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Deep learning practices in the agriculture sector can address many challenges faced by the farmers 
such as disease detection, yield estimation, soil profile estimation, etc. In this paper, disease 
classification for the sugarcane plant and the experimentation involved thereby is thoroughly 
discussed. Experimental results include the performances of the well-known existing transfer 
learning techniques and proposed ensemble deep learning based architecture that incorporates 
stack ensemble of two networks with one having level-wise spatial attention helping to provide 
better generalization. A Self-created database of sugarcane leaf diseases is introduced to the 
research community through this paper. It involves 5 categories with a total of 2569 images. Here, 
it is observed that best performing transfer learning method, MobileNet-V2 shows an accuracy of 
around 84% with the lowest number of parameters whereas ensemble model reaching to 86.53% 
with less epochs and with acceptable number of parameters.

1. Introduction

Most agrarian nation employs a sizable portion of their labor force in agricultural activities. Therefore, a decrease in agricul-

tural productivity has a significant influence on everyday life [26]. Bad weather, inadequate irrigation systems, a poor choice of 
crops, plant diseases, and a lack of state-of-the-art farming facilities are the main factors that contribute to production loss [16]. 
Environmental and biological elements that affect agricultural yield are more difficult to manage than technical ones [9]. Modern 
technological developments have benefited humanity in practically every field. In the healthcare sector, the use of computers to 
assist in diagnosis has been very important in medical examinations [15]. Medical professionals can make simple diagnoses with the 
use of transfer learning applied to chest X-ray images [36].

Similarly, the use of technology in agriculture is expanding to unprecedented levels. For instance, an intelligent context-aware 
irrigation system has been put in place to enable farmers to grow intensively with comparatively less water in order to address the 
issue of water scarcity. This system’s primary components for efficient operation are a data acquisition system, decision support 
system, and scheduling system [11]. Precision agricultural machinery can perform more effectively, produce better results, have 
lower production costs, and be simpler for the user if a global positioning system (GPS) and global information system (GIS) are 
used. The system has demonstrated managerial effectiveness and information management assistance [37]. In [19], the hyperspectral 
imaging technique was employed to determine the geographic origin of the agricultural product. Based on image processing, there 
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Table 1

Comparison of deep learning studies taken on various plants.

Reference Plant Technology used Dataset Data augmentation application Accuracy

[20] Tea IOT + ML Self-collected 
dataset of 
Environmental 
conditions 
monitoring like 
temperature, 
humidity, rainfall 
etc.

Yes blister disease 
detection

91%

[38] Peach, tomato DL plant village dataset Yes Disease 
classification

95.48%

[2] Corn DL plant village dataset Yes Disease 
classification

98.56%

[8] Bean DL ibean 
(AI-Lab-Makerere)

Yes Disease 
classification

92.97%

[12] Corn, tomato, rice, 
casssva

DL plant village 
dataset, rice disease 
dataset, cassava 
dataset

Yes Disease 
classification

99.39% 99.66% 
76.59%

[10] Rice DL Self-collected 
dataset

Yes Disease 
classification

92.46%

[17] Wheat DL CIAGR dataset Yes Disease 
classification

86.50%

[3] Multi-plant DL plant village dataset No Disease 
classification

99%

[1] pepper, tomato DL plant village 
dataset, Pepper 
dataset (NIHHS)

Yes Disease 
classification

99.69% 99%

[25] Mango DL Self-collected 
dataset

No Disease 
classification

89.41%

[23] Rice DL Self-collected 
dataset

No Disease 
classification

95.31%

[31] Multi-plant IOT + DL plant village 
database, 
hyperspectral 
images

No Disease 
classification

95%

[18] Multi-plant DL plant village dataset Yes Disease 
classification

95%

has been an increase in methods used to address agricultural problems. In the agricultural workflow, harvesting is an important stage. 
It has been difficult for a while to choose ripened fruit that is of excellent quality. The harvesting process can be greatly affected 
by a lack of skilled labor. In [24], for categorizing different grape types, various semantic segmentation algorithms were compared. 
Further, these algorithms were used to prepare systems for harvesting purposes.

