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Progress and challenges for understanding the
function of cortical microcircuits in auditory
processing

Jennifer M. Blackwell! & Maria N. Geffen® '

An important outstanding question in auditory neuroscience is to identify the mechanisms by
which specific motifs within inter-connected neural circuits affect auditory processing and,
ultimately, behavior. In the auditory cortex, a combination of large-scale electrophysiological
recordings and concurrent optogenetic manipulations are improving our understanding of the
role of inhibitory-excitatory interactions. At the same time, computational approaches have
grown to incorporate diverse neuronal types and connectivity patterns. However, we are still
far from understanding how cortical microcircuits encode and transmit information about
complex acoustic scenes. In this review, we focus on recent results identifying the special
function of different cortical neurons in the auditory cortex and discuss a computational
framework for future work that incorporates ideas from network science and network
dynamics toward the coding of complex auditory scenes.

in specific sensory functions. Auditory cortex (AC) is comprised of neurons of many different

types, providing the ability to perform an astonishing number of computations. Even
the most basic distinction between neurons into excitatory and inhibitory units markedly
expands the computational capacity of a network, and a quest in auditory neuroscience has been
to unravel the function of specific microcircuits in sound encoding and plasticity. A particularly
interesting aspect of cortical connectivity is the diversity of inhibitory neurons in their
morphology and synaptic properties' (Fig. la). Interneurons form reciprocal connections not
only with the excitatory neurons, but also with each other (Fig. 1b). Furthermore, the diversity of
connections between different types of inhibitory interneurons can affect how information is
processed in the network (Fig. 1c).

Recent advances in optogenetics and imaging? of the role of cortical circuits comprised of
distinct inhibitory neurons in basic auditory functions, such as frequency discrimination
and adaptation to temporal stimulus statistics. In combination with computational techniques
for inhibitory—excitatory network analysis, these experimental approaches offer promise for
unraveling the microcircuits within AC for representing sounds. Here, we discuss progress and
limitations in our understanding that emerges from recent investigations of the function of cortical
microcircuits in audition.

I n auditory processing, a long-standing question has been the function of cortical architecture
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Fig. 1 Simplified views of cortical circuits. (@) Diagram of excitatory-inhibitory circuit with recurrent connections. Theoretical and experimental studies
demonstrate that inhibition stabilizes between excitatory and inhibitory neurons in the auditory cortex. (b) Inhibitory-excitatory network can be extended
to include several interneuron subtypes. (¢) Schematic diagram of connectivity between select neurons in the auditory cortex (note that layer-specific
information is omitted here): Exc: Excitatory neurons; PV: parvalbumin-positive interneurons; SOM: somatostatin-positive interneurons; VIP: vasopressin-
positive interneurons; TC: Thalamo-cortical projection neurons. All neuron types receive additional inputs from other brain areas, which were omitted from
the diagram for simplicity. Open circles: excitatory synapses; closed circles: inhibitory synapses. Solid lines indicate dominant projections; dashed lines

indicate occasional connections

Role of inhibition in auditory frequency discrimination
Spectral differences between sounds are fundamental cues for
identifying a dangerous sound, be it the sound of an approaching
predator or screeching brakes; recognizing a familiar speaker; or
distinguishing ~ different animal vocalizations*™. Frequency
selectivity, originating with spectral decomposition of the acoustic
signal by the cochlea, is a strong organizing feature of neuronal
responses in the auditory pathway. Neurons in the AC exhibit
frequency selectivity®™S, responding to a subset of frequencies
more strongly than others. This selectivity is thought to support
?erceptual frequency discrimination acuity”™!! (but see refs.
213): the greater the difference either in individual or population
neuronal responses for tones of neighboring frequencies, the
higher frequency discrimination acuity. Either more narrowly
tuned neurons, or neurons with higher signal-to-noise ratio in
tone-evoked responses would support higher frequency dis-
crimination acuity, as the difference in responses to neighboring
tones will be higher in these neurons than in broadly tuned/low
signal-to-noise neurons. One of the most extensively tested roles
of cortical inhibition in auditory processing has been in shaping
frequency selectivity of excitatory neurons. Inhibition may shar-
pen frequency tuning and increase the signal-to-noise ratio in
excitatory tone-evoked responses by suppressing spontaneous
excitatory activity; alternatively, either broad or co-tuned inhi-
bitory inputs may sharpen frequency selectivity owing to the
rectifying non-linear integration (such as the spiking non-line-
arity) 14716, Differential timing of excitatory and inhibitory co-
tuned in];uts can further refine frequency tuning of excitatory
neurons'’. Experimental evidence from pharmacological experi-
ments and intracellular recordings has supported either
effect®1417720_ An interesting possibility is that distinct inhibitory
neuronal cell types may contribute differentially to shaping fre-
quency selectivity. The development of optogenetic manipula-
tions has promised to disambiguate the effects of different specific
neuronal cell types?!.

