) in different analysis methods.

In practice, employing either D(r) or G(r) when using small-

box modeling approaches (where a scale parameter for the

data set can be freely refined) will produce identical model

results. However, they cannot be used interchangeably in

those methods that rely on absolutely normalized data, such as

RMC-based modeling. This can be particularly tricky in those

cases where hbcohi
2 is near to one, as the results of a large-box

modeling approach may appear to be converging, but the

results will be incorrect. Researchers are advised to carefully

verify what form of the PDF they are employing, especially

when using data from a new beamline (where data reduction

protocols may differ) or employing a new form of analysis.

The neutron glass community tends to favor the T(r)

formalism shown at the bottom of Figs. 3 and 4 (Hannon et al.,

1990; Ellison et al., 1993). T(r) [and G(r)] scale relative to the

number density as a function of r, as opposed to functions such

as g(r) or R(r) (see Appendix A4). In the harmonic approx-

imation of atomic motion, peaks are broadened symmetrically

in T(r) [and G(r)] by thermal motions (Wright et al., 1989),

which is cited as a considerable advantage in differentiating

between static and thermal disorder (Hannon et al., 1990).

This symmetry is noted by the glass community to lead to

more accurate fitting for extracting coordination numbers

(Benmore, 2012). However, T(r)’s overall r-dependent scaling

means it is not practical for viewing wide ranges in real space,

and thus it is not commonly used in studies of nanocrystalline

or disordered crystalline materials.

Arguably, the density function is one of the most straight-

forward functions to calculate from an atomic model. We here

present the conversions from this common quantity, �(r), and

the other six common all-atom PDFs we have discussed

herein. Table 5 provides conversions between some of the real

space functions. The full list of conversions originating from

each function in turn can be found in Appendix A.

Finally, PDF data are often interpreted using the coordi-

nation number, N(r). This is the number of atoms between rmin

and rmax. The coordination number is described mathemati-

cally in terms of the partial g��(r) functions (Soper, 2010):

N��ðrmin; rmaxÞ ¼ 4��0c�
Rrmax

rmin

r2g��ðrÞ dr; ð30Þ

which explicitly does not include the scattering lengths. A

closely related function is the accumulation of this summed

over all atoms:

NðrÞ ¼ 4��0

P
��

c�
Rr
0

ðr0Þ
2
g��ðr

0Þ dr0: ð31Þ

This quantity is shown in Fig. 5. Note that coordination

number is not weighted by scattering length, such that it

cannot be easily transformed to other real-space functions

without employing partial PDF functions.

5. Summary

This paper has provided a resource to understand the rela-

tionships of and convert between eight real-space pair distri-

bution functions commonly found in the scientific literature.

teaching and education

324 Peter F. Peterson et al. � Illustrated formalisms for total scattering data J. Appl. Cryst. (2021). 54, 317–332

Figure 5
Accumulated correlation number for MnO plotted with its partials. The
partial and full coordination numbers are marked with dashed lines. Note
that the partial coordination numbers for Mn–Mn and O–O are identical
owing to symmetry, but the isotropic displacement parameters, Uiso, are
different, which is visible near the plateaus in the Mn–Mn and O–O
partials.

Table 5
Conversions to and from �(r).

A complete list of conversion factors is given in Appendix A.

