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Accumulating discoveries highlight the importance of interaction between marrow

stromal cells and cancer cells for bone metastasis. Bone is the most common metastatic

site of breast cancer and bone marrow adipocytes (BMAs) are the most abundant

component of the bone marrow microenvironment. BMAs are unique in their origin and

location, and recently they are found to serve as an endocrine organ that secretes

adipokines, cytokines, chemokines, and growth factors. It is reasonable to speculate that

BMAs contribute to the modification of bone metastatic microenvironment and affecting

metastatic breast cancer cells in the bone marrow. Indeed, BMAs may participate in

bone metastasis of breast cancer through regulation of recruitment, invasion, survival,

colonization, proliferation, angiogenesis, and immune modulation by their production of

various adipocytokines. In this review, we provide an overview of research progress,

focusing on adipocytokines secreted by BMAs and their potential roles for bone

metastasis of breast cancer, and investigating the mechanisms mediating the interaction

between BMAs andmetastatic breast cancer cells. Based on current findings, BMAsmay

function as a pivotal modulator of bone metastasis of breast cancer, therefore targeting

BMAs combined with conventional treatment programs might present a promising

therapeutic option.

Keywords: bone marrow adipocyte, breast cancer, bone metastasis, adipocytokine, adipokine

INTRODUCTION

Breast cancer is the most common cancer among women and it leads to the second most tumor-
related deaths in women worldwide (1, 2). Great progress in the development of better diagnosis
and treatment for this cancer has been achieved and contributes significantly to the decline in the
mortality rate. However, breast cancer still accounts for more than a half-million deaths worldwide
annually (3). This high mortality rate is mainly on account of the difficulty to cure metastatic
disease. Bone is the most common metastatic site in advanced breast cancer (4). Bone metastasis
drastically impacts the quality of life and survival of breast cancer patients (5). Therefore, it is
essential to explore the mechanism of bone metastasis of breast cancer.

Due to the unfamiliar environment at the secondary site, the metastatic process is described to
be inefficient, compared to tumor development at the primary site. Actually, only a small group

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2020.561595
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2020.561595&domain=pdf&date_stamp=2020-10-02
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:xijieyu@hotmail.com
mailto:xijieyu@scu.edu.cn
https://doi.org/10.3389/fonc.2020.561595
https://www.frontiersin.org/articles/10.3389/fonc.2020.561595/full


Liu et al. BMAs Impact Breast Cancer

of disseminated tumor cells (DTCs) initiate metastatic growth
(6). Upon arrival to the bone, bone marrow may offer an ideal
soil for DTCs (seeds). The bone marrow microenvironment
comprises of multiple cell types, such as osteoblasts, osteoclasts,
hematopoietic cells, mesenchymal stem cells, endothelial cells,
and adipocytes. All of these cells play indispensable roles in the
maintenance of bone homeostasis (7). Furthermore, they might
provide a supportive niche for metastatic cancer cells. Many
efforts have been made to uncover the functions of the bone
marrowmicroenvironment and research the role of each cell type
in tumor growth and metastasis (8).

The contribution of stromal cells including osteoclasts,
osteoblasts, and inflammatory cells to bone metastasis of breast
cancer has been extensively described (7). Occupying the highest
proportion of the bone marrow, however, the comprehensive
roles of bone marrow adipocytes (BMAs) in the metastatic
microenvironment are still poorly understood (9). BMAs are the
most abundant component of stromal cells in the bone marrow
niche. They progressively increase with aging (10). In children,
15% of bone marrow is composed of adipocytes approximately,
while in adolescent, adipocytes occupy 70% volume of long bone
marrow (11).

At present it is widely accepted that there are at least three
types of adipocytes: white, brown, and beige. This classification
is based on their appearance, function, and site of origin
(12). Although BMAs possess some characteristics of white
adipocytes, they appear to be a distinct fourth population of
adipocytes, a previously unrecognized fat depot (13). BMA is
characterized by a unilocular lipid droplet within a cytoplasm
that is surrounded by a lipid membrane and an adjacent
single nucleus. Although it is often argued that BMA has
beige characteristics because of modest Ucp1 gene expression
in some animal models, no researcher has definitively shown
thermogenic capability in bone marrow adipose tissue, nor
significant protein expression of UCP1 (12). The unique
phenotype of BMAs is confirmed by comparison of gene markers
characteristic to white, brown, and beige adipocytes. BMAs do
not express white-exclusive Tcf21 marker, brown-exclusive Zic1
marker, and beige-specific Tmem26 marker, suggesting their
different phenotype from peripheral white, brown, and beige
adipocytes (14).

Based on a very recent research, though their origins are
different, BMAs and white adipocytes (including abdominal,
visceral, and subcutaneous adipocytes) have many common
characteristics (15). These two types of adipocytes are not only
similar in morphology, but also present similar protein secretion
profiles. The cytokines expressed by BMAs are also expressed
in white adipocytes. The effects of BMAs-derived cytokines on
breast cancer is the same as that of white adipocytes-derived
cytokines. Therefore, the roles of BMAs on breast cancer is
similar to that of white adipocytes.

For a long time, BMAs have been described to fill the
interspace of the bone marrow. Nevertheless, recently BMAs are
demonstrated to function as an endocrine organ (7). BMAs can
secrete various bioactive peptides or proteins. These molecules
are named as adipocytokines collectively. The terms adipokine
and adipocytokine are usually used synonymously. Accurately,

adipocytokines refer to all factors secreted by adipocytes,
including adipokines, cytokines, chemokines, and growth factors.
Adipokines are some factors that are secreted mainly but not
exclusively by adipocytes (16).

So far, BMAs have been demonstrated to release adipokines
such as leptin and adiponectin (11); cytokines such as
interleukin-6 (IL-6) (11), IL-1β (11), tumor necrosis factor-
α (TNF-α) (11), receptor activator of nuclear factor kappa-B
ligand (RANKL) (12, 17); chemokines such as chemokine (C-X-C
motif) ligand 1 (CXCL1) (11), CXCL2 (11), CXCL5 (18), CXCL12
(10), C-X3-C motif ligand 1 (CX3CL1) (19, 20), C-C motif
ligand 2 (CCL2) (21, 22); and growth factors such as insulin-like
growth factor-1 (IGF-1) (10), fibroblast growth factor-2 (FGF-2)
(10). Recently, a few novel adipokines including angiopoietin-like
protein 2/4 (ANGPTL2/4) (10, 23), chemerin (24), fatty acid-
binding protein 4 (FABP4) (10, 23), lipocalin 2 (LCN2) (25, 26),
resistin (23) and visfatin (10, 23) are found to be produced by
BMAs. Via these adipocytokines, BMAs influence the cells in the
bone marrow by autocrine, endocrine, and paracrine signaling.
However, at present no adipocytokines expressed specifically by
BMAs has been found.

