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Probiotics have been defined as live microorganisms that when administered in adequate
amounts confer health benefits to the host. The use of probiotics in aquaculture is an
attractive bio-friendly method to decrease the impact of infectious diseases, but is still not
an extended practice. Although many studies have investigated the systemic and mucosal
immunological effects of probiotics, not all of them have established whether they were
actually capable of increasing resistance to different types of pathogens, being this the
outmost desired goal. In this sense, in the current paper, we have summarized those
experiments in which probiotics were shown to provide increased resistance against
bacterial, viral or parasitic pathogens. Additionally, we have reviewed what is known for
fish probiotics regarding the mechanisms through which they exert positive effects on
pathogen resistance, including direct actions on the pathogen, as well as positive effects
on the host.
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HISTORY AND DEFINITION OF PROBIOTICS IN AQUACULTURE

The term “probiotic” comes from the Latin word “pro” (for) and the Greek word “bios” (life)
meaning “for life” (1) and it refers to microbial feed additives which confer a health benefit to the
host organism through the modulation of intestinal microbiota. This first definition provided the
basis of differentiating probiotics from antibiotics. The term “probiotics” was first proposed by Lilly
and Stillwell (2) as “substances secreted by a micro-organism that stimulate the growth of another
organism”, being substances microbially produced “factors”. Later on, Parker (3) was the first who
defined probiotics as “organisms and substances which contribute to intestinal microbial balance”.
As new findings emerged, the definition of “probiotic” was modified over the years. In 1989, Fuller
defined probiotics as “live microbial feed supplements which beneficially affect the host animal by
improving its intestinal microbial balance” (4), where the use of live microorganisms is emphasized,
and the use of the word “substances” is removed, avoiding confusion. To accommodate the
immunostimulatory effect of probiotics, Naidu et al. (5) modified the concept of probiotics as
“microbial dietary adjuvants that beneficially affect the host physiology by modulating mucosal and
systemic immunity, as well as improving nutritional and microbial balance in the intestinal tract”.
Since then, many variations to the definition have still been proposed (6). The Food and Agriculture
Organization of the United Nations/World Health Organization (FAO/WHO) integrated all these
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definitions and stated that probiotics are “live microorganisms,
which when administered in adequate amounts confer a health
benefit on the host” (7).

The first reported use of probiotics in aquaculture was in 1986
by Kosaza who evaluated the use of Bacillus toyoi spores as feed
additives to increase the growth rate of yellowtail, Seriola
quinqueradiata (8). But it was not until the late 1990s that
research on probiotics became prominent in aquaculture. Given
the fact that the aquatic animals constantly interact with their
surrounding water environment, Moriarty (9) widened the
definition of probiotics, also considering them as microbial
“water additives”. Later on, Verschuere et al. (10) put forward
the concept of aquaculture probiotics, proposing a broader
application of the term as “live microbial adjuncts which have
a beneficial effect on the host by modifying the host-associated or
ambient microbial community by ensuring improved use of the
feed or enhancing its nutritional value, by enhancing the host
response towards diseases, or by improving the quality of its
environment”. This definition allowed a wider application of the
term “probiotic” by involving the aquatic environment.

The outmost desired goal of a probiotic is to have a positive
effect on the general health status of the fish, thus increasing its
resistance to pathogens. This can be achieved through different
mechanisms, reviewed in the current paper, that cover direct
interference with pathogens as well as effects on the host.
Additionally, we have summarized those probiotics that have
been shown to confer resistance against different types of
pathogens, including bacteria, viruses and parasites.
SOURCE AND SELECTION CRITERIA OF
PROBIOTICS IN AQUACULTURE

In the last decades, several microorganisms have been
experimentally identified, characterized and applied in
aquacultured species as probiotics. Probiotics tested for these
species include a wide range of bacteria (Gram-negative or
Gram-positive), yeasts, microalgae and bacteriophages which
have been added to the water or included as feed supplements
(11–17). Nevertheless, the list of probiotics commercially
available for use in aquaculture is much more limited (18).