Formalism in terms of �(r) �(r) in terms of formalism

RðrÞ ¼ 4�r2�ðrÞ
�ðrÞ ¼

RðrÞ

4�r2

gðrÞ ¼ �ðrÞ=�0 �ðrÞ ¼ �0gðrÞ

GKðrÞ ¼ hbcohi
2 �ðrÞ

�0

� 1

� �
�ðrÞ ¼ �0

GKðrÞ

hbcohi
2 þ 1

� �

GðrÞ ¼ 4�r �ðrÞ � �0

� 	
�ðrÞ ¼

GðrÞ

4�r
þ �0

DðrÞ ¼ 4�rhbcohi
2
½�ðrÞ � �0� �ðrÞ ¼

DðrÞ

4�rhbcohi
2 þ �0

TðrÞ ¼ hbcohi
24�r�ðrÞ

�ðrÞ ¼
TðrÞ

4�rhbcohi
2



This purely instructional work offers direct mathematical

conversions, graphical representations and a practical discus-

sion of function characteristics, meant as an updated step-by-

step reference for new practitioners and those seeking to

compare their results with those of other researchers. While

the appearance and weighting of these representations can

vary, often to emphasize certain features of interest, the

inherent structural information must be the same among these

different forms. Although we respect the decisions of indivi-

dual researchers to use whichever PDF formalism they find

most appropriate, we encourage convergence and standardi-

zation where possible. On the basis of the comparison and

discussion presented herein, we endorse the use of two

primary formalisms: G(r) and g(r). The reduced pair distri-

bution function, G(r), is recommended because of its uniform

weighting at all R values. It has been broadly employed by the

disordered crystalline and nanocrystalline communities. In

contrast, the pair distribution function, g(r), is recommended

as it is conveniently bounded at 0 and 1 (simplifying normal-

ization procedures), features symmetric peaks and emphasizes

low-r features. Thus it has been widely adopted by the liquids,

amorphous and glass communities.

We also encourage that, when reporting a PDF, authors

overtly define which real-space distribution functions they

present. Reciprocal-space functions should be described in

terms of S(Q) (which has an agreed upon and consistent

definition across fields). For example, ‘we show the structure

function, F(Q) = Q[S(Q) � 1]’. Similarly, real-space functions

should be described in terms of �(r). For example, ‘we fit the

pair distribution function, G(r) = 4�[�(r) � �0]’. It is our hope

that the derivations, tables and figures presented in this work

help serve as a reference tool for researchers to easily navigate

the PDF landscape and guide towards a convergence of total

scattering data formalisms.

APPENDIX A
Conversions between real-space functions

This appendix will provide transformations between the

various real-space functions. Several notes are needed before

the listing of equations. First, we will assume a shape function

of 
0(r) = 1. This is true for sufficiently bulk material

measurements (i.e. material structures exhibit translational

periodicity and thus do not have finite size, shape or

morphology effects contributing to the experimental PDF).

Second, the correlation number, N(r), will not be mentioned

since it can only be correctly calculated from the partial

distributions. Note that the rise of N(r) at the location of an

isolated peak corresponds to the coordinate number of that

pairwise peak. Third, the normalization of g(r) provided in the

main text is applicable here.

The original purpose of this appendix was to provide simple

recipes for fellow researchers to transform their data or model

calculations between the real-space forms. An additional

benefit of generating this appendix, as well as the limits in

Tables 3 and 4, was further validation that the conversions

between conventions and the presentation of the conventions

themselves are correct.

A1. Conversions from the radial distribution function, R(r)

�ðrÞ ¼
RðrÞ

4�r2

GðrÞ ¼
RðrÞ

r
� 4�r�0

GKðrÞ ¼ hbcohi
2 RðrÞ

4�r2�0

� 1

� �

gðrÞ ¼
RðrÞ

4�r2�0

DðrÞ ¼ hbcohi
2 RðrÞ

r
� 4�r�0

� �

TðrÞ ¼
hbcohi

2

r
RðrÞ

ð32Þ

A2. Conversions from the number density, q(r)

RðrÞ ¼ 4�r2�ðrÞ

GðrÞ ¼ 4�r �ðrÞ � �0

� 	
GKðrÞ ¼ hbcohi

2 �ðrÞ

�0

� 1

� �

gðrÞ ¼ �ðrÞ=�0

DðrÞ ¼ 4�rhbcohi
2 �ðrÞ � �0

� 	
TðrÞ ¼ hbcohi

24�r�ðrÞ

ð33Þ

A3. Conversions from g(r)