BMAs are the most abundant component in the bone marrow
microenvironment, especially among postmenopausal women
(12). Interestingly, postmenopausal women are the population
with a high incidence of bone metastasis of breast cancer. The
effect of BMAs on local tumor cells in bone marrow may be
greater than other marrow stromal cells such as mesenchymal
stem cells, endothelial cells, and fibroblasts.

Increasing evidence has highlighted the important role
of adipocytokines as an active player involved in breast
cancer progression and metastasis by remodeling extracellular
matrix (ECM), modulating immune responses, influencing
epithelial-mesenchymal transition (EMT), inducing cancer
stem cell-like traits, increasing cancer cells proliferation and
growth, and regulating angiogenesis (27). In this review, we
provide an overview of research progress, focusing on secreted
adipocytokines by BMAs and their potential roles for bone
metastasis of breast cancer, and investigating the mechanisms
mediating the interaction between BMAs and metastatic breast
cancer cells. Several novel adipokines are especially emphasized
as new evidence is emerging regarding their involvement in bone
metastasis of breast cancer.

BMAs AND MECHANISMS INVOLVED IN
PRE-METASTATIC NICHE FORMATION

The formation of bone metastasis is a multi-step process. It
includes attraction of chemoattractants to circulating tumor
cells (CTCs), departure of cancer cells from blood vessels
(extravasation), local invasion and migration, colonization and
adaption, and expanded growth to macrometastasis. Each step
demands close cooperation of cancer cells with the specific
partners in the bone microenvironment (20). The remaining
section of this review elaborates on the acknowledged functions
of adipocytokines in the adipocyte-breast cancer cell interaction
and the potential role that BMA-secreted adipocytokines may
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FIGURE 1 | An overview of the potential contribution of bone marrow adipocytes (BMAs) to the bone metastasis of breast cancer. BMAs affect the recruitment,

extravasation, invasion, colonization, proliferation, and angiogenesis of metastatic breast cancer cells in the bone marrow by their secreting various adipocytokines.

play in bone metastasis of breast cancer during each stage
(Figure 1).

Increasing discoveries reveal that tumors lead to the
development of an appropriate microenvironment in secondary
organs that conduce to the colonization and growth of CTCs
before they arrive at these sites (28). This predetermined
microenvironment is termed “pre-metastatic niche” (PMN).
Various studies have identified some mechanisms that regulate
complicated molecular and cellular changes in the PMN to
support the next growth of metastatic tumors (29).

Bone is a frequent metastatic site for some types of solid
tumors, such as breast, prostate, and lung cancer. BMAs represent
the major population of bone marrow cells (13). BMAs and the
BMAs-secreted factors can impact some resident cells and matrix
in the bone marrow to develop a PMN and the next colonization
of metastatic cells (30). Concretely, the steps of PMN formation
consist of the promotion of vascular leakiness, the remodeling of
ECM, and immune modulation (31).

Adipocytokines and Vessel Barrier
Breakdown: Permeability
The vasculature at PMN is remodeled by adipocyte-secreted
adipocytokines in various ways. Animal tumor models indicate
promoted vascular permeability at PMN (32), which is related to
increased extravasation and metastatic burden. Adipocytokines,
such as the inflammatory cytokines IL-6, IL-1β, TNF-α can
induce vascular permeability in bone marrow, enabling CTCs to
extravasate. As we know, extravasation is the initiating step of
bone metastasis.

Novel adipokines also contribute to this process. ANGPTL2
and ANGPTL4 enhance the permeability of microvessels in
the premetastatic sites synergistically (33). Visfatin, another

adipokine, activates Nlrp3 inflammasome to remarkably decrease
the expression of inter-endothelial junction proteins, including
tight junction proteins ZO-1, ZO-2, occludin, and adherens
junction protein vascular endothelial (VE)-cadherin. These
disrupt inter-endothelial junctions and increase paracellular
permeability of the endothelium (34).

Chemokine CXCL12 also enhances tumor vasculature
permeability, facilitating colonization to distant organs.
Mechanistically, CXCL12 acts on endothelial cells through its
receptor chemokine (C-X-C motif) receptor 4 (CXCR4) and
promotes trans-endothelial migration of tumor cells. Analogous
to visfatin, CXCL12 inhibits the expression of junction proteins
including ZO-1, occludin, and VE-cadherin (35).

Consequently, metastatic osteotropism likely requires specific
interactions of BMAs with endothelial cells in the bone marrow.
Metastasis prefers to direct to bone marrow because the bone
marrow vasculature is relatively permissive for tumor cell
extravasation (29).

Adipocytokines and Remodeling of the
ECM
The ECM at PMN undergoes significant changes. The lysyl
oxidases (LOX) family induce the crosslinking of ECM, which
plays an important role in ECM-shaping (30). LOX exerts its
pro-metastatic effect via enhancing the stiffness of the ECM to
promote the anchorage and colonization of cancer cells (36, 37).

It has been demonstrated that the ECM modifying enzyme
LOX secreted by breast cancer cells induces a metastatic niche
in bone. This forms a PMN that can act as a platform for CTCs
to colonize (38). Adipocytokines such as TNF-α, IL-1β, FGF-2,
and CCL2, have been found to increase LOX expression in breast
cancer (29, 39, 40). For example, TNF-α induces LOX expression
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via the reactive oxygen species-activated nuclear factor-kappaB
(NF-κB)/extracellular signal-related kinase (ERK) pathway, thus
promoting the progression of breast cancer metastasis (40).
Collectively, collagen crosslinking induced by adipocytokines
leads to enhanced tissue stiffness to facilitate tumor cell seeding
and accelerate metastatic growth (29).