The source from where the probiotic microorganism is
obtained varies greatly, including for example, the intestine of
healthy fish, water of rearing environment, sediments of culture
tanks, other animals or fermented food products (19). Because
the main principle of a probiotic is to establish a relation with
beneficial and harmful bacteria usually present in fish intestine,
the gastrointestinal tract (20, 21) and the mucus (22) of aquatic
animals are usually the most common sources to isolate
microorganisms which can be used as potential probiotics.
Although the probiotics could also have an origin outside the
host, host-derived microorganisms are preferred given that
microbiota living in healthy hosts can be considered part of
the natural defense system, being beneficial to the host in
multiple ways (23, 24). Furthermore, probiotics indigenous
to the environment are able to survive spontaneously and
Frontiers in Immunology | www.frontiersin.org 2
function physiologically at their optimum level (21). It has to
be taken into account, that, in contrast to terrestrial animals, the
gastrointestinal microbiota of aquatic species is strongly
dependent on the external environment due to the continuous
water flow through the digestive tract. Hence, most of bacteria
that colonize the tract are transient and could vary if the
environmental conditions change (25).

In recent years, a large number of scientific works have been
published regarding the screening, selection and characterization
of fish probiotic bacterial strains (26–35). Potential candidates
isolated from different sources are subjected to screening through
multiple steps in order to assess their potential as ideal
probiotics. Their safety (10) and lack of pathogenicity (36)
have to be demonstrated as an essential first step. Thereafter, a
successful probiotic candidate should meet certain criteria.
Merrifield et al. (37) proposed an extended list of criteria,
classifying them as either essential or favorable. As new
findings emerged over the last decades, additional criteria have
been added (12, 14). Taking all of this into account, the essential
criteria to consider a microorganism as a suitable probiotic are
the following: not being pathogenic, not only with regards to the
host species, but also with regards to aquatic animals in general
and human consumers; being free of plasmid-encoded antibiotic
resistance genes; having the ability to tolerate a wide range of pH
(low acidic to high alkaline) and high concentration (>2.5%) of
bile salts. On the other hand, the merely favorable characteristics
include: being able to adhere to and/or grow well within the
intestinal mucus; being able to colonize the intestinal epithelial
surface; being registered for use as a feed additive; displaying
advantageous growth characteristics (e.g. short lag period, a short
doubling time and/or growth at host rearing temperatures);
exhibiting a broad spectrum of antagonistic activity against one
or more key pathogens; producing relevant extracellular digestive
enzymes or vitamins; being indigenous to the host or the rearing
environment; remaining viable under normal storage conditions
and being robust enough to survive industrial processes; having
good sensorial properties, fermentative action, tolerance towards
freeze-drying and viability in feed during packaging and storing
process; having a beneficial effect on the growth, stimulation of
immunity and protection of fish against various pathogenic
bacteria. Although it is unlikely to find a candidate that will
fulfill all of these characteristics, the more of these characteristics
are fulfilled, the more likely it will be a promising probiotic.
However, the main driver to select potential probiotics among
different candidates has been their inhibitory activity against
target pathogens in vitro (10, 28, 30, 38–40) or in vivo (11, 14, 15,
21, 41).
MECHANISMS OF INTERFERENCE OF
PROBIOTICS WITH PATHOGENS

Production of Inhibitory Substances
The antagonistic action or the inhibition of a variety of
pathogens is one of the most important sought properties for
potential probiotics. Probiotic microorganisms often have the
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capacity to produce substances which have bacteriostatic or
bactericidal impact on pathogenic microbes, such as lysozymes,
proteases, siderophores, hydrogen peroxide or bacteriocins (9,
42–50). For example, a compound named indole (2,3-
benzopyrrole) with potent inhibitory activity against bacteria
and fungus has been identified in some probiotic bacteria (51,
52). Similarly, some microorganisms produce volatile fatty acids
(acetic, butyric, lactic and propionic acid) and organic acid,
decreasing the gastrointestinal lumen’s pH, thereby preventing
the proliferation of opportunistic pathogens (10, 47, 53–55).