In several Indian states, sugarcane is an important cash crop. Numerous investigations on the sugarcane crop have been per-

formed in an effort to boost productivity. For calculating the prices of sugarcane derivatives, neural networks were used in view 
of the sugarcane crop’s economic significance and impact on the economy [32]. UAV-acquired images and data from the ground 
can greatly aid in the estimation of the yield with a high degree of precision. It provides evidence in favour of the claim that 
increased technological advancements will result in higher sugarcane yields [34]. The integration of IoT and deep learning could 
be employed effectively to provide precise solution to increase the crop yield and improve product quality [40]. Furthermore, to 
improve agricultural productivity, it is necessary to manage problems like diseases.

For effective disease control, deep learning techniques are required. Table 1, gives the summary of deep learning practices used 
for various plants. It highlights the underlying technology in research, dataset used and its accuracy for specific application. The 
aforementioned techniques employ easily accessible datasets. The availability of the datasets, however, is the main challenge for 
researchers working on deep learning. Transfer learning techniques where pre-trained models are systematically trained with small 
databases to overcome overfitting problems. A customized database can be difficult and time-consuming to create. For conducting 
deep learning experiments, the Plant Village dataset is a great tool. It does not, however, cover every plant species found in every 
region of the world. Additionally, it only contains images that were taken in a controlled environment. It is very likely that the 
designed algorithm will function as anticipated in a lab setting but not in real-time [14]. Therefore, addressing the need for a 
sugarcane disease detection system is the key driver for creating a customized dataset. On the self-created dataset, the well-known 
transfer learning algorithms are used and compared with proposed ensemble deep learning model. Also, to find the optimum choice 
sugarcane disease diagnosis system, the trade-off between a number of hyperparameters and accuracy is carefully examined.
2

The major contributions of the paper are as follows:
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1. For the purpose of identifying sugarcane leaf disease, a self-generated sugarcane dataset is proposed. In contrast to laboratory 
conditions, this collection includes real-time field images of sugarcane leaves.

2. A detailed analysis of several transfer learning methods using the aforementioned dataset.

3. Suggested a transfer learning method that will be the most suitable for a real-time system for diagnosing sugarcane disease.

4. Proposed a ensemble model that trains faster and produces the better classification results than major transfer learning methods, 
on our sugarcane dataset.

The paper is organized as follows: Section 2, provides a thorough overview of the proposed dataset. The experimentation is 
discussed in Section 3. Results are discussed in section 4, and conclusions are presented in section 5.

2. Datasets

Dataset are key requirement for successful deployment of deep learning architectures. The task of problem specific data collection 
is challenging and requires significant efforts. The following subsection focuses on available dataset and highlights the methodology 
followed in the sugarcane database creation.

2.1. Existing datasets

Plant disease diagnosis and classification is a challenging task. Using deep learning techniques for the classification needs large 
databases. Plant Village database is commonly used for testing the suitability of any devised deep learning methodology. This 
database contains over 20000 images for approximately 14 plants. This dataset generally concentrates on the foliar characteristics of 
major fruit plants including apples, grapes, strawberries, etc. Many researchers have adopted this dataset in the study due to a lack 
of modern facilities or due to other constraints. However, to address the challenges related to certain plant-specific images associated 
with it is a key requirement. Since the plant village database does not cover the sugarcane plant, it is not useful for the proposed 
work. However, the range of plants and different variants of images, it has covered in samples is outstanding. This has inspired the 
author to create own database for sugarcane plant which best fit for the requirement of farmer community [27]. Researchers have 
collected 2000 images of wheat leaves for the identification of diseased plant leaves. The specific crop season was chosen in Indian 
environmental conditions for capturing the images and study of the plant [22]. In another study, for identification of the maydis 
leaf blight researchers have collected 1547 images of the Maize plant. All images were collected on the field from different areas 
in West Bengal, India, and New Delhi. Smartphones were one of the major means for collecting images of plant leaves [29]. Few 
researchers have collected a total of 5235 images for the identification of T. absoluta infected plant leaves of tomato species. The 
labelling of the dataset was done by experts from the related domain. U-net model was employed for the disease segmentation in the 
images captured [21]. In an attempt at automatic recognition of strawberry diseases researchers have collected the data using smart 
phones in cultivated lands. In this work, image annotation was manually done with farmers having rich experience in strawberry 
cultivation. To minimize the anticipated overfitting issue data augmentation was employed. Total 6608 images were available after 
the data augmentation. Images were resized to (128 × 128 × 3). Total 9 classes were considered for the experimentation including rot, 
thripes, mildew, etc [7]. An extensive and systematic survey has been carried out regarding application of deep neural network for 
the detection of plant diseases in [39].