Adipocytokines and Immune Modulation
Anti-tumor immunity mediated by immune cells such as
natural killer (NK) cells and T cells that attack tumor
cells is a natural defense against cancer. To overcome
this barrier, immunosuppressive mechanisms at metastatic
sites recruit other immune cells that can suppress these
anti-tumor responses. This recruitment of immune cells is
a hallmark of PMN establishment (41). Accumulation of
immunosuppressive myeloid cell populations can limit anti-
tumor adaptive immunity to promote metastatic spread. These
immunosuppressive myeloid cell populations are collectively
termed myeloid derived suppressor cells (MDSCs) (42). In
the bone marrow, MDSCs can be recruited by BMAs-derived
adipocytokines to form a tumor-favoring microenvironment to
suppress the anti-tumor immune response (43).

Several proinflammatory cytokines, such as IL-6, IL-1β, TNF-
α, facilitate the cancer progression by recruiting and activating
MDSCs at the sites of the next metastases. Members of the
signal transducer and activator of transcription (STAT) family
play important roles in promoting the differentiation of MDSCs
stimulated by these cytokines (44, 45).

An HFD and the accompanying obesity induce the
accumulation of excess numbers of MDSCs in mice. This
result enhances spontaneous metastasis. Mechanistically, the
induction of MDSC is regulated by leptin, a classic adipokine
that is overexpressed in HFD mice and the accumulation of
MDSCs can be reduced by blocking the leptin receptor (45).

Some chemokines and chemokine receptors also play roles
in recruiting MDSCs in PMN. In different types of cancers
(including breast cancer and melanoma), CXCL1, CXCL2,
and CXCL5 with their common receptor CXCR2 trigger the
recruitment of MDSCs into the PMN (46). Moreover, the
CXCL12/CXCR4 signaling pathway promotes MDSCs trafficking
in the tumor microenvironment (47). CCL2 is implicated in
the recruitment of MDSCs in several murine cancer models,
including lung carcinoma, melanoma, colorectal cancer, and
breast cancer. Interestingly, its receptor CCR2 deficiency results
in a significant decrease in colon cancer growth through the
inhibition of MDSCs infiltration (48).

BMAs AND MECHANISMS THAT
PARTICIPATE IN THE RECRUITMENT OF
CANCER CELLS TO THE BONE MARROW

Paget’s seed and soil hypothesis postulates that the specific organ
microenvironment recruits and supports the survival and growth
of specific types of cancer cells. The osteotropism feature of breast
cancer suggests the presence of specific factors from the bone

that activate the recruitment of breast cancer cells to the bone
marrow (49).

To date, some types of bone marrow cells have been evaluated
for their contribution to attracting breast cancer cells, such as
osteoblasts, osteoclasts, and adipocytes (50, 51). These studies
report that some adipocytokines are involved in breast cancer
osteotropism, including CXCL12, RANKL, leptin, and IL-1β.

Chemokines and Breast Cancer
Osteotropism
It is well-documented that some chemokines contribute to the
recruitment of CTCs to the bone marrow. The BMAs-secreted
chemokines can establish a concentration gradient between the
bone marrow and the blood circulation, which guides the cancer
cells homing to bone marrow. CXCL12 is reported to be released
in the bone marrow. The breast-derived CTCs expressing
CXCL12 receptor prefer to move to the bone marrow because of
the chemotactic ability of CXCL12. On the contrary, treatment
with an antibody of the CXCL12 receptor partly decreases the
formation of bone metastases of prostate cancer (37).

Meanwhile, other adipocytokines assist this process.
ANGPTL2 and IL-6 enhance the reaction of breast cancer
cells to bone-derived CXCL12 through the upregulation of
CXCL12 receptor CXCR4 in these cancer cells, respectively
(52, 53). Additionally, the CXCL12/CXCR4 axis can increase
the expression of cell-endothelium adhesion molecules in
the bone marrow, such as vascular cell adhesion molecule-1
(VCAM1) and integrins α4β1, which further enhances multiple
myeloma cells homing to the marrow (54). Interestingly, the
phenomenon that expression of CXCR4 facilitates cells to move
to the CXCL12-expressed bone marrow has been found in other
types of tumors, such as prostate and lung cancer (20).

CXCL10 is another chemokine produced in the BMAs that
motivates the directional movement of breast cancer cells by
its receptor CXCR3 on cancer cells (10). Accordingly, treatment
with an antibody of CXCL10 reduces bone marrow colonization
of breast cancer cells (37).

Moreover, chemokine CX3CL1 has been demonstrated to
mediate specific metastasis of breast cancer to the bone marrow.
Breast cancer cells that express CX3CL1 receptor CX3CR1 show
a high preference for metastasizing to the bone. Metastasis
to the bone is decreased in CX3CL1 knockout mice, while it
does not impact metastasis to adrenal glands. This result means
that CX3CL1 is necessary for breast CTCs to home to bone
marrow (20).

Cytokines and Breast Cancer
Osteotropism
The RANKL can be secreted as a cytokine by BMAs. Interestingly,
RANK, the RANKL receptor, is also expressed by breast cancer
cells. RANKL can promote the movement of cancer cells (breast
or prostate cancer) that express RANK (37). Therefore, RANKL
may involve the recruitment of cancer cells to the bone marrow.
In turn, treatment with osteoprotegerin (OPG), an inhibitor
of the RANK/RANKL axis, inhibits the development of bone
metastases of breast cancer (55).
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Adipokines and Breast Cancer
Osteotropism
In a human bone tissue explant model, when breast cancer
cells are co-cultured with bone tissue fragments, cancer cells
are inclined to migrate toward the BMAs. Mechanism research
reveals that breast cancer cells are recruited to the human bone
tissue by leptin and IL-1β derived from BMAs (49). This study
demonstrates a direct effect of BMAs on breast cancer.

BMAs AND MECHANISMS ASSOCIATED
WITH CANCER CELLS MIGRATION AND
INVASION IN THE BONE MARROW

Accumulating evidence suggests that EMT and cancer stem
cell (CSC) characteristics involve tumor progression, both of
which contribute to tumor migration, invasion, and metastasis.
Furthermore, both of them can be correlated with BMAs-secreted
adipocytokines (56). In the EMT process, epithelial tumor cells
obtain a mesenchymal phenotype to enhance cell motility and
invasiveness (57). EMT has an important role in cancer invasion
andmetastasis. It is also amechanism involved in bonemetastasis
formation (58).