A series of studies that optogenetically manipulated the most
common interneuron type, parvalbumin-positive interneurons
(PVs) confirmed that inhibitory neurons modulate frequency
tuning in AC: activating PVs enhanced feedforward connectivity
between excitatory units. The spontaneous activity of excitatory
neurons was decreased, and the frequency tuning width was
narrower, increasing frequency selectivity’”. Consistently, PV
activation also increased the strength of tone-evoked responses
and improved behavioral frequency discrimination acuity,
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whereas suppression decreased the strength and tuning width of
the tone-evoked responses in putative excitatory neurons, and
drove an impairment in behavioral frequency discrimination
acuity (Fig. 2a—c)?3.

But are the effects different between distinct interneuron types?
There is a range of interneuron classifications available, with at
least two major groups of neurons emerging besides PVs, soma-
tostatin (SOMs), and serotonin receptor 5HT3aR, of which a
major group are also positive for vassopressin (VIPs)b2%2,
Although each interneuron class includes a number of different
cell types and may change with development and experience?,
these classes of neurons have received prominent attention, as they
approximate a canonical cortical circuit (Fig. 1), and owing to
availability of transgenic mouse lines. Optogenetic activation
of either PVs or SOMs exerted a similar mix of effects on tone-
evoked activity in excitatory cells, with activation providing either
multiplicative scaling, as would be expected from co-tuned inhi-
bition, or linear amplification, as would be expected from broad
inhibitory inputs®’. This variability in combination with spiking
threshold non-linearity and strength of suppression across dif-
ferent neurons can both amplify and sharpen tuning properties of
excitatory neurons?’. On average, suppressing interneurons had
differential effects: suppressing SOMs increased the gain of exci-
tatory neurons, whereas suppressing PVs weakened frequency
tuning®®. Nonetheless, as with activation, in individual neurons
inactivation of either type of interneuron showed a range of
effects, thus supporting a number of models for interactions
between PVs, SOMs and excitatory neurons. Measuring the tuning
widths of individual PVs, excitatory neurons and SOMs neurons
furthermore did not yield clear distinctions*», potentially
because these classes of neurons are themselves comprised of
multiple cell types. These differences may be exacerbated across
studies by the various biases toward specific subclasses by different
recording techniques. Indeed, a recent review of SOMs estimated
over 100 subtypes of SOM neurons®!. Thus, whereas the opto-
genetic perturbations of PVs and SOMs confirmed their role in
shaping frequency tuning in the AC, the results were consistent
with the range of results in the pharmacological literature, and a
clear distinction between the function of the two interneuron
subtypes in frequency tuning has not emerged.

By targeting the electrophysiological recordings to specific cell
types, it has begun possible to assess the diversity of neuronal
responses in both stimulus selectivity and time course. Interestingly,
in the temporal domain, responses of PVs had faster onsets on

| DOI: 10.1038/541467-017-01755-2 | www.nature.com/naturecommunications


www.nature.com/naturecommunications

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-01755-2

REVIEW ARTICLE

'/

W,/

»
/

I
Loag cell p|a“0rm i

/

a Kk 120 == On
1 2 0.3 _ 100 moff
S So 80
ChR2 202 25 60
o £g 40 |
2 0.1 2 200
° 0
= H
0 -20
Off On 0 10 20 30
Frequency diff
b *kk
o 0.3
| 3
s T o
Arch @ 0.2 L g2
[ >0
5 0.1 g
0 0
Off On 0 10 20 30
Frequency diff
C -0
s 120 ) =0n
© 100
N, 203 So 80
! Q 22 g0
@ 0.2 =3
c ) e 40
hR2 3 8
2 o @ 28 |
l_
0 —-20
Off On 0 10 20 30
Frequency diff

Fig. 2 Inhibitory interneurons affect auditory cortical responses and
behavior. Activating PVs with ChR2 (a) increases tone-evoked responses
and improves behavioral frequency discrimination acuity, whereas
suppressing PVs using Arch has the opposite effect (b). (¢) Direct
activation of excitatory neurons with ChR2 does not change tone-evoked
responses or behavioral frequency discrimination acuity on average.