Indian marginal farmers are yet to get the technical expertise and are not well versed with recent digital trends. So, in this database 
collection i.e. during the image acquisition, keeping the farmers in mind no special attention was provided for the illumination 
conditions, orientations, and different physical factors.

2.2. Highlights of the dataset

In this section, key highlights of the proposed sugarcane database are given. The suitability of the database for real-time imple-

mentation is discussed in this section.

2.2.1. Number of classes

The sugarcane database mainly contains five categories. It includes healthy, mosaic, red rot, rust, and yellow leaf diseases as 
shown in Fig. 1a, 1b, 1c, 1d, and 1e, respectively. For each disease type, approximately 500 images are taken. Table 2, gives the 
number of images corresponding to each class.

2.2.2. Number of image capturing devices

General smartphone cameras were used for capturing the images. The ultimate aim of the work is to build a real-time disease 
detection system. In order to make the system make more universal and reliable to lower-end farmers, mobile phones in the range of 
INR 8K-13K were chosen.

For the following specifications, the trade-off between cost and imaging resolution is observed satisfactory to the requirement of 
3

authors. Detailed specifications of the devices used for the database collection is given in Table 3.
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Table 2

Images per class in sugarcane database.

Category name Number of Images in percentage

Healthy 520 20.24%

Rust 514 20.07%

Red rot 519 20.20%

Yellow 505 19.65%

Mosaic 511 19.89%

Total 2569 100%

Fig. 1. Different conditions of the sugarcane leaves.

Table 3

Specifications of the smartphone used for image acquisition.

Device Camera Resolution RAM ROM Processor cores & Frequency

Vivo Y12 13MP + 2MP + 8MP 3GB 64GB Octa-core 2 GHz

Vivo 13 MP 2GB 32GB Octa-Core 2.3 GHz

POCO M2 pro 48MP + 8MP + 5MP + 2MP 6GB 64GB Octa-Core 2.3 GHz

Table 4

Detailed description of the image collection site.

Parameters Details

Region Nagargaon, Shirur, MH, India

Climate( Köppen and Geigers ) BSh

Average annual temperature 25.4 degree Celsius

Average rainfall 498 mm

Soil type Black soil

Annual temperature variation 9.7 degree Celsius

Irrigation facility to site Surface irrigation

Largest nearby water body Bhima River-500-1000 m 
from site

2.2.3. Image collection site
The images were collected in normal environmental conditions during the month of August to September. Samples were taken 

from different farms from Nagargaon, Pune, India. The region selected is under the local steppe climate category. It is classified as 
BSh as per Köppen and Geigers scheme of climate classification.
4

The key features of the climate of the region are mentioned in Table 4.
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Fig. 2. Transfer learning block diagram.

2.2.4. Annotations

After the collection of dataset images were annotated with the help of agricultural officers and farmers having rich experiences 
in the cultivation of sugarcane. After the detailed scrutiny images were separated into categories mentioned in Table 2.