In aquaculture, some candidate probiotics have been shown
to produce antibacterial substances that inhibit the growth of
harmful microbes and maintain intestinal microecological
balance (43, 49). Thus, several probiotics used in aquaculture
have been documented to exert direct antibacterial activities
against known pathogens (14, 17). On the other hand, while
knowledge on antiviral activity of probiotics has increased in
recent years (14, 17), the exact mechanism of action through
which these probiotic bacteria produce their antiviral effects
remains still unknown. Yet, some studies performed in vitro
revealed that the inhibition of viruses can occur through the
action of extracellular enzymes secreted by the bacteria (14, 17).
Finally, only a few studies have been reported the antifungal
properties of fish probiotics (14, 17).
Competition for Nutrients and
Available Energy
All organisms, including bacteria, require a continuous source of
nutrients for survival, growth and proliferation. Probiotics
consume the available nutrients, thus, competition for
nutrients is one of the mechanisms through which probiotics
can inhibit pathogens (56). In fact, the survival of a
microorganism will mainly depend on its potential to compete
for nutrients and energy with other microorganisms in the same
environment (10).

Among nutrients, iron is recognized to be the most important
element, as it is an essential cofactor for important cellular
processes, being required for DNA replication, oxygen
transport, protection against oxidative stress, enzyme activity
and energy generation (57). Thus, the majority of bacteria need
iron for their growth, but the amount of iron available in animal
tissues and body fluids is very limited. As a consequence, the
competition for this nutrient between pathogenic bacteria and
the host is a very well-known process (58). Siderophores are
ferric ion specific chelators that are able to dissolve precipitated
iron or extract it from iron complexes under iron-stressed
conditions, making it available for bacterial growth (59).
Siderophores are produced by several bacteria and fungus (59).
Thus, the ability to produce siderophores is a favorable characteristic
of a microorganism to be considered as a potential probiotic, in an
iron-limited environment, as the probiotic would sequester ferric
ion making it unavailable for the growth of pathogenic bacteria (60).

Siderophore production of fish probiotic strains has been
investigated to some extent (61). Thus, for example, Smith and
Davey (62) and Gram et al. (63) reported the inhibition of the
growth of Aeromonas salmonicida and Vibrio anguillarum,
Frontiers in Immunology | www.frontiersin.org 3
respectively, under iron-limited conditions by Pseudomonas
fluorescens. Similarly, Lazado et al. (64) showed the capacity of
two bacterial isolates (GP21 Pseudomonas sp.; GP12 Psychrobacter
sp.) obtained from the intestinal tract of Atlantic cod (Gadus
morhua) to release siderophores, showing antagonistic activity
against V. anguillarum and A. salmonicida. Also, the probiotic
effect of a strain of Vibrio sp. has been associated with its capacity
to compete for iron with a pathogenic strain of Vibrio sp. in
seabass larvae (Dicentrarchus labrax) (65).
Competition for Colonization of
Mucosal Surfaces
The mucosal surface of fish is continuously interacting with the
microbiota and the external media in an aquatic environment. In
this context, pathogens invade the host through these mucosal
surfaces, colonizing them and eventually spreading throughout
the host and causing disease (66). Thus, most pathogenic bacteria
need to attach to the mucosal layer of the host gastrointestinal
tract (or other mucosal tissues) to exert a harmful effect and develop
an infection (67).

In this sense, the ability of a microorganism to colonize and
adhere to the epithelial surface, interfering with the pathogen’s
adhesion is a favorable characteristic for the selection of candidate
probiotics (37). In fact, competition for adhesion receptors with
pathogens can be considered as an essential probiotic
characteristic (68). Probiotics occupy the binding sites of the
intestinal mucosa, forming a physical barrier, preventing the
attachment of pathogenic microorganisms. Attachment of
probiotics may be non-specific, based on physicochemical
agents, or specific, based on the interaction of surface receptors
on the adherent bacteria to receptor molecules on epithelial cells
(19, 69). The mechanism through which a probiotic competes for
adhesion sites is referred to as “competitive exclusion” (17).