In addition, EMT contributes to the development and
maintenance of breast CSCs (59), a cell population possessing
the property for self-renewal and initiating a secondary cancer.
Preclinical studies demonstrate that stem-like phenotypes are
responsible for bone metastases of breast cancer (57). Clinical
studies show the presence of cancer cells with CSCs capabilities
in the bone marrow of breast cancer patients (58). Therefore,
it is necessary to identify adipocytokines that stimulate the
development of EMT and CSCs (Figure 2).

Leptin and EMT
Previous studies have shown that leptin promotes EMT via many
mechanisms (27). For instance, there is a potential cross-talk
between leptin and metastasis-associated protein 1 (MTA1)/Wnt
signaling in EMT of breast cancer cell lines (60). Leptin-induced
IL-8 activation via intracellular signaling molecules, such as
STAT3, Akt, and ERK 1/2, facilitates EMT of breast cancer
cells (61). The treatment of breast cancer MCF-7 cell line
with leptin leads to a remarkable increase in the expression
of EMT markers (including vimentin and Snail) along with a
downregulation of the epithelial marker E-cadherin (62). Besides,
leptin secreted by adipose stem cells is demonstrated to promote
the mesenchymal phenotype in triple-negative breast cancer
(TNBC) cells through increased expression of TWIST1, Serpine1,
and SNAI2 (63). Mouse mammary tumor virus (MMTV)-Wnt-
1 transgenic mice, which develop spontaneous breast cancer
under a diet-induced obesity regimen, present increased leptin
production, upregulated EMT gene expression, and reduced
survival (64).

Leptin and CSC
The first proof of this adipokine involved in breast CSC
enrichment is from reduced CSC potential of residual tumors
from leptin-deficient mice, compared to those from wild-type

mice (65). In subsequent studies, activation of ObR (leptin
receptor) signaling is reported to be essential for maintaining
CSC-like and metastatic properties in TNBC (66). Interestingly,
HFD mice with a high leptin level also show upregulated CSC
gene expression and enhanced tumoral aldehyde dehydrogenase
(ALDH) enzymatic activity, a well-known CSC marker (64).
Furthermore, leptin can recruit G9a histone methyltransferase
through STAT3 signaling activation. This causes repression of
miR-200c, which accelerates the formation of breast CSCs (67).
Besides, a leptin/JAK/STAT3-dependent fatty acid β-oxidation
signaling is identified to be critical for breast CSC formation.
Accordingly, targeting this fatty acid β-oxidation pathway
inhibits leptin-induced breast cancer stemness (68). Therefore,
leptin, acting as a mediator of the interaction between cancer cells
and adipocytes, impacts breast CSC activity (27).

IL-1β and EMT, CSC
A research using the MCF-7 cells suggests that IL-1β promotes
migration and invasion via a mesenchymal phenotype (69). A
non-canonical activation of IL-1β-mediated β-catenin signaling
is reported to lead to the onset of EMT in breast cancer
cells (70). The induction of EMT in breast cancer by IL-
1β also links to an NF-κB-dependent mechanism (71). In
a humanized model of spontaneous breast cancer metastasis
to bone, production of IL-1β by cancer cells promotes EMT
(altered E-Cadherin, N-Cadherin, and G-Catenin), invasion,
migration, and bone colonization. Inhibitor of IL-1β, Anakinra or
Canakinumab, reduces metastasis and the number of cancer cells
shed into the circulation (72). Clinical data show that continuous
inhibition of IL-1 activity inhibits breast cancer growth and bone
metastasis (73).

In the bone metastatic niche, microenvironmental IL-1β
enhances the ability of breast CSCs to form colonies by activation
of NF-κB and cAMP-response element-binding protein (CREB)
signaling, Wnt ligand secretion, and autocrine Wnt signaling
in breast cancer cells. Besides, blockage of this IL-1β pathway
inhibits both bone metastasis of breast cancer and CSC colony
development in the bone environment (74). Collectively, present
results demonstrate a functional role of IL-1β signaling in
migration and invasion of breast cancer (73).

IL-6 and EMT
Previous researches have reported that exogenous and
endogenous IL-6 can promote breast cancer invasion and
migration through the activation of EMT. The mature adipocytes
facilitate the invasive behavior of breast cancer cells and
trigger an EMT-phenotype via paracrine IL-6/STAT3 signaling
(75). In a study of breast cancer T47D cells, IL-6 promotes
EMT through the increased activation of ERK1/2 and the
phosphorylation of Shp2, a protein tyrosine phosphatase (76).
Moreover, there is a direct interplay between the oncoprotein
Y-box binding protein-1 (YB-1) and IL-6, which affects breast
cancer metastasis. Overexpression of YB-1 in breast cancer
induces IL-6 secretion, in turn, treatment with IL-6 increases
YB-1 expression, both of which upregulate EMT. This finding
reveals a positive feed-forward loop driving EMT-like character
between IL-6 and YB-1 (77). A blockade of IL-6 pathway by
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FIGURE 2 | BMAs-derived adipocytokines regulate behavior of metastatic breast cancer cells in the bone marrow. A few adipocytokines act on their corresponding

receptors on breast cancer cell and affect downstream signaling pathways. Specifically, leptin binds its receptor on the breast cancer cell, Ob-R, and stimulates the

JAK/SATA3 and PI3K/Akt signaling pathway. Moreover, leptin has activation effects in ERα and HER2 independent of their ligands. Adiponectin is recognized by its

receptor Adipo-R on the breast cancer cell, and two signaling pathway PI3K/Akt and MAPK/ERK are regulated by adiponectin. TNF-α induces signaling cascades in

cancer cells mediated by its receptor TNFR, including MAPK/ERK and NF-κB activation. IL-1β upregulates NF-κB and CREB activation via its receptor IL-1R. IL-6

binds its receptor IL-6R, and resistin binds its receptor TLR4 or CAP1. Both of them stimulates the JAK/SATA3 signaling pathway. FABP4 enhances three different

signaling pathway: JAK/SATA3, PI3K/Akt, and MAPK/ERK after its internalization by breast cancer cell. Visfatin binds an unknown receptor on the breast cancer cell,

and stimulates the MAPK/ERK and Notch signaling pathway. Chemerin upregulates RhoA/ROCK activation via its receptor CMKLR1. Eventually, these adipocytokines

stimulate different signaling pathways including JAK/SATA3, PI3K/Akt, MAPK/ERK, NF-κB, CREB, Notch, RhoA/ROCK, ERα, and HER2 to promote target genes

expression and regulate different tumor biological processes such as proliferation, EMT, stemness, and angiogenesis.

treatment with niclosamide, metformin, or IL-6 shRNA reverses
adipocyte-induced EMT via blocking of IL-6/STAT3 signaling
and downregulation of EMT-transcription factors, such as
NF-κB, TWIST, and SNAIL, as well as EMTmarker vimentin and
N-cadherin (78–80).