2.2.5. Content diversity

Amateur farmers were asked to take the images along with due observations from skilled technical personalities. The reason 
behind doing so was to anticipate the handling of the system by the farmers only that lack required technical expertise sometimes. 
The image capturing time was restricted between 9.00 am to 5.00 pm on a normal days (Without haze and dark clouds). Database 
can be found in [4]

3. Methodology

In this section, various transfer learning approaches are applied to the database collected. The most straightforward way to 
implement the deep neural network is to use the transfer learning (TL) approach. Work flow of TL is shown in Fig. 2. In classification 
task, base model is trained with large number of images and possibly more number of classes. The knowledge base (KB) in terms of 
probable weights and internal graph structure is generated in the subsequent phase. KB can be used effectively to train the model 
with comparatively less number of images. It is helpful in situations where collecting the dataset is most complicated task. In addition 
to that the architecture of mobilenetv2 is shown in Fig. 3 MobilenetV2 has characteristics like smaller model size, increased efficiency 
and faster inference time.

The model is already trained with large number of images of size 60K-90K in numbers. This model then can be used as initial 
point for task which faces challenge in terms of availability of the sufficient data. VGG-19 [33], ResNet-50 [13], XceptionNet [28], 
MobileNet-V2 [30] and EfficientNet-B7 [35] are experimented with the database. Performance comparison of all methods is carried 
out and best suitable method for the sugarcane disease classification is suggested here. Following performance parameters were used 
for the comparison.

• Precision:

It is the ratio of retrieved and relevant results to the all retrieved results. It is the description of ratio between true positive to 
the total positive results obtained during the experimentation, as shown in equation (1).
5

Precision = 𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(1)
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Fig. 3. MobilenetV2 architecture.

• Recall:

Recall sometimes referred as sensitivity is the ratio of retrieved and relevant result to the relevant results. In equation (2), TP is 
correct detection, FP, is the total number of false detections and FN is number of missed quantities.

Recall = 𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(2)

• F1-Score:

The F1 score is also referred as F measure. It signifies the harmony between precision and recall and helps the researcher to 
trade off between them. Mathematically, it is given by equation (3).

𝐹1 = 2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗𝑅𝑒𝑐𝑎𝑙𝑙
𝑃 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙

= 2 ∗ 𝑇𝑃
2 ∗ 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁

(3)

• Accuracy:

It is ratio of number of correct identification to the all identifications in the experimentation and is given by equation (4).

Accuracy = 𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
(4)

• Support:
6

It is defined as number of instances of true outcomes that are found in each group of target values.
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Fig. 4. Mechanism used for model ensemble.

3.1. Proposed model

A machine learning ensemble technique called stacking combines several models to enhance prediction accuracy. Instead of 
training individual models and combining their predictions based on a simple average or majority vote, stacking uses a ensemble 
model that learns how to combine the predictions of different models to produce a final prediction. The fundamental concept 
underlying stacking is to train a variety of base models on training data, then utilise the predictions from those base models as 
features to train a ensemble model. This ensemble model finds the most effective way to combine the predictions of the basic 
models to get a final prediction. Any model, including linear models, decision trees, neural networks, or any other machine learning 
approach, can use stacking.

The stacking method is often carried out in a number of steps:

1. A number of folds (often five or ten) are created from the training data.

2. Predictions are made using the validation set after each base model has been trained using the training data from each fold.

3. The input features to the meta-model are the predictions of each base model on the validation set.

4. The validation set predictions are used to train the ensemble model on how to most effectively integrate them to generate a final 
prediction.

5. After the ensemble model has been trained, predictions can be made using the test data.

In many machine learning applications, stacking has been proved to be a potent strategy for enhancing prediction performance. 
Stacking can help to decrease overfitting, enhance generalisation, and increase prediction accuracy by combining the predictions 
of many models. Here, as part of the stacked ensemble model depicted in Fig. 4, a simple sequential CNN model and another deep 
CNN model with spatial attention [41] at various levels have been used. Figs. 5 and 6 show the detailed architectures for the simple 
sequential model and the deep CNN model with spatial attention, respectively. In order to predict leaf diseases that have a lot of 
morphological similarities, it is imperative to extract stage-specific spatial features to stop the loss of vital spatial information.