Various authors have reported the ability of candidate fish
probiotics to adhere to the host gastrointestinal tract and to
interfere with pathogenic bacteria (66, 70–72). The interference
of four potential probiotics (members of Vibrionaceae and
Pseudomonodaceae families, as well as Micrococcus genus) with
the pathogens Listonella anguillarum and Vibrio harveyi through
competition for adhesion to the skin, gill and intestinal mucus of
gilthead seabream (Sparus aurata) and Senegalese sole (Solea
senegalensis) was demonstrated in vitro by Chabrillón et al. (73,
74). Furthermore, the in vivo probiotic potential of one of the
selected candidates (Pdp11, Vibrionaceae) was assessed by oral
administration and its ability to reduce the mortality after a
challenge in gilthead seabream and sole against L. anguillarum
and V. harveyi demonstrated, highlighting the relevance of this
probiotic capacity. Another in vitro study investigated the
potential of two candidate probiotic bacteria (GP21 and GP12)
to adhere to primary cultures of epithelial cells obtained from
different segments of the intestine and to interfere with the
adhesion of two pathogens, V. anguillarum and A. salmonicida
subsp. salmonicida in Atlantic cod. The study concluded that the
adhesion of probiotics is segment-specific and the interference
with the pathogen adhesion is dependent on both the source of
epithelial cells and the mechanism through which the probiotic
April 2021 | Volume 12 | Article 653025
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adheres to the epithelial cells (70). Through an in vivo study, Divya
et al. (75) also confirmed the ability of three probiotic strains
(Bacillus coagulans, Bacillus mesentericus and Bifidobacterium
infantis) to colonize the gut of rosy barb (Puntius conchonius).
This probiotic administration significantly changed the proportion
of the gut microflora, decreasing the level of pathogenic strains. Vine
et al. (72) reported the in vitro suppression of bacterial pathogen
growth (Aeromonas hydrophila and Vibrio alginolyticus) as a
consequence of their displacement by different probiotic candidate
isolates that adhered to the intestinal mucus of spotted grunter
(Pomadasys commersonnii). Similarly, the capacity of endogenous
microbiota, e.g. Lactobacilli, to compete with pathogens for adhesion
sites on the intestinal surface has also been established (76).

From a practical point of view, whether the applied probiotic is
able to colonize the gut and for how long is a key issue to establish
its administration regime (administration route, concentration
and time of administration) and to provide farmers with a
specific protocol with beneficial effects on fish health.
Disruption of Quorum Sensing
Quorum sensing (QS) is the regulation of gene expression in
response to fluctuations in cell-population density (77). QS is a
regulatory mechanism by which the majority of bacteria
communicate with each other and response collectively. To
this end, bacteria synthesize and secrete small chemical signal
molecules called auto-inducers whose concentration can be
recognized by other bacteria, and in this way, perceive the
surrounding cell density. Gram-negative bacteria secrete acyl-
homoserine lactones (AHLs) as auto-inducers, while Gram-
positive bacteria use oligopeptides. Both Gram-negative and
Gram-positive bacteria can produce autoinducer-2 (AI-2).
When a critical threshold concentration is achieved, the QS
induces or represses the expression of genes involved in specific
physiological functions (77, 78), including luminescence,
virulence, motility, sporulation and biofilm formation (79–83).

As pathogenicity is controlled by QS, inhibiting this
mechanism is a good strategy to control microbial pathogens.
Thus, the disruption of QS is considered a potential anti-infective
strategy in aquaculture (17, 84, 85). Quorum quenching (QQ),
the disruption of QS, can be performed by molecule antagonists
(86) or degrading enzymes (87). Thus, the QQ microorganisms
can be used as potential quenchers of quorum-sensing-regulated
functions in pathogenic bacteria (88, 89), acting as an alternative
to antibiotics in the control of infections in aquatic systems. In
aquaculture, QQ has also been demonstrated as an alternative to
antibiotic control of infections (90, 91). In this context, probiotic
bacteria with QQ capacities would be on one hand efficacious to
control antibiotic-resistant pathogens while having other
beneficial effects on the host (92). Along this line, searching for
probiotics isolated from the intestinal microbiota of olive
flounder (Paralichthys olivaceus), Zhang et al. (93) identified AHL
lactonase (FiaL) in the genome of Flaviramulus ichthyoenteri. This
FiaL degraded some signals used by different fish pathogens such as
A. hydrophila, Edwardsiella tarda, Vibrio salmonicida and V.
anguillarum; revealing a great potential of F. ichthyoenteri as a
fish probiotic. Other studies reported the ability of some
Frontiers in Immunology | www.frontiersin.org 4
microorganisms to produce QS antagonists, such as halogenated
furanones, which are produced by the marine red alga Delisea
pulchra (94). These compounds were reported to protect
Brachionus, Artemia, and rainbow trout (Oncorhynchus mykiss)
from the negative effects of pathogenic Vibrio species (95, 96).