IL-6 and CSC
In the exploration of the origins of breast CSCs and their
relationships to non-stem cancer cells (NSCCs), a critical role for
IL-6 has been found in controlling the dynamic balance between
breast CSCs and NSCCs. In a mixed population, NSCCs can be
converted to CSCs in response to exogenous or CSC-secreted
IL-6 (81). Mechanistically, IL-6 regulates breast CSC-associated
OCT4 gene expression through the JAK/STAT3 signal pathway
in NSCCs. Inhibiting this pathway by treatment with anti-IL-6
antibody effectively prevents OCT4 gene expression. These

results suggest that the IL-6/JAK/STAT3 signal pathway plays an
important role in the conversion of NSCCs into CSCs through
regulating OCT4 gene expression (82). Besides, IL-6 upregulates
Notch-Jagged signaling to expand the proportion of CSCs. In
basal-like breast cancer, Notch, Jagged, and IL-6 receptor are
overexpressed relative to other breast cancer subtypes. IL-6
promotes JAG1 expression and enhances interaction among
cells via Notch3 and JAG1. In turn, Notch3 can facilitate the
autocrine production of IL-6. Therefore, the IL-6/Notch3/JAG1
axis sustains mammosphere growth, a feature of breast CSCs
(83). In contrast, blocking IL-6 activity reduces breast CSCs
formation (84). Esculentoside-A inhibits breast CSCs growth
by blocking the IL-6/STAT3 signaling pathway. IL-6/STAT3
pathway proteins including IL-6, phosphorylated STAT3, and
STAT3 are downregulated significantly in Esculentoside-A-
treated breast CSCs. The expressions of stemness proteins
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including ALDH1, SOX2, and OCT4 are also reduced.
These cause inhibition of proliferation and mammosphere
formation of breast CSCs, induce breast CSCs apoptosis,
and suppress the cancer growth generated from breast CSCs
significantly (85).

Novel Adipokines and EMT, CSC
FABP4 promotes EMT of breast cancer via the activation of
the Akt/GSK3β/Snail pathway (86). It also enhances breast
cancer stemness and aggressiveness through stimulating the
STAT3/ALDH1 signal (87). LCN2 plays a role in promoting
cell migration and invasion of MCF-7 breast cancer cells
by inducing EMT (88). Researchers using the MCF-7 cell
line discover that resistin facilitates the metastatic potential
by the promotion of EMT and stemness, and these effects
are primarily attributed to adenylyl cyclase–associated
protein 1 (CAP1) (89, 90). Furthermore, resistin is found
to promote EMT and CSC-like properties in breast cancer
cells through a TLR4/NF-κB/STAT3 signaling pathway (91).
Resistin also accelerates invasion and migration of breast
cancer cells via stimulating ezrin, radixin, and moesin (ERM)
complex, then activated ERM upregulates expression of
vimentin, an EMT marker (92). Visfatin induces EMT in
mammary epithelial cells by activating the transforming
growth factor (TGF) signaling pathway to increase TGF-β1
production (93).

BMAs AND MECHANISMS ASSOCIATED
WITH THE ADAPTATION AND SURVIVAL
OF METASTATIC CELLS IN THE BONE
MICROENVIRONMENT

It has been postulated that tumor cells migrating to
the bone marrow and located in the PMN must adjust
to the bone microenvironment for the subsequent
formation of overt metastasis (94). To survive in the
bone microenvironment, bone metastatic cancer cells
attempt to resemble a type of resident bone cells, i.e., the
osteoblasts (95). This process, known as osteomimicry,
enables tumor cells to survive in the bone marrow
microenvironment (37).

Breast cancer cells can undergo osteomimicry after EMT and
express factors that are the main mediators of bone remodeling
typically found in osteoblasts (95). An osteomimicry profile is
characterized by an increased expression of bone sialoprotein
(BSP), osteopontin (OPN), osteoprotegerin (OPG), osteonectin
(ON), cadherin 11 (CDH11), transcription factor runt-related
transcription factor 2 (Runx2) (96), etc. These bone-related
genes (BRGs) are highly expressed in bone metastatic cancer
cells, compared to those cells metastasized in other organs,
and their expression is regulated by the transcription factor
Runx2 that acts as a master mediator (97). BMAs-secreted
adipocytokines can participate in inducing osteomimicry of
breast cancer cells.

Adipocytokines and Runx2 Signaling
Pathway in Osteomimicry
CXCL1 can promote breast cancermigration and invasion ability,
as well as EMT in bothmouse and human breast cancer cells (98).
After CXCL1 treatment, SOX4 expression significantly increases
in the nucleus of various breast cancer cell lines (98). SOX4
positively regulates the endothelin-1 expression and facilitates
endothelin-1 secretion in breast cancer (99). Endothelin-1 can
activate Runx2 and confer an osteomimetic phenotype in breast
cancer cells, contributing to colonization and osteolysis (100).
Therefore, Runx2 is critical for the CXCL1-induced osteomimetic
phenotype by activating the transcription of BRGs in breast
cancer cells.

Adipocytokines and Wnt Signaling
Pathway in Osteomimicry
In addition to Runx2, the Wnt/β-catenin pathway also plays
an important role in osteoblast differentiation. Interestingly, the
Wnt/β-catenin pathway is significantly more expressed in bone
metastasis samples of prostate cancer patients (97).