RðrÞ ¼ 4�r2�0gðrÞ

�ðrÞ ¼ �0gðrÞ

GðrÞ ¼ 4�r�0 gðrÞ � 1½ �

GKðrÞ ¼ hbcohi
2 gðrÞ � 1½ �

DðrÞ ¼ 4�r�0hbcohi
2 gðrÞ � 1½ �

TðrÞ ¼ 4�r�0hbcohi
2gðrÞ

ð34Þ

A4. Conversions from the total radial distribution function,
GK(r)

RðrÞ ¼ 4�r2�0

GKðrÞ

hbcohi
2
þ 1

� �

�ðrÞ ¼ �0

GKðrÞ

hbcohi
2
þ 1

� �

GðrÞ ¼
4�r�0

hbcohi
2 GKðrÞ

gðrÞ ¼
GKðrÞ

hbcohi
2
þ 1

DðrÞ ¼ 4�r�0GKðrÞ

TðrÞ ¼ 4�r�0 GKðrÞ þ hbcohi
2

� 	

ð35Þ
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A5. Conversions from the reduced pair distribution function,
G(r)

RðrÞ ¼ rGðrÞ þ 4�r2�0

�ðrÞ ¼
GðrÞ

4�r
þ �0

GKðrÞ ¼
hbcohi

2

4�r�0

GðrÞ

gðrÞ ¼
GðrÞ

4�r�0

þ 1

DðrÞ ¼ hbcohi
2GðrÞ

TðrÞ ¼ hbcohi
2 GðrÞ þ 4�r2�0

� 	

ð36Þ

A6. Conversions from the differential correlation function,
D(r)

RðrÞ ¼
r

hbcohi
2

DðrÞ þ 4�r2�0

�ðrÞ ¼
DðrÞ

4�rhbcohi
2 þ �0

GðrÞ ¼
DðrÞ

hbcohi
2

GKðrÞ ¼
DðrÞ

4�r�0

gðrÞ ¼
DðrÞ

4�r�0hbcohi
2
þ 1

TðrÞ ¼ DðrÞ þ
4�r2�0

hbcohi
2

ð37Þ

A7. Conversions from the total correlation function, T(r)

RðrÞ ¼
rTðrÞ

hbcohi
2

�ðrÞ ¼
TðrÞ

4�rhbcohi
2

GðrÞ ¼
TðrÞ

hbcohi
2
� 4�r�0

GKðrÞ ¼
TðrÞ

4�r�0

� hbcohi
2

gðrÞ ¼
TðrÞ

4�r�0hbcohi
2

DðrÞ ¼ TðrÞ �
4�r2�0

hbcohi
2

ð38Þ

APPENDIX B
Details of liquid argon molecular dynamics simulations

For all Ar simulations, the system consisted of a cubic simu-

lation cell with 50 000 atoms and a velocity-Verlet-like (Verlet,

1967) time integrator was used with a 1 fs timestep. A

Lennard–Jones pair potential with a 15 Å cutoff was used with

a tail correction applied, with � = 0.238067 kcal mol�1 and � =

3.405 Å (Yarnell et al., 1973). Initially, the atoms were

randomly placed in the box and then force minimized with a

force tolerance of 10�8 kcal (mol Å)�1. To produce the real-

and reciprocal-space patterns, canonical (NVT) ensemble

simulations were carried out with T = 86.56 K and �0 =

0.02138 atoms Å�3 to reproduce previous results (Yarnell et

al., 1973). A Nosé–Hoover-style thermostat (Nosé, 1984;

Hoover, 1985) was used to keep constant temperature with a

relaxation time of 0.1 ps. For the isothermal compressibility

calculations, isobaric isothermal (NPT) simulations were

carried out at the same temperature as the NVT simulation

but with different pressures. A Nosé–Hoover-style barostat

(Nosé, 1984; Hoover, 1985) was used to keep constant pres-

sure with a relaxation time of 1 ps. The PDF was then calcu-

lated over a real-space range 0.075 � r � 100 Å with a bin

width of �r = 0.05 Å. The reciprocal-space data were gener-

ated through inverse Fourier transform. The reciprocal-space

data are scaled such that forward Fourier transforms recreate

the original PDFs precisely.