Other probiotic bacteria such as Lactobacillus, Bifidobacterium
and Bacillus cereus strains degrade the signal molecules of
pathogenic bacteria by enzymatic secretion or production of
autoinducer antagonists (76). Thus, Bacillus sp. QSI-1 has been
shown to significantly reduced the pathogenicity of A. hydrophila
in Carassius auratus gibelio (84), zebrafish (Danio rerio) (79) and
goldfish (Carassius aurata) (97) by degrading AHLs. Likewise, Ren
et al. (98) reported the inhibition of growth and virulence of A.
hydrophila by Bacillus subtilis involving QS. Another Bacillus
species, Bacillus licheniformis, protects against A. hydrophila in
zebrafish through QQ (99). In rainbow trout, Delshad et al. (100)
established the QQ activity of different isolates (B. cereus, Bacillus
thuringiensis, Stenotrophomonas moltiphilia, Enterobacter
hormaechei subsp. hormaechei and Citrobacter gillenii),
regulating the virulence of Yersinia ruckeri.

A recent publication focused on the isolation of autochthonous
AHL degrading bacteria from the gastrointestinal tract of different
fish species. Thus, Ghanei-Motlagh et al. (101) isolated several
strains with beneficial QQ AHL-degrading and probiotic activities
for the first time in Asian seabass (Lates calcarifer). Vadassery and
Pillay (92) also focused at isolating AHL degrading bacteria from
the gastrointestinal tract of Nile tilapia (Oerocrhomis niloticus).
Among the isolated strains, Enterococcus faecium contained an
autoinducer inactivation homolog gene with the ability to degrade
N-AHL (N-acyl homoserine lactone) produced by the fish
pathogen A. hydrophila.
IMMUNOMODULATORY EFFECTS
OF PROBIOTICS

Probiotics have been shown to have the capacity to increase
innate and adaptive immunity offish, being the effects exerted on
the fish innate immune system the main desirable characteristics
of candidate probiotics (102). Probiotics can influence both the
systemic and the local immunity of the host when they are
administered i) orally or through the rearing water, or ii) as live
or as dead cells (102). In some studies, the immunomodulatory
effect of probiotics was attributed to the release of cytokines, key
regulators in orchestrating the immune response in fish, which
include interleukins (ILs), tumor necrosis factors (TNFs),
interferons (IFNs), transforming growth factors (TGF) and
chemokines from immune cells such as lymphocytes,
granulocytes, macrophages, mast cells, epithelial cells, and
dendritic cells (DCs) (103, 104). In this review, we report some
of the immunomodulatory effects that probiotics have been
shown to exert on the mucosal immune system.

As mentioned above, fish are constantly interacting with their
surrounding water environment. In this sense, mucosal tissues
are strategically located in areas where environmental pathogens
enter the body. Thus, the mucosal immune system has a pivotal
April 2021 | Volume 12 | Article 653025
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role in the defense mechanism against pathogens and thus
considered as a very active immunological site (105). The
mucosal surfaces of the fish include the epithelia and the
mucosa-associated lymphoid tissues (MALTs). The main
MALTs in teleost fish include: GALT (gut-associated lymphoid
tissue), SALT (skin-associated lymphoid tissue), GIALT (gill-
associated lymphoid tissue) and NALT (nasopharynx-associated
lymphoid tissue). All teleost MALTs have common features:
i) the presence of a mucus layer, that envelops the majority of the
epithelia and consisting mainly of high molecular weight
glycoproteins called mucins secreted by the epithelial globet
cells. This mucus layer acts as a physical and chemical barrier
preventing the entry of pathogens; ii) the presence of innate and
adaptive immune components, such as cytokines or
immunoglobulins (Igs), among many others; iii) the transport
of antibodies across the epithelium by the polymeric Ig receptor
(pIgR); and iv) the presence of a complex and diverse commensal
bacterial community (microbiota) that plays a critical role in
maintaining the host’s physiology homeostasis. In contrast to
mammals, the intestinal immune system of fish lacks lymphoid
tissue aggregates such as the Peyer’s patches, instead they have a
diffuse GALT, and the inductive and effector sites of the lamina
propria can hence not be distinguished from each other. However,
similar to higher vertebrates, GALT contains mucosal immune
cells such as lymphocytes, plasma cells, granulocytes and
macrophages present in the epithelium or distributed in the
lamina propria (105–107) and these potentiate this mucosal
tissue as an active immune organ.