The present studies indicate that leptin and CXCL12 may
upregulate the Wnt/β-catenin pathway in breast cancer (101,
102). The miR-218 is an inducer of osteogenesis via activating
Wnt signaling. Besides, a positive feedback loop is demonstrated
between miR-218 and Wnt signaling (103). Furthermore, highly
expressed miR-218 is found in metastatic breast cancer cells
compared to normal mammary cells, which increases OPN, BSP,
and CXCR4 expression to facilitate tumor growth in the bone
(97). Hence, the leptin and CXCL12 activated miR-218/Wnt loop
fuels Wnt signaling to enhance expression of metastatic and
osteomimetic genes in aggressive breast cancer cells that home
to bone (103). Collectively, epithelial breast cancer cells with
ectopic expression of BRGs induced by adipocytokines acquire
the advantages of residing in the bone microenvironment.

BMAs AND MECHANISMS RESPONSIBLE
FOR MACROMETASTASIS AND
OUTGROWTH OF METASTASIZED CELLS

Extravasated breast cancer cells need to adapt to specific
conditions in the foreign microenvironment to form
micrometastases (27). After the development of clinically
undetectable micrometastases, breast cancer cells have to grow
to form macroscopic metastases. However, metastatic cancer
cell proliferation does not occur immediately with a specific
temporal pattern because cancer cells seeding at distant bones
may remain quiescent until stimulus signals from the bone
marrow microenvironment drive cancer cells proliferation into
overt metastases in the bone (27). It is found that activated
osteoclasts and increased osteoclastic bone resorption accelerate
the growth of DTCs into overt metastases (72). In addition, it
is hypothesized that when metastatic tumor cells arrive in the
bone, they may be stimulated to form overt metastasis through
an expansion of the tumor associated vasculature (72). In brief,
the process of micrometastatic to macrometastatic transition
is involved in cancer cell proliferation, osteoclasts vitality and
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their bone resorption, as well as angiogenesis. BMAs-derived
adipocytokines can play an acceerative role in this process.

Adipocytokines Associated With Cancer
Cells Growth and Proliferation in the Bone
Marrow
Adipocytokines not only are associated with the establishment
of a pro-tumor microenvironment and organ-directed metastasis
but also mediate disease progression, favoring the growth and
proliferation of tumor cells (104). Several adipocytokines have
been described to participate in these processes (Figure 2).

Leptin
Without an estrogen ligand, leptin can activate the estrogen
receptor (ER) signaling resulting in the growth of breast cancer
cells (105). Several signaling pathways have been demonstrated
to enhance proliferative of breast cancer cells, including the
activation of JAK/STAT3 and PI3K/Akt by leptin, as well as JAK2
activation-mediated human epidermal growth factor receptor-2
(HER2) transactivation (106, 107). In addition, leptin influences
the cell cycle. Leptin upregulates the expression of cyclin D1
and cyclin-dependent kinase 2 (CDK2) but downregulates the
expression of p21, p27, and p53, resulting in cell cycle alteration
in breast cancer (108).

Adiponectin
Adiponectin is reported to inhibit breast cancer growth.
However, its effect may depend on the hormonal receptor
status (109). In ER-negative breast cancer cells, it reduces cell
growth and proliferation (110). Whereas, its effects on ER-
positive breast cancer cells are contradictory (111). In ER-positive
breast cancer cells, certain concentration adiponectin enables the
interaction of APPL1 with adiponectin receptor AdipoR1, ERα,
insulin-like growth factor I receptor, and c-Src. This complex
stimulates mitogen-activated protein kinase (MAPK) signaling
to accelerate breast cancer growth (112). Besides, adiponectin
presents different impacts on the cell cycle according to ER status
(113). Adiponectin downregulates cyclin in ERα-negative cells
and upregulates cyclin in ERα-positive cells, respectively (90).

TNF-α
The effects of TNF-α exposure on breast cancer cell lines remain
rather contradictory (59). In ER-positive breast cancer cells, TNF-
α can promote the proliferation in T47D cells (114), but it
presents a pro-apoptotic and anti-mitogenic function in MCF-7
cells (115). In different ER-negative cell lines, TNF-α shows dual
effects once more. It accelerates apoptosis in some cases (BT549
cells) (116), however, it enhances survival and proliferation in
other cases (MDA-MB-468, SK-BR3, and MDA-MB-231 cells)
(117). Therefore, further studies are required to elucidate the role
of TNF-a in growth and proliferation.

Novel Adipokines
Chemerin increases RhoA/ROCK pathway signal transduction
to promote breast cancer cell proliferation and metastasis (118).
FABP4 also accelerates cancer cell proliferation by activation
of phosphoinositide 3-kinase (PI3K)/Akt and MAPK/ERK

pathways and the induction of FOXM1 transcription factor
expression in MCF-7 cells (119). Iron facilitates cancer cell
proliferation and metastasis. Breast cancer cells show an
increased uptake and intracellular storage of iron to support their
enhanced metabolism and DNA synthesis (120, 121). Recent
evidence supports the existence of transferrin-independent
iron transport mechanisms in the tumor microenvironment,
which points to local iron transport proteins such as LCN2
(122). Stimulation of breast cancer cells with resistin not
only enhances their growth and stemness but also results in
chemoresistance through STAT3 activation (123). Visfatin is
identified to facilitate the survival and proliferation of breast
cancer cells via upregulating Notch1 (124). Visfatin also induces
breast cancer cell proliferation and viability through PI3K/Akt
and MAPK/ERK activation and protects against apoptosis in
these cells (125, 126). Visfatin increases both extracellular
and intracellular nicotinamide adenine dinucleotide (NAD)
concentration in breast cancer cells, which causes upregulation
of silent information regulator 1 (SIRT1) activity and p53
deacetylation. SIRT1 is implicated in blocking senescence and
apoptosis and promoting cancer growth (127).

Adipocytokines and Mechanisms
Responsible for Bone Remodeling and the
Formation of Osteolysis
Marrow adiposity has promoting effects on tumor-related
osteolysis. Accelerated bone remodeling is one of the key
factors associated with reactivation and growth of tumor
cells colonized in the bone. Experimental treatment-induced
osteoclasts formation and bone resorption, in turn, increase
tumor cell growth and occurrences of bone metastases (128).