4. Results and discussions

We present performance metrics and loss curves for the analysis to show the performance of all models. Table 5 provides the 
parameter set selected for experimentation. Results from the experimentation of several transfer learning models, which are essential 
members of the deep learning family, are addressed in this section.

4.1. Performance parameters

Precision, recall, accuracy, F1 score, and support are key metrics to assess any deep neural methodology’s effectiveness. Tables 7, 
8, 9, 10 and 11 provide a thorough explanation of all parameter values for the various networks VGG19, ResNet50, XceptionNet, 
MobileNetV2, and efficientNet-B7, respectively. The VGG19 network has a unique architecture with 19 layers of deep convolutional 
7

layers. VGG19 produces poor results when compared to other approaches, nevertheless. For any architecture to stand well, it is 
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Fig. 5. A simple sequential CNN model.
8
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Fig. 6. CNN with spatial attention at different stages of the network.

Table 5

Parameter setting for all models.

Parameter Details

Batch size 32

Image size 128x128 and 224x224 (both for ensemble)

train:test:val 80:10:10

Classes 5

Epochs 50 and 20 (for ensemble)
9
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Table 6

Impact of change in input size.

Image size Accuracy

128x128 84.73%

224x224 86.53%

expected to have a higher classification accuracy. By using customised residual networks in the sequential structure, ResNet archi-

tectures have proven to be reliable. Even if it performs better than VGG19, an empirical investigation revealed greater room for 
improvement. XceptionNet contains 71 layers and is deeper than the other two models. Larger parameters are required for improved 
performance, which adds to the system’s computational load. With regard to XceptionNet, the complexity-performance trade-off is 
not encouraging. The number of parameters employed in the network architecture is shown in Table 12 along with the classifica-

tion accuracy. The mobilenetV2 model has the best accuracy, at 83.24%. Over the years, there has been a demand for well-known 
design that is deployment-friendly. The key features of this approach include fewer parameters and better results. The efficientNet 
class of models is another one. This comparison demonstrates unequivocally that MobileNetV2 delivers superior outcomes to other 
approaches. MobilenetV2 has demonstrated better accuracy for sugarcane disease classification with practically the same amount 
of factors. The architecture of the mobilenetV2 is shown in Fig. 2. Depth-wise separable convolutions and linear bottleneck layers 
used in its architecture, which result in light-filtering, are the main causes of this performance gain. Other important advantages of 
mobilenetV2 are increased efficiency, smaller size, faster inference time, and improved accuracy which also makes it a better option 
for real-time implementation. The performance of the model is tested for different parameters and the best possible selected are used 
for the subsequent experimentation [6] [5]. Along with these findings, the major limitations with the mobilenetV2 are mentioned as 
follows.

• Lower accuracy: For image identification tasks, Mobilenet v2 is not as accurate as previous models.

• Moderate scalability It is unsuitable for more difficult tasks since it does not scale well with growing model complexity.

• Lack of prominent features It lacks some characteristics found in other models, such as batch normalisation and depthwise 
separable convolution.

• Moderate performance with high resolution images: High-resolution images or pictures with complicated patterns don’t 
work well with it.

The ideal input size for a deep learning model depends on a number of variables, including the task’s complexity, the model’s 
architecture, the available computing power, and the size of the dataset. Generally speaking, a higher input size can capture more 
minute details in the data, but it also uses up more computer resources and can slow down the training process. The training process 
can be sped up and computational resources saved with a lower input size, but it might not be able to capture all of the important 
features in the data. The effect of accuracy change on the suggested ensemble model is shown in Table 6. A deep-learning model’s 
performance can be significantly impacted by the quantity of inputs. The model may perform better if there is more information 
available to it as a result of adding more inputs. The risk of overfitting, in which the model becomes overly specialized to the 
training data and performs badly on new, unforeseen data, can be increased by adding too many inputs. As a result, it’s essential to 
balance the model’s performance and the quantity of inputs. In practice, this frequently means carefully choosing the most relevant 
characteristics or employing strategies like feature selection or dimensionality reduction to decrease the number of inputs while 
maintaining the maximum amount of relevant information. Additionally, regularisation methods like dropout can help to avoid 
overfitting and enhance the model’s generalisation capabilities.