Many studies have demonstrated that probiotic supplementation
influences the GALT by modulating gut morphology and the
population of intestinal immune cells as well as their physiological
activities (102, 108). In addition, probiotics could also manipulate
the richness and diversity of the commensal gut microbiota, which
in turn may interact with pathogens to influence their success in the
intestine. However, to date, despite the great advances made in this
field in the past years, there are still many gaps regarding our
understanding of how microbiota composition influences mucosal
responses in teleosts.

Lactic acid bacteria (LAB) and Bacillus spp. are among the
most commonly used probiotic candidates in aquaculture (108,
109). Thus, several effects in the gut immune system have been
reported upon LAB administration in different fish species. For
example, the administration of Lactobacillus rhamnosus in Nile
tilapia resulted in increased villous height in the proximal and
mid intestine as well as increased intraepithelial lymphocytes
numbers and acidophilic granulocytes (110). In an earlier study
performed in rainbow trout, the co-administration of Lactococcus
lactis subsp. lactis, Leuconostoc mesenteroides and Lactobacillus
sakei resulted in an enhanced phagocytic activity of gut leukocytes
(111). Other direct effects on the gut immune system that have
been observed in LAB-fed fish include: stimulation of pro-
inflammatory cytokines such as IL-1, IL-6, IL-2, TNF-a and
IFN-g and also anti-inflammatory cytokines such as IL-10 and
TGF-b; increased gene expression of immune-related genes such
as MHC II or IgM; increased presence of T cells; increased mucin-
secreting goblet cell numbers; increased total Ig concentration
Frontiers in Immunology | www.frontiersin.org 5
(112–117). Certainly, all these probiotic immune effects vary
depending on the types of LAB administered and on the host
species, but in general are mostly immunostimulatory pro-
inflammatory effects. It is interesting to note that, in contrast,
the effects of probiotics on the gut immune system in mammals
are mostly anti-inflammatory (118). In mammals, probiotics have
been seen to provoke anti-inflammatory effects indirectly by
maintaining or repairing epithelial barriers, enhancing the
production of short chain fatty acids with anti-inflammatory
properties or by inducing the synthesis of antimicrobial peptides
that influence inflammation resolution in the mucosa. Also in
mammals, probiotics bind innate immune receptors and trigger
pathways that affect the production of both pro- and anti-
inflammatory cytokines. Despite the capacity to induce both
types of cytokines, the overall balance is generally anti-
inflammatory. Hence, although the reason for this discrepancy
between the effects that probiotics have on inflammation in fish
and mammals is currently unknown, it seems obvious that the
immunomodulatory properties of a given probiotic are not only
dependent on the inherent features of the microorganism used but
also on the complexity of the immune system of the host.

Regarding Bacillus spp., numerous investigations have
demonstrated their efficacy and potency as probiotics in
aquaculture (109). In an overview, Bacillus probiotics have
been shown to have the capacity to modulate some innate
immune responses such as phagocytic and lysozyme activity,
respiratory burst, antiprotease and peroxidase, superoxide
dismutase and myeloperoxidase through effects on different
some immunocompetent cell populations. These probiotics
have also been shown to generate changes in the physiology of
immune cells, for example, increasing of neutrophil adherence
capacity, neutrophil migration and plasma bactericidal activity
that in the end can result in the improvement of immune effector
functions such as enhancement in complement activity, Ig
production and cell cytotoxicity (119–121). All these immune-
stimulatory effects exerted by Bacillus occur in the GALT,
although further research work is needed to understand the
detailed mechanisms.