(ce) Left: diagram of optogenetic manipulation. Center: mean tone-evoked
response magnitude under light-off and light-on conditions based on
neuronal recordings. Right: Behavioral response to a shift in frequency
under light-off and light-on conditions. Adapted from ref. 23

average than excitatory neurons, whereas SOM neurons exhibited
slower response onsets than excitatory neurons’*’. Such differ-
ential activation timing may provide an additional mechanism for
sharpening of tone-evoked responses in AC3% the differences
between inhibitory and excitatory response onsets would drive
more precise response onsets over the excitatory population. The
timing differences in suppression between PVs and SOMs could
support a number of other functional effects, for example when
applied to suppression of responses owing to the stimulus history.
These observations, facilitated by targeted recordings, provide
information about specific neuronal synaptic parameters that
should inform the design of computational models. Future studies
are required for understanding whether the timing differences in
tone-evoked responses of PVs and SOMs results in distinct function
of these neurons in frequency discrimination.

Role of inhibition in adaptation to stimulus statistics

Time processing is particularly important for auditory perception.
Perception is formed as much by the present stimulus as by
the history of preceding stimuli; it is an interaction between
the representation of new events and memory of past events.
Sensory cortex constantly reshapes responses to present stimuli
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dependent on the context. Responses of nearly all neurons in
the AC (95%) change with stimulus temporal history, exhibiting
stimulus-specific adaptation (SSA)3**%. Typically, the firing
rate is reduced in response to repeated stimuli through a process
that involves integration of stimulus statistics over time3>3%.
Inhibitory—excitatory networks support this transformation,
and PVs and SOMs were found to play a differential role
in cortical adaptation. SSA is quantified as the index of change in
the firing rate in response to a rare ‘deviant’ tone presented
as part of a sequence with another common ‘standard’ tone,
at varying presentation probabilities (for example, 10%,
deviant vs. 90% standard). SSA is thought to be supported by a
combination of thalamo-cortical depression and intra-cortical
inhibitory—excitatory circuit effects>®. Indeed, suppressing either
PVs or SOMs optogenetically increased the strength of adaptation
in excitatory neurons** (Fig. 3a, b). However, PVs and SOMs
differed in their contribution to adaptation: suppression of SOMs
evoked a stimulus-selective increase in excitatory responses to the
standard, but not the deviant tones, whereas suppressing PVs led
to a non-specific response increase. When examining the effect of
SOM suppression on excitatory responses to repeated presenta-
tions of the standard tones following a deviant tone, disinhibition
of the excitatory response increased with repeated presentations
(Fig. 2a—c), further confirming that SOMs provided a selective
inhibitory contribution to SSA. PV and SOM interneurons
themselves both exhibit SSA3*%, so that the unique contribution
of SOMs in stimulus-specific inhibition of excitatory responses
was possible through selective suppression of this cell type.
Further work revealed that stimulus-specific inhibition medi-
ated by SOMs persisted over a longer time scale, in habituation
following passive exposure to sounds over several days®’ (Fig. 3c,
d). Whereas the excitatory and PV neuronal responses to habi-
tuated sounds were reduced over several weeks of exposure, SOM
responses increased, as did inhibition from SOMs. Thus, in tem-
poral domain, the function of SOMs is consistent with regulation
of the gain of cortical responses to sounds based on their beha-
vioral prominence or relevance. SOMs thus contribute to adap-
tation and habituation, acting on several time scales to control the
gain in response to commonly presented acoustic stimuli, exerting
a more specific modulation than PVs. Such modulation of exci-
tatory activity may contribute to the more general context-specific
gain modulation and adaptation observed within AC3®. Indeed,
SOMs similarly play a specialized role in driving more general
adaptation to temporally repeated tones>, and exert a differential
effect on excitatory neuronal responses than PVs depending on
the preceding stimulus*’. Thus, the temporal history of the sti-
mulus is important for the differential function of interneuron
modulation. This functional dissociation likely underlies other
temporally differentiated functions, such as integration of stimulus
sequences, or more general computation of spectro-temporal
statistical regularities in sound sequences. A promising direction
for future studies would be to continue the exploration of the
function not just over the instantaneous responses to tones, but in
understanding how, over a range of time scales, inhibition may
modulate dynamic changes in sound response properties.