RANK signaling facilitates the differentiation of osteoclast
progenitors via transcription factors like NF-κB and activator
protein 1 (AP1) and by activating Jun N-terminal kinase (JNK),
ERK1/2, and P38 MAPK, eventually stimulating nuclear factor
of activated T-cells, cytoplasmic 1 (NFATc1), a master gene of
osteoclastogenesis. Therefore, RANKL/RANK pathway is the
predominant mediator of osteoclastogenesis, regulating bone
resorption (129). After bone resorption, several growth factors
stored in the bone matrix, such as TGF-β, platelet-derived
growth factor (PDGF), IGF-1, and FGF, are released to promote
cancer proliferation and establish a “vicious cycle” in osteolytic
metastases (44).

Cytokines and Osteoclastogenesis
Cytokines, such as TNF-α, IL-1β, and IL-6, increase osteoclast
activity by inducing the production of RANKL from osteoblasts
and stromal cells, and decreasing OPG levels (44). For
instance, the IL-6/IL-6R axis upregulates RANKL expression to
induce osteoclast differentiation and bone resorption through
JAK/STAT signaling (130). As described earlier, adipocytokines
such as TNF-α, IL-1β, FGF-2, and CCL2 have also been
found to be involved in the regulation of LOX expression
in breast cancer (29, 39, 40). Interestingly, a transplantable
breast cancer model shows that secreted LOX regulates bone
homeostasis via osteoclastogenesis. LOX-mediated disruption
of bone homeostasis is driven by NFATc1 directly and is
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independent of RANKL. High expression of LOX in tumors
results in osteolytic lesion formation that could be inhibited by
silencing or inhibition of LOX (38).

Adipokines and Osteoclastogenesis
Leptin and adiponectin show multiple functions in regulating
bone homeostasis. Leptin can enhance the secretion of soluble
intercellular adhesion molecule (sICAM)-1 by breast cancer cells
to induce osteoclastogenesis and accelerate bone erosion (109).
On the other hand, leptin acts on bone mesenchymal stem cells
(MSCs) to promote their proliferation and differentiation of
MSCs into osteoblasts (130).

In contrast, adiponectin inhibits osteoclastogenesis and
resorption function by suppressing NF-κB and p38 signaling
pathways, which is essential for osteoclast formation. Moreover,
adiponectin blocks the formation of F-actin rings and attenuates
osteoclast-mediated bone resorptive function (131). On the other
hand, adiponectin activates the Wnt/β-catenin pathway in the
MSCs to increase osteoblastic differentiation (132). Adiponectin
also upregulates the expression of osteoblastic genes, such as
osteocalcin, alkaline phosphatase, and Runx2 (133).

Novel Adipokines and Osteoclastogenesis
ANGPTL2 promotes osteoclastogenesis via upregulating NFATc1
expressions in macrophage colony-stimulating factor (M-CSF)-
treated precursor cells (134). Chemerin receptor CMKLR1 is
expressed by osteoclasts and mesenchymal stem cells (135).
There is a paracrine role for chemerin in promoting osteoclasts
differentiation through modulating intracellular calcium and
NFATc1 (136). Chemerin also enhancesmature osteoclast activity
and bone resorption via extracellular signal-regulated kinase-5
(ERK5) phosphorylation. The activation of the ERK5 pathway
boosts cathepsin K and matrix metalloproteinase-9 (MMP9)
activity, a critical intracellular signaling cascade involved in the
RANKL-induced osteoclastogenesis (135). LCN2 exerts a positive
effect on bone resorption by increasing osteoclast maturation,
through the enhancement of RANKL and IL-6 expression
from osteoblasts (137, 138). Resistin shows dual functions in
bone remodeling. On the one hand, resistin accelerates the
proliferation of osteoblastic precursors (130). On the other
hand, resistin facilitates osteoclasts differentiation via regulating
protein kinase C (PKC) and PKA signaling pathways (139).

Contribution of Adipocytokines to the
Tumor Angiogenesis
Angiogenesis is necessary for the solid tumor to transport
continuous oxygen and nutrient supply. It is also a crucial
requirement of growth and progression for all subsets of breast
cancer (140). Notably, the vasculature has an indispensable role
in the formation of bone metastasis. Indeed, bone metastatic
breast cancer cells prefer to colonize adjacent to the endothelial
cells and even around the vessels (141). High vascularization
supports cancer growth by providing nutrients and growth
factors (7).

It is well-known that vascular endothelial growth factor
(VEGF) is the crucial driver of angiogenesis. The function
of VEGF is reinforced by the hypoxic condition presented in

the marrow, hypoxia-inducible factor 1α (HIF-1α), and matrix
metalloproteinases (MMPs) (142). Nonetheless, tumor cells can
secrete angiogenic factors VEGF and promote the growth of
capillaries into the tumor. Accumulating evidence suggests
that adipocytokines can also regulate angiogenesis, thereby
contributing to tumor progression (48). Adipocytes actively
participate in angiogenic modulation through the secretion
of adipocytokines, including leptin, IL-1β, IL-6, ANGPTL2,
chemerin, FABP4, LCN2, resistin, and visfatin.

Leptin and Angiogenesis
In a paracrine manner, leptin is demonstrated to induce
proliferation and migration of endothelial cells expressing Ob-
R (143). Moreover, leptin stimulates blood-vessel growth in
cooperation with VEGF. Leptin stimulation facilitates VEGF
expression in breast cancer cells via HIF-1α and NF-κB (144).
In breast cancer cell lines, treatment with leptin enhances cell
proliferation, migration, and upregulation of VEGF and its
receptor VEGFR-2 (145). This is highly dependent on the Notch,
IL-1, and leptin cross-talk outcome (NILCO) in breast cancer.
Thereby, NILCO is suggested as the integration of key signalings
for leptin-induced tumor angiogenesis. In the short-term effect,
leptin exerts pro-angiogenic actions via the direct transactivation
of VEGFR-2 in endothelial cells. In the long term, this effect
involves the upregulation of MMPs, integrins, and NILCO in
breast cancer cells, which further promotes VEGF/VEGFR-2
expression (27, 146).