The mucus is a key element of mucosal immunity, thus, some
studies have focused on determining how probiotics affect the
mucus layer in different ways. Hence, for example, Cerezuela and
collaborators extensively studied the effects of diets enriched with
two different probiotics, Shewanella putrefaciens and Bacillus sp.
on the skin mucus of gilthead seabream (122). Both probiotics
were shown to significantly alter the carbohydrate composition
of the mucus, its IgM content and its enzymatic activity, with
some differences depending on the probiotic used. In the case of
Nile tilapia, feed supplementation with Lactobacillus plantarum
(123) or Bacillus licheniformis (124) was shown to increase the
enzymatic activity of the skin mucus, whereas diets containing
different Bacillus strains significantly augmented its nitric oxide
(NO) and IgM content, and lysozyme and alkaline phosphatase
activity (125). The protein profile of the skin mucus was also
altered in Crucian carp (Carassius auratus gibelio) fed Bacillus
cereus (126) or Lactobacillus acidophilus (127). Despite their
relevance, the number of studies that have investigated the effects
April 2021 | Volume 12 | Article 653025
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of probiotics on the intestinal mucus is much more reduced. In
this sense, some studies have reported a significant increase in
the number of goblet cells in the intestinal mucosa (125, 128) or
an increased IgM content of the intestinal mucus (128) in
response to a prolongued administration of probiotics.

Finally, it has to be mentioned that many other studies have
addressed the systemic immune effects of fish probiotics, but due
to length restrictions of this review, we will not refer to them in
depth. Most of these studies have been focused on describing
increased serum IgM levels (129), increased humoral innate
immune parameters or transcriptional changes in systemic
immune tissues (reviewed in 129–131) upon probiotic treatment.
ADDITIONAL EFFECTS OF
PROBIOTICS ON FISH

Production of Beneficial Substances
Probiotics can also produce some substances with beneficial
effects, which are useful to the host for feed conversion, growth
performance and immunity. Thus, the capability of a
microorganism to produce extracellular enzymes, such as
proteases, amylases, cellulases, phytases, chitinases, lipases, etc.,
is also a desirable characteristic of a probiotic candidate. Fish
produce a wide range of endogenous enzymes such as those listed
above (132–135), however, their quantity and activity are not
adequate for a complete metabolism of the ingested materials from
feed. Thus, enzymes secreted by permanent gut endosymbionts
and potential probiotics are essential from a nutritional
perspective (136), contributing to the digestive process of the
host. In recent years, the capacity of several fish probiotic strains to
produce extracellular enzymes has been extensively investigated
(12, 16). For example, Dawood et al. (137) reported that
Lactobacillus plantarum significantly enhanced amylase, lipase
and protease activity of Nile tilapia. Supplementation of olive
flounder with this probiotic (L. plantarum) as well as with Bacillus
sp. increased several enzyme activities such as amylase, trypsin and
lipase (138). Significant increase of theses enzymes, together with
proteases was also reported in carp (Cyprinus carpio) after the
administration of Lactobacillus casei in combination with b-glucan
and mannan oligosaccharide (139). Other LAB, Lactobacillus
bulgaricus and Lactobacillus acidophilus, together with
Citrobacter were reported to increase amylase, trypsin and
alkaline phosphatase in rainbow trout (140). Tarkhani et al.
(141) described the increase of intestinal digestive enzyme
activities of Caspian roach (Rutilus caspicus) after the
administration of E. faecium. Despite of the reported results, the
actual contribution of these enzymes to the fish metabolism is still
not well understood.

In general, fish do not produce any vitamins and
endosymbionts/probiotics are the primary producers of vitamins,
making them available to the host. Thus, many probiotics have been
shown to supply vitamins, fatty acids and essential amino acids to
the host (45, 111, 142, 143). Besides bacterial probiotics, many
strains of yeast have been used as dietary supplements in a number
of fish species (144). Interestingly, yeasts can produce polyamines,
Frontiers in Immunology | www.frontiersin.org 6
which enhance intestinal maturation (145). Therefore, considering
the provision of vital nutrients such as fatty acids, biotin and
vitamins, probiotics might be also considered as a complementary
food source (10).