APPENDIX C
From experimentally observed scattering intensities to
differential cross sections

The authors mostly ignored the steps involved in reducing

data from measured scattering intensities (Section 3) to reci-

procal-space functions in the main text. This appendix will

shed light on some of the corrections necessary to transform

measured intensities to a single scattering differential cross

section (DCS), d�s=d�, which can then be used in equation

(4). For Rietveld analysis, this level of rigor for corrections is

not usually needed for most samples as these effects are

frequently addressed as part of the measurement’s ‘back-

ground intensity’, which is normally fitted with a polynomial to

reduce its influence on the profile refinement. However, for

real-space total scattering measurements, these ‘minor’ effects

can produce a signal comparable to the reciprocal-space

features of local disorder and therefore must be accounted for.

Repeating equation (4),

SðQÞ ¼
IðQÞ

Nhbcohi
2
�
hb2

toti � hbcohi
2

hbcohi
2

; ð39Þ

where I(Q) is the scattering from the sample (using the same

convention as Rietveld). Its relation to the differential cross

section (DCS) is simply (Egami & Billinge, 2012)

IðQÞ ¼ N
d�s

d�
ðQÞ; ð40Þ

where N = �0,effV is the number of atoms illuminated, V is the

illuminated volume and �0,eff is the effective number density as

described in Appendix E. Because corrections are easier to

explain in terms of the DCS, we rewrite equation (4) as

SðQÞ ¼
1

hbcohi
2

d�s

d�
ðQÞ � hb2

toti � hbcohi
2

� �
: ð41Þ

The DCS can only be found by fully correcting the measured

intensity. Proper treatment of total scattering data requires
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correcting for effects such as attenuation through the sample

material and its environment, subtraction of multiple scat-

tering events, and recoil or inelastic effects. That being said,

the notations for the various corrections do not have a stan-

dard set of definitions. The associated measurements for these

corrections (e.g. empty container, empty sample environment,

normalization) are no longer as unusual to perform as they

used to be. Table 6 describes the standard set of measurements

required and associates subscripts to refer to them. Addi-

tionally, Paalman & Pings (1962) developed a detailed nota-

tion for the attenuation correction terms which will be used

here. Table 7 describes the notation for the correction terms

applied to the experimental measurements.

For the measurement of the sample and container

combined there are four terms of scattering and attenuation

(also called absorption) in the experiment. For example, the

scattering that occurs in only the sample but is attenuated by

both the sample and container component is denoted as As,sc.

Similarly, the multiple scattering is denoted as M� for the �th

measurement, and thus the sample and container are denoted

Msc. Finally, the inelastic recoil correction is denoted as Pie
� for

the �th species; thus the container inelastic correction would

be Pie
c .

Having the various functions and subscript definitions in

hand, the description of what is actually experimentally

measured, IE
i , can be introduced. The experimentally

measured intensities are summarized in Table 8.

These experimentally measured intensities are represented

by the functional forms below with the necessary correction

terms included from Table 7:

IE
scaðQ; !Þ ¼ �

�
As;scaNs

d2�s

d� d!
ðQ; !Þ þ Ac;scaNc

d2�c

d� d!
ðQ; !Þ

þ Aa;scaNa

d2�a

d� d!
ðQ; !Þ þMsca þ

d2�e

d� d!
ðQ; !Þ

�
;

IE
caðQ; !Þ ¼ �

�
Ac;caNc

d2�c

d� d!
ðQ; !Þ þ Aa;caNa

d2�a

d� d!
ðQ; !Þ

þMca þ
d2�e

d� d!
ðQ; !Þ

�
;