Inhibitory cascades within the AC

Although the above studies mainly considered the effects of PVs
and SOMs on excitatory neurons, understanding how PVs and
SOMs act within a cortical microcircuit is of particular impor-
tance given the modulatory roles these interneurons play when
targeted by feedback from other brain regions and different
neuromodulatory projections. In a circuit that supports reduction
of auditory responses during locomotion, a subset of secondary
motor cortex neurons, which are active during movement,

| DOI: 10.1038/541467-017-01755-2 | www.nature.com/naturecommunications 3


www.nature.com/naturecommunications
www.nature.com/naturecommunications

REVIEW ARTICLE

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-01755-2

a - (o . 0.4
Tone o ® 06 0 o v 0.2
o BN e B B B N |
/ 1012 3 4 ) § o
9 ' el
) o 4 H ® Deviant tone £ 0.2
) L © Standard tone o
E Light pulse Day g —04
E 5 Day 1 Day5 § 961 __eyitation
£ —0.8 | mmm Inhibition
Z0 -
. 1 2 3 4 5
SOM suppression Days
*%
; ) — d SOM activity
Arch % Sl
Gon) 5 18.9 kH Pavs
i z
A T €
A AI ’QAI
PV suppression
o PV activity
()]
. - § 1 15.6 kHz - o
o 5} 3
N = |%
w 0 I oz

-10 1
Post-Deviant Tone #

2 3 4

5 sec

Fig. 3 Specific inhibitory neuron type mediates auditory adaptation. (a) Top: The effect of SOM and PV inactivation on stimulus-specific adaptation to
frequent tones was tested using an oddball stimulus, with two tones at 10-90 ratio, light every 5th tone. Bottom: The mean firing rate (FR) during repeated
tones adapted with successive presentations of the standard tone. (b) SOMs provide stimulus-specific inhibition, as the effect of SOM suppression
increased with repeated standard tones. PVs provided constant inhibition regardless of adaptation. a, b adapted from ref. 34. (¢) Passive exposure to a tone
stimulus lead to a decrease in excitatory and an increase in inhibitory activity over 5 days. Left: calcium activity was imaged using two-photon microscopy
in populations of identified inhibitory and excitatory neurons before and after subjecting the mouse to prolonged exposure to tones. Neuronal activity was
measured as spike counts inferred from the imaged fluorescence signal. Right: change index of the mean activity in response to the tone to which the
mouse was exposed, averaged over populations of excitatory (red) or inhibitory (blue) neurons, over days since prolonged tone exposure onset. Mean
excitatory activity decreased with exposure, whereas mean inhibitory activity increased. (d) Among the inhibitory neurons, the activity of SOMs increased
following passive tone exposure, whereas the activity of PVs decreased. Mean z-scored time course of Calcium activity of SOMs or PVs in response to a

tone at day 1 (black traces) and day 5 (blue traces). ¢, d adapted from re

suppresses excitatory tone-evoked responses in AC by activating
PVs, which in turn suppress excitatory neurons*!*2, In addition,
PVs are involved in inter-hemispheric information integration, as
callossal projections terminate on PVs, which suppress cortico-
cortical excitatory neurons**. PVs and SOMs can be activated by
oxytocin, which likely supports the sharpening of responses to
pup calls observed in mothers**. PVs also shape cortical
responses to tones coupled with aversive stimuli*, as part of
circuit, which includes projections from the amygdala to layer-1
neurons in AC. Thus, projections from cognitive and emotional
brain centers likely preferentially target inhibitory interneurons,
and may affect behavioral and emotional processing.