Another important factor is coefficient optimization during training of the network. Standard weight initiallization supported 
in tensorflow & keras is used in the experimentation for e.g. glorot_uniform. There are other methods of optimizing the values 
of coefficients (also known as weights) in training a deep learning model. They are pretrained models, hyperparameter tuning, 
gradient-based optimization, random initialization etc. Random initialization is opted in this work.

4.2. Visualized analysis

All of the TL models mentioned above have been trained and tested to compare with one another. VGG19 exhibits steady 
behaviour in Fig. 7a, but it only achieves an accuracy of about 70%. Similarly Fig. 7b, displays the loss curves for ResNet-50 and 
emphasises its limitations in terms of classification performance. Even though XceptionNet has more parameters, its accuracy has 
not increased. Fig. 7c displays the loss curves for it. The MobileNet-V2 loss curves are shown in Fig. 7d, where it performs better 
than all other curves. The model does, however, have a slight tend to overfit as the number of epochs increases. In accordance with 
epochs, the EfficientNet-B7 loss curves shown in Fig. 7e illustrate how the model’s accuracy and loss increase over time. It also fails 
to surpass the mobilenetV2 in performance. It is also worth noting that if the training and validation curves are far apart from each 
other model is overfitting or both curves are not improving at all model is underfitting. In this case, the model does not seem to be 
overfitting or underfitting as well.

The behaviour of all models is compared in the Figs. 8 and 9 in terms of training vs. validation accuracy and training vs. validation 
10

loss, respectively. The upper panel of Fig. 8 shows the training accuracy while its lower panel shows the validation accuracy of all 
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Table 7

Performance metrics for the VGG19.

Class Precision Recall F1-score Support

0 0.78 0.58 0.67 12

1 0.56 0.71 0.63 7

2 0.00 0.00 0.00 0

3 0.60 1.00 0.75 3

4 1.00 0.60 0.75 10

Table 8

Performance metrics for the ResNet-50.

Class Precision Recall F1-score Support

0 1.00 1.00 1.00 10

1 0.86 0.86 0.86 7

2 0.80 0.57 0.67 7

3 0.80 1.00 0.89 4

4 0.60 0.75 0.67 4

Table 9

Performance metrics for the XceptionNet.

Class Precision Recall F1-score Support

0 0.83 0.83 0.83 6

1 0.88 0.78 0.78 10

2 1.00 0.33 0.50 3

3 0.89 1.00 0.94 8

4 0.62 1.00 0.77 5

Table 10

Performance metrics for the MobileNetV2.

Class Precision Recall F1-score Support

0 0.88 1.00 0.93 7

1 1.00 0.71 0.83 7

2 1.00 0.5 0.67 8

3 0.62 0.83 0.71 6

4 0.57 1.00 0.73 4

Table 11

Performance metrics for the EfficientNet B7.

Class Precision Recall F1-score Support

0 0.29 0.50 0.36 4

1 0.83 0.71 0.77 7

2 0.88 0.78 0.82 9

3 0.67 1.00 0.80 2

4 0.88 0.70 0.78 10

Table 12

Performance comparison of different models.

Model Accuracy Number of Parameters

VGG19 0.7083 20,026,949

ResNet50 0.8064 23,575,045

XceptionNet 0.7917 20,871,725

MobileNet_V2 0.8324 2,264,389

EfficientNet_B7 0.7272 2,264,389

Proposed model 0.8653 8,883,825
11
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Fig. 7. Loss and accuracy curves for all transfer learning model proposed database.

transfer learning methods that are studied. Similarly, the upper panel of Fig. 9 shows the training loss while its lower panel shows 
the validation loss of all transfer learning methods.

When the test set’s inputs are applied to the MobileNetV2 network that has been trained, the actual prediction results are shown 
in Fig. 10. Because MobilenetV2 is more accurate, only that model’s results are used for predictions. In the aforementioned figure, 
the MobilenetV2 model’s predicted class and actual class labels are displayed. This behaviour was completely anticipated prior to 
the examination, in contrast to the laboratory setting where these unfavourable factors are manually removed. The whole purpose 
of doing this is to make the system farmer-friendly and capable of producing results in environments that are close to real-time.