IE
a ðQ; !Þ ¼ �

�
Aa;aNa

d2�a

d� d!
ðQ; !Þ þMa þ

d2�e

d� d!
ðQ; !Þ

�
;

IE
e ðQ; !Þ ¼ �

d2�e

d� d!
ðQ; !Þ:

ð42Þ

Note that the double-differential cross-section term appears in

these equations, with h- ! being the energy loss. For the ulti-

mate goal of producing a suitable reciprocal-space function,

one must integrate over ! to obtain the energy-integrated

DCS. If all scattering were purely elastic from the sample, we

would simply have

d�i

d�
ðQÞ ¼

Z
d2�i

d� d!
ðQ; !Þ d!: ð43Þ

Yet, there are undoubtedly inelastic scattering events that

occur and necessary terms must be included in the above

equation for the specific experimental technique. The equa-

tion for an experimental integration over ! is given as

d�i

d�
ðQÞ þ Pie

i ¼

Z
�ðki; kfÞ

d2�i

d� d!
ðQ; !Þ d!; ð44Þ

where �(ki, kf) accounts generally for terms such as detector

efficiency, incident spectrum and other terms needed based on

the nature of the experimental method (i.e. constant wave-

length or time of flight). Pie
i is the inelastic correction term that

occurs due to both the recoil of the atomic nuclei from the

neutron collision and, for time of flight, the fact that the

measurement is carried out at a fixed angle and not fixed

momentum transfer, Q (Soper, 2009). For the functional forms

of �(ki, kf) for constant wavelength or time of flight, we refer

the reader to reports in the series by Powles (1973, 1978a,b) or

the GUDRUN manual (Soper, 2010).

Real-space techniques are often colloquially referred to as

‘total scattering’ because they use all of the reciprocal-space

information rather than just the Bragg peaks. As mentioned in

the main text, this term has a second meaning when it is

applied to describe integration over energy transfer. This is

not the same as the elastic scattering, which can only be
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Table 7
Correction terms for the different types of experimental measurement
setups, including absorption, multiple scattering and inelastic recoil
corrections.

The � and � terms are defined in Table 6.

Correction
term Definition

A�,� Absorption correction factor for scattering in � absorbed by �
M� Multiple scattering correction factor for �
Pie
� Inelastic recoil correction factor for �

Table 8
The different experimentally measured intensities required for a total
scattering experiment.

Experimental
term Definition

IE
sca Experimentally measured intensity of sca

IE
ca Experimentally measured intensity of ca

IE
a Experimentally measured intensity of a

IE
e Experimentally measured intensity of e

� Normalization term to account for detector efficiency, solid
angle coverage etc.

Table 6
Description of subscripts, i, for measured intensities, Ii(Q), and
differential cross sections, d�i=d�.

Subscript Term

s Sample
c Container
a Apparatus
sc Sample + container
sca Sample + container + apparatus
e Background / empty diffractometer
n Normalization



properly measured when the incident and final energy of the

probe are known. Integrating the energy yields the following

set of equations:

IE
s ðQÞ ¼ �



As;scaNs

d�s

d�
ðQÞ þ Pie

s

� �
þ Ac;scaNc

d�c

d�
ðQÞ þ Pie

c

� �

þ Aa;scaNa

d�a

d�
ðQÞ þ Pie

a

� �
þMsca þ

d�e

d�
ðQÞ

�
;

IE
c ðQÞ ¼ �



Ac;caNc

d�c

d�
ðQÞ þ Pie

c

� �
þ Aa;caNa

d�a

d�
ðQÞ þ Pie

a

� �

þMca þ
d�e

d�
ðQÞ

�
;

IE
a ðQÞ ¼ �



Aa;aNa

d�a

d�
ðQÞ þ Pie

a

� �
þMa þ

d�e

d�
ðQÞ

�
;