Other inhibitory neuronal subtypes further contribute to inhi-
bitory cascades in the cortex. For example, there is extensive
evidence that PVs and SOMs are regulated by VIPs. Cortical VIP
interneurons are recruited by projections from other brain
regions?®*” and can be modulated by cholinergic projections*®=>!
allowing for external control of these local microcircuits. In the
AC, engagement in an auditory task enhanced the activity of PVs,
SOMs, and VIPs, attributed to cholinergic modulation®!. Activa-
tion of VIP interneurons disinhibited excitatory responses?,
consistent with an additional inhibitory synapse between VIPs,
another inhibitory neuron and excitatory neuron. Indeed, in vitro
activation of VIPs suppresses PV and SOM activity, thereby
providing a mechanism for delayed activation of excitatory tone-
evoked responses. Interestingly, VIP neurons were driven by
sounds at much lower intensities than either PV or SOM neu-
rons>. The increased excitatory neuronal activity due to VIP
activation may contribute to increased gain of sensory inputs,
although it remains to be determined whether the relative timing
of disinhibition may provide an increase in gain, rather than non-
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f. 37

specific elevation in cortical activity. VIP neurons have also been
implicated in integration of cross-modal activity, as responses of
VIPs in the visual cortex are suppressed by sound>*. This wide
range of effects of VIP activation suggests that the connections
between VIPs and inhibitory and excitatory neurons are likely
modulated in a task- and modality-specific fashion, and therefore
the interpretation of their function should inherently be studied in
a specific statistical and behavioral context. To understand whe-
ther and how these circuits integrate with each other and what
biophysical constraints are required for their function, the results
of these studies need to be incorporated in a circuit-level model
that include interactions between the different circuits.

Caveats in optogenetic result interpretation

In interpreting these rich and varied experimental results, it is
important to account for limitations and potentially confounding
factors: An important caveat to grouping the interneurons into
classes based on molecular markers is that each of these classes are
comprised of multiple interneuron subtypes, and those subtypes
are distributed differentially across the different cortical laminae.
For instance, PV interneurons are comprised of not only two
already diverse large groups of neurons, basket and chandelier
cells, but also of a number of other neurons!. SOM interneurons
include Martinotti cells, whose axons target the distal dendrites of
pyramidal neurons, as well as at least two other classes of layer 2/3
targeting neurons®. A recent review estimated between 4 and
100 subtypes of SOMs depending on classification method, such
as differential labeling and projection patterns®!. Incorporating
some specific aspects of neuronal morphology, such as by building
multi-compartment neuronal models and accounting for
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Fig. 4 Progressively complex view of cortical dynamics. (a) Diagram of the time course of inhibition-stabilized recurrent dynamics. Adapted from ref. 2,
(b) Reduced model of mutually coupled Excitatory (Exc)—PV—SOM network. Exc rate is a non-linear—linear function of excitatory synaptic inputs
(filled circles) evoked by the tone, as well as inhibitory inputs (open circles) from PVs and SOMs. PV and SOM firing rate is a non-linear—linear function of
excitatory synaptic inputs from excitatory cells and tone-evoked excitatory inputs. Optogenetic manipulation by Arch is modeled as an inhibitory synaptic
input. Adapted from ref. 34. (c) Left: network modules identified based on the correlation network structure. Adapted from ref. °°. Right: diagram of the
time course of transformation in brain network structure with learning: Nodes belonging to the same module are colored in the same color. Black lines refer
to the edges of the network. Note that with learning, the connectivity within and between modules is transformed. Adapted from ref. 101

expression of different molecules involved in neuronal commu-
nication, may prove essential for differentiating between the effects
of dendrite-targeting SOMs and cell body targeting interneurons.
Indeed, the excitatory—inhibitory circuit composition likely differs
between cortical layers with some neuronal types being over-
represented and targeting different parts of the excitatory cell
body, leading to differences in integration and non-linearity>®=%,
Different recording techniques, such as extracellular recordings of
activity of optically tagged neurons vs. two-photon guided patch-
clamp recordings might be biased toward different subclasses
within the optogenetically identified groups and different cortical
sublayers, potentially reporting conflicting results on the response
properties of different cell types>**’. By measuring a number of
essential connectivity parameters, the strength and time constant
of synapses between different neuronal types within different
layers, it should be possible to further develop models to extra-
polate the results across different cortical connectivity patterns. In
turn, electrophysiological experiments, including multiple-neuron
intracellular recordings, could be used to establish the specific
parameters for connectivity between different neuronal cell
types®®. The computational approaches to implement such
detailed biophysical models have been developed, and, as detailed
in the next section, a small number of studies started using these
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computational frameworks to build models incorporating multiple
neuronal subtypes in a variety of circuit motifs.