IL-1β, IL-6 and Angiogenesis
IL-1β stimulates the expression of VEGF and its receptor on
endothelial cells. Also, IL-1β facilitates endothelial cell migration
and tube formation via activating p38-MAPK (147). IL-6
influences HIF-1α and VEGF expression to regulate angiogenesis
(142). In cancer cells, IL-6 upregulates VEGF expression by
the JAK/STAT3 signaling (148). In a further study, chromatin
immunoprecipitation indicates that the STAT3 activated by IL-6
binds to the VEGF promoter to stimulate VEGF production and
accelerate tumor angiogenesis (149). Moreover, the effects of IL-
6 on angiogenesis are involved in several other processes, such
as enhancing endothelial progenitor cell migration, promoting
vascular smooth muscle cell (VSMC) migration, and accelerating
PDGF–mediated VSMC proliferation (150).

Novel Adipokines and Angiogenesis
Most ANGPTL proteins present angiogenic effects (52). The role
of ANGPTL2 in angiogenesis is exhibited as a proangiogenic
factor and exerts anti-apoptotic effects on endothelial cells
(151). Existing data indicate that chemerin plays a role in
the stimulation of endothelial cells proliferation, migration,
and capillary tube formation (152). Further studies show
that chemerin activated angiogenic effects are dependent on
p42/44 MEK activation (153). FABP4 is a positive regulator
of endothelial cell proliferation and angiogenesis, as a target
of the VEGF/VEGFR2 pathway (153). LCN2 is reported to
induce the production of HIF-1α and VEGF in breast cancer
cells to stimulate angiogenesis, via the ERK signaling pathway
(140). Visfatin facilitates endothelial proliferation and capillary
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tube formation in endothelial cells. This is mediated by
increased production of VEGF and matrix metalloproteinases
(MMP-2 and MMP-9) via MAPK/PI3K-Akt/VEGF signaling
pathways (154). Visfatin also accelerates VSMC proliferation
through nicotinamide mononucleotide-mediated activation of
ERK 1/2 and p38 signaling pathways (155). In addition, visfatin
reduces apoptosis in endothelial cells and induces maturation
in human VSMC (153). Resistin upregulates VEGF expression
in cancer cells to promote angiogenesis via PI3K/Akt signaling
cascades (156).

Collectively, increased adipocytokines secretion from
adipocytes, combined with the hypoxic microenvironment,
establishes an ideal environment to drive angiogenesis via the
upregulation of VEGF expression (142). This effect results in
the development of new vasculature to support breast cancer
metastatic growth.

CONCLUSION AND PROSPECTS

As discussed above, BMAs have emerged as a crucial mediator
of bone metastasis of breast cancer. Inhibiting BMAs is
likely to lead to a novel therapeutic strategy for bone
metastasis. BMAs are linked to osteoblasts by sharing the same
progenitor, multipotent mesenchymal stromal cell. Adipocyte
and osteoblast differentiation are closely related, and both types
of cells share some common steps during their differentiation
(12). This creates an inverse reciprocal relationship between
osteoblastogenesis and adipogenesis. Some factors that promote
one of the two processes usually inhibit the other (8). An
approach is to regulate the balance between osteoblastogenesis
and adipogenesis, thereby preventing an increase in marrow
adiposity. Sclerostin is a Wnt signaling antagonist secreted
by osteocytes, inhibiting osteoblastogenesis and new bone
formation. Preclinical studies have shown a decreasingmetastatic
breast cancer burden in the mice bones with anti-sclerostin
treatment (157). Interestingly, anti-sclerostin also reduces the
volume of BMAs (158), implicating that the antitumor effect of
sclerostin antibody may partly attribute to inhibiting BMAs (7).
This treatment target follows the belief that “fat loss is bone gain”
(14).

Another potential option is inhibiting the effects of
adipocytokines secreted by BMAs. First, leptin peptide
receptor antagonist is reported to suppress leptin-induced
chemoresistances in breast cancer cells (159). This finding
suggests leptin peptide receptor antagonist combined with
chemotherapy improve chemosensitivity of breast cancer.
Besides, IL-6 has been considered as a primary factor affecting
the resistance of breast cancer to trastuzumab, a targeted
therapeutic HER2 antibody. Blockade of IL-6 effect by an IL-6
antagonist, tocilizumab, reduces the breast cancer stem cell
population, resulting in decreased cancer growth and metastasis
in mice (160). Clinical trials are ongoing for investigating
utilization of HER2 therapies in combination with IL-6 therapies
to overcome drug resistance in HER2-positive breast cancer
(54). Moreover, a clinical trial for triple-negative breast cancer is

currently proceeding to test the checkpoint inhibitor PDR001 in
combination with Canakinumab, an anti-IL-1β antibody (147).
The results of this clinical trial will provide valuable information
on the use of IL-1 antagonist in combined treatment. TNF-α
neutralizing antibodies are also tested for cooperation with
paclitaxel, a conventional chemotherapeutic agent in breast
cancer. In mice, administration of TNF-α antibodies enhances
the efficacy of paclitaxel treatment with respect to both
breast cancer proliferation and lung metastasis (59). TNF-α
neutralizing antibodies prove to be promising agents for their
ability of suppressing metastasis as presented in animal models.
When combined with eribulin, a chemotherapeutic microtubule
inhibitor, a novel CXCL12/CXCR4 antagonist POL5551 reduces
metastasis and prolongs survival in mice after resection of the
primary breast cancer, compared with single-agent eribulin
(161). However, more clinical trials are needed to assess these
combined therapeutic approaches and their efficacy.

In conclusion, the bone marrow is highly enriched in
adipocytes and it is the main metastatic site of breast
cancer. Adipocytes are the most abundant components
in the bone metastatic microenvironment that facilitate
metastatic breast cancer cells in recruitment, invasion,
survival, colonization, proliferation, angiogenesis, and
immune modulation. BMAs are unique in their origin
and location, and they serve as an endocrine organ via
secreting adipokines, cytokines, chemokines, and growth
factors. Most of these secreted adipocytokines are involved
in pro-metastasis effects on breast cancer. Therefore,
targeting BMAs combined with conventional treatment
programs might present a promising therapeutic option
for the bone metastasis of breast cancer. However, more
studies should be performed to further uncover the complex
interactions between BMAs and breast cancer cells in the
bone microenvironment.
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