IE
e ðQÞ ¼ �

d�e

d�
ðQÞ:

ð45Þ

Solving each of the equations above for the respective DCS

[and simplifying ðd�i=d�ÞðQÞ to just d�i=d�] provides

d�s

d�
¼

1

As;scaNs

�
1

�
IE

s ��
d�e

d�

� �
�Msca

� Ac;scaNc

d�c

d�
þ Pie

c

� �
� Aa;scaNa

d�a

d�
þ Pie

a

� ��
� Pie

s ;

d�c

d�
¼

1

Ac;caNc



1

�
IE

c ��
d�e

d�

� �
�Mca

� Aa;caNa

d�a

d�
þ Pie

a

� �� ��
� Pie

c ;

d�a

d�
¼

1

Aa;aNa

�
1

�
IE

a ��
d�e

d�

� �
�Ma

�
� Pie

a ;

d�e

d�
¼

1

�
IE

e :

ð46Þ

Reducing the equations into terms that only involve the

corrections and the measured intensities, the sample DCS is

d�s

d�
¼

1

As;scaNs

�
1

�
ðIE

s � IE
e Þ �Msca

�
Ac;sca

Ac;ca

1

�
ðIE

c � IE
e Þ �Mca �

Aa;ca

Aa;a

1

�
ðIE

a � IE
e Þ �Ma

� �
 �

�
Aa;sca

Aa;a

1

�
ðIE

a � IE
e Þ �Ma

� ��
� Pie

s ;

ð47Þ

the container DCS is

d�c

d�
¼

1

Ac;caNc



1

�
ðIE

c � IE
e Þ �Mca

�
Aa;ca

Aa;a

�
1

�
ðIE

a � IE
e Þ �Ma

��
� Pie

c

ð48Þ

and the sample environment apparatus DCS is

d�a

d�
¼

1

Aa;aNa

�
1

�
ðIE

a � IE
e Þ �Ma

�
� Pie

a : ð49Þ

Note that here the normalization term, �, has not been

made explicit. Thus, an additional experimental measurement

is needed to characterize the normalization term. Using our

definitions in equations (45), we can define this normalization

measurement as

IE
n ¼ �

�
An;nNn

d�n

d�
þ Pie

n

� �
þMn þ

d�e

d�

�
: ð50Þ

The normalization measurement performed will differ

according to the probe used, X-rays or neutrons. Yet, both

serve a similar purpose in that they factor out the dependence

of detector efficiencies, solid angle coverage etc. As a specific

example, vanadium is often utilized for neutron scattering,

mainly because it has a small coherent scattering length,

implying that the distinct scattering signal is small compared

with the self-scattering and thus it exhibits a relatively smooth

diffraction pattern. Since self-scattering does not vary much

with Q or 2
, the differential cross section is essentially

d�v=d� ’ �v
tot=4� ¼ b2

tot;v, where btot,v is the total scattering

length of vanadium from equation (53). For more detail on

reasons to use vanadium, we refer the reader to Section 3.8.1

of the GUDRUN manual (Soper, 2010) and for more infor-

mation regarding the details of the normalization, we refer the

reader to both Section A5 of the text by Egami & Billinge

(2012) and Section 3.8 of the GUDRUN manual (Soper, 2010).

By substituting hb2
tot;vi into equation (50) for d�n/d� and the

IE
e term from equation (45), we can derive the following:

IE
n ¼ � An;nNnðhb

2
tot;vi þ Pie

n Þ þMn

� 	
þ IE

e : ð51Þ

Solving for � gives

� ¼
IE

n � IE
e

½An;nNnðhb
2
tot;vi þ Pie

n Þ þMn�
; ð52Þ

which defines the final � term needed in equations (47), (48)

and (49).