Computational models for excitatory-inhibitory interactions

The approaches for incorporating inhibition into modeling sen-
sory cortical function have ranged from implementing
massive inhibition, forming inhibition-stabilized networks®*=? to
fine-tuning parameters of individual neuronal feedback circuits®?.
Indeed, the large range of response profiles to activation of
interneurons in inter-connected networks was extensively studied
in the context of inhibition-stabilized networks that interpret the
function of inhibition as supporting “stability” in neuronal pattern
discharges across neuronal population activity®>46°, Stabiliza-
tion of excitatory neuron activity by recurrent inhibition can be
explained by analyzing the dynamics of firing rates of excitatory
and inhibitory populations over time, including feedback pro-
pagation of activity (Fig. 4a). This relatively simple model also
explained heterogeneous findings from experiments testing the
effect of increasing inhibition on network activity?>?”-?% as pro-
viding input to inhibitory neurons resulting in increased activity
of excitatory neurons in a model of an excitatory—inhibitory
network®. Additional studies of inhibition-stabilized circuits
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focused on the role of inhibition in improving tuning of neurons
for specific sensory features, such as orientation selectivity in the
visual cortex using more abstract supralinear networks with
feedback inhibition®, and the ability to tightly track the stimulus
fluctuations in a balanced excitatory-inhibitory regime??.
Extending the inhibitory—excitatory network model to incorpo-
rate the connectivity patterns between different types of inter-
neurons, including PVs, SOMs, and VIPs, required a different set
of constraints for explaining cortical tuning properties than when
only one inhibitory subtype was used®® (Fig. 1b). Moreover, the
resulting network did not require the massive inhibitory feedback
consistent with inhibition-stabilized networks to model the
observed effects for tuning properties. This was particularly
important for understanding the tuning properties of neurons in
layers 2/3 of the visual cortex, where only weak inhibition was
identified experimentally.

In the AC, simpler models have already proved useful for
understanding the heterogeneity of the effects of optogenetic
manipulations. A static model illustrated the origin of the het-
erogeneous effects of optogenetic perturbations of PVs and SOMs
on excitatory neuronal activity by shifting the threshold as well as
the strength of inhibitory—excitatory conductances?’. This model
demonstrated plausibility that linear scaling and additive effects
are produced by the same underlying mechanism—addition
followed by  rectification. A mutually  coupled
excitatory—inhibitory firing rate model reproduced the differential
effects of manipulating PVs and excitatory neurons on the
baseline and tone-evoked responses by adjusting the non-linearity
at the inhibitory—excitatory synapse?’. Differential synaptic
strength of connections between the excitatory and inhibitory
neurons could account for the differences between SOM and PV
effects on adaptation in excitatory neurons, including flat and
saturating non-linearities for synapses between PVs or SOMs and
excitatory neurons, respectively (Fig. 4b). The principles outlined
by the simplified models illustrate that by manipulating a specific
aspect of input integration, the same wiring pattern can produce
the heterogeneous results observed experimentally.

Several additional studies have used similar approaches to
explore the role of distinct interneurons in cortical processing
across sensory modalities. Using a combination of anatomical and
optogenetic data in the somatosensory cortex®’, a model could
identify correlations in connection strengths between different
neuronal subtypes®®. Furthermore, a model of mutually coupled,
fast-spiking, and non-fast-spiking interneurons, revealed the lim-
itations in the role of fast-spiking neurons in cortical oscillations®’.
Beyond the sensory cortex, model circuits incorporating several
inhibitory interneuron subtypes exhibited recurrent memor
across a number of biophysically plausible configurations’®’?,
Indeed, recurrence in neuronal circuits increased the network’s
capacity to efficiently store and recall memories’?, as originally
proposed’®. Measuring whether and how inhibitory neuronal
populations control and contribute to recurrent activity using
recently developed methods for efficient model training®® should
prove a fruitful way forward for understanding not only the key
cell types that are affected by optogenetic perturbations, but also
the time scales of their modulatory effects.