4.3. Ensemble model results

The results for model ensembling are included in this section. A sequential CNN model and deep CNN model with sequential 
module were stack ensembled and trained with same database for 20 epochs. Comparison of those two models separately is also 
studied, accuracy and loss curves of both models working separately are given in Fig. 11 and 12, respectively. Fig. 11a and Fig. 11b 
gives idea about the accuracy of sequential CNN and deep CNN, respectively, whereas Fig. 12a and Fig. 12b are the loss curves of 
the sequential CNN and deep CNN, respectively. In addition, in order to evaluate the fitness of the model the confusion matrix of 
those models were also plotted separately. Those performances were again compared with the results of ensemble model that shows 
the better classification than the former models. The accuracy of 86.53% has been observed with ensemble model that is higher than 
the other models taken under study. The major advantages that stacked ensembled model offers are as follows,

1. Higher accuracy: The prediction accuracy of stacked ensemble models is frequently higher than that of conventional deep 
learning models. This is so that complicated patterns in the data can be more effectively captured by stacking, which combines 
the strengths of various models.

2. Enhanced generalization: More resistant to overfitting than conventional deep learning models are stacked ensemble models. 
This is due to stacking’s use of numerous models with various strengths and weaknesses, which lowers the possibility that one 
12

model may become overfit to the training set.



Heliyon 9 (2023) e18261S.D. Daphal and S.M. Koli

Fig. 8. Accuracy comparison of transfer learning methods: The upper panel shows the training accuracy while the lower panel shows validation accuracy.

Fig. 9. Loss comparison of transfer learning methods: The upper panel shows the training loss while the lower panel shows validation loss.

3. Robustness: Traditional deep learning models are less resistant to changes in the input data than stacked ensemble models. 
Stacking makes it more probable that at least one of the models will be able to handle the new data because it employs 
numerous models with various architectures and hyperparameters.

4. Interpretability: Compared to conventional deep learning models, stacked ensemble models may be easier to understand. The 
reason for this is that stacking combines the results of various models, making it possible to find significant characteristics and 
13

patterns in the data. This may help to shed light on the fundamental mechanisms underpinning the forecasts.
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Fig. 10. Predictions with MobileNet V2 for all classes.

5. Faster training: Stacked ensemble models may train more quickly than conventional deep learning models. This is so that the 
overall training time can be decreased. The base models can be trained independently, and the ensemble-model can be trained 
using the predictions of the base models.

Overall, stacked ensemble models provide an effective and scalable method for machine learning that can enhance accuracy in 
prediction, limit overfitting, and reveal information about the underlying mechanisms influencing the predictions.

Stacked ensemble models have a number of benefits over conventional deep learning models, but they also have certain limita-

tions, such as:

1. Complexity: Compared to conventional deep learning models, stacked ensemble models can be more difficult to develop and 
maintain. This is due to the fact that they call for the training and integration of numerous models, which can be time-consuming 
and costly in terms of computing.

2. Overfitting: Stacked ensemble models can help to lessen overfitting, but they are not resistant to it. The stacked ensemble model 
can still overfit to the training data if the base models are poorly constructed or if the ensemble-model is overfitting to the 
validation data.

3. Data accessibility: In order to train properly, they need a lot of data. It could be challenging to train numerous models and 
produce a reliable stacked ensemble model if there is not enough data available.

4. Costly to compute: Especially for large datasets, training many models and a ensemble model can be computationally expensive. 
Due to this, scaling stacked ensemble models to very large datasets may be challenging.

In general, stacked ensemble models can be an excellent deep learning technique, but they need to be carefully implemented and 
managed to be reliable. In order to evaluate the fitness of the model confusion matrix for sequential CNN, spatial attention powered 
14

deep CNN and ensemble model are given in Fig. 13a, 13b and 13c, respectively. It clearly shows that the ensemble model perform 
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Fig. 11. Accuracy curve for sequential and attention model separately.