Solving equation (47) from the experimentally measured

intensities then allows one to arrive at the differential cross

section, also commonly defined as I(Q)/N in the total scat-

tering community. This is the same as that defined in equation

(1) and throughout the rest of this work. For further details on

the data reduction described briefly herein and all necessary

corrections, the reader is referred to more complete discus-

sions in the literature (Howe et al., 1989; Hannon et al., 1990;

Soper, 2010; Egami & Billinge, 2012). There are also other

excellent references that deviate in detail from the reduction

described herein, specifically in the steps where corrections

are applied. (Windsor, 1981) Naturally, refinement of the

methodology has occurred with time.

The derivations herein integrated the scattering intensities

over all measurement energies, where inelastic and multiple

scattering effects are handled through data corrections.

Several authors have noted the implications of this simplifi-

cation (Page et al., 2011). Dynamic PDF has emerged as an

extension of total scattering, making explicit use of the energy
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dependence (Egami & Billinge, 2012). This falls outside the

scope of the present work.

APPENDIX D
Calculating the normalized Laue term

There is often confusion when determining the normalized

Laue term of equation (5). Lovesey (1986) introduced quan-

tities related to the total cross section of the material,

�tot ¼ 4�hb2
toti; ð53Þ

and the coherent cross section,

�coh ¼ 4�hbcohi
2: ð54Þ

Here, the subscript coh stands for coherent and tot stands for

total, where hb2
totimust be inferred from the total cross section

(Sears, 1992). In the Faber–Ziman scheme, hbcohi
2 comes from

the sum of the partials and the pupose of the hb2
toti term is to

remove the self-scattering from the differential cross section

(Faber & Ziman, 1965). These are the terms that appear in the

normalized Laue term with the factor of 4� canceled out. Note

that h�cohi 6¼ 4�hbcohi
2, but Lovesey’s notation obscures this

fact. Being more explicit, it is straightforward to calculate the

terms as originally intended. First we introduce a normalized

concentration

c� ¼ N�=N; ð55Þ

where N� is the number of atoms of type � and N ¼
P

� N�.

This provides for the normalization that
P

� c� ¼ 1. The two

quantities needed in the normalized Laue term are simply

hb2
toti ¼

P
�

c�b2
tot;� ¼ ð1=4�Þ

P
�

c��tot;� ð56Þ

and

hbcohi
2
¼

P
�

c�bcoh;�

� � P
�

c�b�coh;�

� �
: ð57Þ

This formulation of hbcohi
2 makes more explicit that the

complex scattering lengths, with sign, are averaged. Sears

(1992) offers a useful discussion of calculating average cross

sections. Unique to neutron measurements, this can lead to

materials where the normalized Laue term becomes infinite

because of atoms with a negative scattering length. Ti2.08Zr is a

classic example of hbcohi
2 = 0 and hb2

toti 6¼ 0.

An additional complication is found when hb2
toti is calcu-

lated. Since 1 barn = 100 fm2, people often calculate hb2
toti by

simply dividing by 4� and ignoring the units. While the factor

of 100 will cancel out in the normalized Laue term, the values

of the individual terms will be listed in units of 10 fm (or

dekafemtometres) rather than fm. Tables 9 and 10 show

calculations for the example materials.

APPENDIX E
Determining number density

Often when processing or analyzing data, the effective number

density, or packing fraction, is treated as an adjustable para-

meter. Here we demonstrate how to calculate it and give

guidance on reasonable limits. The effective number density

affects absorption and multiple scattering corrections as well

as the total number of illuminated atoms as described in

Appendix C. Since it is difficult to directly measure the

packing fraction precisely, one can see why it is often tuned

during data reduction.

First we introduce the concept of effective number density,

�0;eff ¼ f�0; ð58Þ

which is based on the crystallographic number density, �0,

using a packing fraction f 2 (0, 1]. For measurements of

crystalline powders, the packing fraction rarely exceeds f = 0.5.