The temporal impact of optogenetic manipulations on auditory
activity might differ between opsins, and thus have variable
behavioral effects’. Expanding current models to account
for the effects of inhibition at a circuit level will clarify how
inhibition shapes trajectories of neuronal population dynamics’°.
In a complex network, where stimulus-evoked activity and neu-
ronal connectivity patterns are highly heterogeneous?>’%77,
computational models incorporating mutually coupled
excitatory—inhibitory cells can reveal network features that may
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otherwise be obscured by results of electrophysiological and
imaging experiments, which are biased toward stronger connec-
tions’®. Recurrent circuit dynamics may be the dominating fea-
ture of cortical circuits, and the interpretation of results based on
optogenetic perturbations need to incorporate feedback dynamics
in their design”8!,

As the number of simultaneously observed neurons has
increased with recent advances in functional imaging and dense
electrophysiological recording techniques, there is a growing need
to efficiently represent how units in a large population relate to
one another and how these relations change over time®2. To meet
these demands, current computational approaches address the
dynamics of neuronal populations that exhibit non-random
dynamics and form higher-degree connectivity’>8384, The study
of the structure of excitatory—inhibitory connectivity can be
combined with synaptic organizational principles to understand
the basis for cortical dynamics*°,

One such approach is to apply principles from network science
to tracking the dynamics of neuronal cortical populations
(Fig. 4c). Network science has been extensively used to char-
acterize large-scale brain networks, revealing modular, hierarchical
or random organization®%”. There is extensive evidence that
neuronal populations exhibit stereotg&:)ed, temporally precise tone-
activated patterns of activity in AC®®, which are repeated during
spontaneous firing, reflecting stereotypical population activity
organization®®. Such population activity patterns may differ
between the synchronized and the desynchronized state of the
cortical network”, and identifying inter-connected modules using
network science methods can reveal whether and how the mod-
ules are transformed between the different brain states. Shared
variability in neuronal populations can potentially be explained by
distinct patterns of connections between neurons®!, whereas
diverse response patterns may correspond to different coupling
patterns between single neurons and neuronal populations’>—
network analysis of activity in cortical slices already identifies
functional modules, that exhibit similar organization across sen-
sory cortex’>** (Fig. 4c). Two-photon imaging of calcium activity
in large networks of neurons identified similar population activity
modes in the AC®. Such modes correlated with behavioral
responses’®. Analyzing neuronal activity in terms of population
firing rate or activity variability discounts the complex temporal
structure of these cellular networks, and thus might underestimate
the information contained in neuronal responses’®®’. Network
analysis can furthermore reveal whether and how the neurons
within functional modules reorganize with adaptation and learn-
ing, and whether specific inhibitory neurons assume specialized
roles within networks.

Outlook/future directions

The diversity of these computational approaches for modeling the
function of excitatory—inhibitory circuits and population neuro-
nal activity in cortical sensory processing provides for the basic
framework for moving forward in identifying the cortical circuits
involved in auditory scene analysis. The complex effects of net-
work interactions can only partially be understood in the context
of natural audition when tested with a limited set of isolated
stimuli. To the extent that we can view audition through the lens
of temporal processing, recurrent inhibitory—excitatory networks
can yield unique capabilities for storing and recalling complex
temporal sequences, detecting unexpected events, and recognizin
patterns of activation characteristic of more complex stimuli’*-8,
such as speech/vocalizations/music. The models should be fitted
on data from experiments that would incorporate progressively
complex acoustic stimuli; constructed either by varying spectro-
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temporal complexity, based on the scale-invariant statistical
structure of environmental sounds’®%’, or using statistical
methods for shaping random signals to match different sound
textures'?’, Taking advantage of the full computational toolset
provided by inhibitory—excitatory network modeling, recurrent
network dynamics and network science will allow us to tackle the
complex richness of cortical circuits, and generalize results across
sensory modalities and behavioral paradigms.

The use of dynamic analysis tools to explore sets of possible
neuronal activity regimes makes inhibitory—excitatory networks a
powerful framework for testing hypotheses on population
responses in the cortex. The expansion of these models to include
different cell types and wiring schemes in combination with
analysis of the network structure dynamics is required for
understanding the functions and sources of variability within
specific neuronal populations. To fully understand cortical net-
work function, our computational models must take into account
the field’s wealth of data concerning neuronal subtypes, how they
are connected locally and to other areas, how they respond to
stimuli, and how optogenetic manipulation perturbs them in
order to make testable predictions about how these networks
behave. Thus, modeling studies need to be combined with a range
of experimental techniques that would allow measurement of the
strength of synaptic connections between neurons within specific
layers and more precisely defined cellular classes.
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