Fig. 12. Loss curve for sequential and attention model separately.

well compare to other two models acted separately. Fig. 14 gives the classification report for the ensemble model and that shows the 
superior precision, recall and f1 score compared to the all previous transfer learning methods that studied so far with the proposed 
database in the study. Finally, the prediction with the ensemble model shows the good classification results that are totally taken on 
random basis and are shown in Fig. 15.

4.4. Impact of noise

There is always a possibility that noise will affect the classification performance. It is evident that due to their spatial appearance, 
rust and red rot are simpler to differentiate from the other three categories. However, other classes are very similar to one another. 
But there are a few factors that influence the classification: They are,

1. Uneven illumination: Sometimes the presence of sunlight can make leaves appear yellow, resulting in instances when healthy 
plants are wrongly categorised as yellow.

2. Background: It’s possible that the background of a certain image matches the foreground of other classes in a close way, causing 
the model to predict the latter as the classification output.

3. Incorrect sampling: If samples are taken during database collection that are near to the boundary of any two classes, the model 
might predict incorrect results.

This effect can be seen in Fig. 16, leftmost panel indicates the impact of uneven illumination, next panel highlights the role of 
background in incorrect classification and the rightmost shows the impact of incorrect sampling. Additionally, because yellow disease 
and mosaic look so similar to one another, they are commonly misclassified. Appropriate image processing techniques can be 
advantageous during data input in order to improve results.

5. Conclusion

In this research, a comparative analysis using transfer learning (TL) techniques, significant members of the deep learning family of 
15

networks, has been proposed. By adopting a TL-based approach, which also efficiently allows use of trained models for classification 
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Fig. 13. Confusion matrix for components of ensemble model.

Fig. 14. Classification report and performance metrics for ensemble model.

and detection tasks, the need for large databases can be avoided. Our TL-based technique can automatically extract the unique 
features of foliar diseases and categorise them into five classes with a maximum accuracy of 84% for MobileNetV2. This empirical 
study used about 2569 self-collected images, and a pretrained model underwent thorough evaluation. To assist a vast majority of 
farmers in developing nations like India, the database was created with the need in mind, and all requirements were upheld with the 
application in mind.

Google Colaboratory, which has GPU support, was used for all experiments. Despite previous studies suggesting that efficientNet 
performs better, MobileNet beats every model that was employed in the study. It showed 84% accuracy with a parameter that was 
almost the same as efficientNet. MobileNet can be an amazing Android deployment option with additional parameter fine-tuning. 
It features fewer parameters and less computing overhead as compared to other variations employed in the experimentation. Loss 
curves also demonstrate the mobilenetV2’s performance with other models on such a small database. However, the length of time 
required for a model to converge is unquestionably greater. The current study demonstrated an accuracy of 84%.The stack ensemble 
model proposed here, however, is able to achieve the same results with an improved level of accuracy of 86.53% in just 20 epochs. 
With such small datasets, this model may be a good choice where the memory restriction is less of an issue.

In short, it can be seen from the comparison of the ensemble model and the transfer learning model that each has its own 
advantages and disadvantages. The ensemble model, however, performs better than the transfer learning model for small datasets 
when it comes to higher accuracy and good classification outcomes. The ensemble learning model appears as a more efficient and 
16

effective way for enhancing model performance, especially when database is small and you need faster training. Therefore, using 
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Fig. 15. Predictions with ensemble model.

ensemble models in different applications can improve classification and accuracy, opening up opportunities for future deep learning 
models that are more advanced.

In the future, the focus of the strategy will progressively be on improving accuracy. Additionally, the size and degree of variation 
of the current database are relatively small. The database size will be increased to address any potential issues like overfitting in the 
future. An accurate, swift, and responsive system for diagnosing sugarcane disease will be created in the future.
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Fig. 16. (panel from left to right) Impact of uneven lightning condition, incorrect background and incorrect sampling of image, respectively.
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