The number density for a crystalline sample is often phrased in

terms of the number of atoms per unit cell, called the Z

parameter, and the unit-cell volume. Using standard crystal-

lographic conventions (Giacovazzo, 1992)

�0 ¼
Z

a � ðb� cÞ
: ð59Þ

For liquids, �0 is not normally known. The technique for

establishing it is to calculate �0,eff from the mass density, �m.

This is done by weighing the empty sample container, adding

the sample, and then weighing the filled container and

measuring how full the container is. This measurement will

give a mass density with the packing fraction correctly

accounted for. Then the effective number density is

�0;eff ¼ f�0 ¼
�mNAP
� c�m�

; ð60Þ

where NA is Avogadro’s number, m� is the atomic mass, and c�
is the normalized concentration of element � or the atomic

fraction as defined in Appendix D. This procedure is often

used for crystalline samples as well. An alternative to this

approximation is to measure the volume by displacement in a

fluid that the material does not react with and is insoluble

within. However, it is likely to be difficult to recover a sample
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Table 9
Table of scattering lengths for the example materials taken from Sears
(1992).

bcoh (fm)

Atom btot (fm) Real Imaginary Length

Ar 2.3313 1.909 0.0 1.909
Mn 4.1363 �3.73 0.0 3.73
O 5.8032 5.803 0.0 5.803

Table 10
Calculated values for the normalized Laue term shown with fixed
precision.

Note that the normalized Laue term is not necessarily zero for monatomic
materials.

Material hb2
toti (fm2) hbcohi

2 (fm2) L

Ar 5.435 3.644 0.491
MnO 25.393 1.074 22.636



from this type of measurement so it is recommended that it is

done after the scattering measurement is completed.

APPENDIX F
Partial structure functions

To use the prevalent Faber–Ziman partial structure functions,

one must first define weights (Faber & Ziman, 1965; Suck et al.,

1993; Egami & Billinge, 2012)

W�� ¼ c�c�
bcoh;� bcoh;�

hbcohi
2
¼

N�N�

N2

bcoh;� bcoh;�

hbcohi
2

; ð61Þ

which are normalized such that
P

�� W�� ¼ 1. Note that the

same symbol is used with an alternative normalization in some

communities with
P

�� W�� ¼ hbcohi
2. The Faber–Ziman

partial structure functions are related to the total scattering

structure factor

SðQÞ ¼
P
��

W��A��ðQÞ ð62Þ

with A��(Q) = S��(Q) in the nomenclature that Egami uses.

The benefit of this normalization of S��(Q) is that it has the

same asymptotes as S(Q) with

lim
Q!1

A��ðQÞ ¼ 1 ð63Þ

and

lim
Q!0

A��ðQÞ ¼ �: ð64Þ

In equation (61), hbcohi
2 is the average scattering length for the

material and the numerator is the average scattering length for

the atoms contributing to the partial.

Then it is straightforward to define a partial reduced pair

distribution function as

G��ðrÞ ¼
2

�

Z1

0

Q½A��ðQÞ � 1� sinðQrÞ dQ; ð65Þ

which observes a summation rule of

GðrÞ ¼
P
�

P
�

W��G��ðrÞ: ð66Þ

The other real-space correlation functions follow analogous

forms.

To clarify a related point, difference correlation functions

are a distinct concept. Instead of being the correlation of two

atomic species, it is all correlations with an atom of type � at

the origin. In other words

G�ðrÞ ¼
X
�

c�bcoh;�

hbcohi
2

G��ðrÞ; ð67Þ

which follows the summation rule

GðrÞ ¼
X
�

c�bcoh;�

hbcohi
2

G�ðrÞ: ð68Þ

A more detailed description is given by Egami & Billinge

(2012, Sections 3.1 and 3.2).

For a two-atom system with atoms labeled � and �, the

summation rule for the weights in equation (61) is

W�� þ 2W�� þW�� ¼ 1: ð69Þ

For a monatomic system, there are no partial functions. See

Table 11 for explicit calculation of the values. Fig. 6 shows the

partial G(r).
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