Promotion of Growth Performance
As probiotics contribute to improve the feed consumption and
nutrient’s uptake, they also have positive effects on the host
growth rate (146). Thus, probiotics often lead to an enhanced
growth performance, as well as an increased survival rate.

Lactobacillus is the most studied genus of bacteria regarding
its effects on growth performance. Dietary administration of L.
plantarum enhanced growth parameters of several fish species
(carp, Nile tilapia, brown trout, Salmo trutta caspius; 123, 137, 147–
150). Furthermore, the combination of L. plantarum with other
probiotics and natural immunostimulants was also shown to
increase of growth rate in different fish. Thus, Alishahi et al.
(151) reported an increase in the weight gain of carp after dietary
administration of a combination of L. plantarumwith L. bulgaricus.
The growth performance of Nile tilapia was increased after
administration of L. plantarum together with the fungus
Cordyceps militaris (152), and the catfish (Pangasius bocourti)
with artichoke (153) or with Bacillus velezensis (154). L. lactis is
another probiotic whose positive effect on growth performance has
been reported in several farmed fish species, when administered
alone (155–158); in combination with immunostimulants, such as
b-glucan and mannan oligosaccharide (139); or other Lactobacillus
(117). The ability to increase the growth rate has been demonstrated
for other species of Lactobacillus, such as Lactobacillus delbrueckii
(159), L. rhamnosus (117, 160), L. bulgaricus, L. acidophilus (138),
and for other bacteria species, such as Citrobacter in combination
with L. bulgaricus and L. acidophilus (140), Pediococcus (161, 162)
and Enterococcus (141, 163). For example, Asian seabass increased
its growth after the administration of a commercial probiotic
consisting in Lactobacillus spp., E. faecium, B. subtilis and
Saccharomyces cerevisiae. Streptoccocus faecium in combination
with L. acidophilus and S. cerevisiae was also reported to act as a
growth promoter for Nile tilapia (164, 165).

The role of Bacillus probiotics as growth promoters has been
reported in several farmed fish species. Thus, dietary
administration of B. subtilis enhances growth of Nile tilapia
(164, 166), carp (167) and grass carp, Ctenopharyngodon idella
(168). B. subtilis has been administered in combination with L.
lactis and increase the growth of rohu, Labeo rohita (169), as well
as Peidococcus acidilactici in rainbow trout (170). Growth of
catfish was increased due to the administration of Bacillus
amyloliquefaciens and Bacillus pumilus (171). Similarly,
B. coagulans enhanced the growth of carp (172) and B.
licheniformis functioned as a growth promoter in tilapia (173).
ESTABLISHED EFFECTS OF PROBIOTICS
ON PATHOGEN RESISTANCE

The use of probiotics in aquaculture is still faced with a lot of
controversies and skepticism. However, the capacity of probiotics
April 2021 | Volume 12 | Article 653025
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to increase the resistance of fish against different types of
pathogens, including bacteria, viruses and parasites, has been
widely demonstrated experimentally by higher survival rates
upon pathogen challenge in probiotic-treated fish when
compared to controls (15, 56, 108). Thus, in this section, we
briefly review all the published data concerning increased
resistance of aquacultured fish to bacteria, viruses or parasites
upon probiotic treatment. The main information regarding these
studies has been also summarized in Table 1 (bacteria), Table 2
(viruses) and Table 3 (parasites).

Probiotics Providing Resistance to
Bacterial Pathogens
Most of the investigations in the literature that have studied
pathogen resistance conferred by probiotics have studied it in
relation to bacterial pathogens.

As mentioned above, the most commonly used probiotic
species in aquaculture include genera Lactobacillus and Bacillus
(108, 260). In all the studies summarized in Table 1, apart from
these probiotic species, there are other Gram-positive bacteria
frequently used that include genera Carnobacterium, Lactococcus,
Leuconostoc, Pediococcus, Enterococcus, Clostridium, Micrococcus,
Rhodococcus and Kocuria. Regarding the Gram-negative bacteria,
Pseudomonas, Aeromonas, Shewanella, Enterobacter, Citrobacter,
Roseobacter, Vibrio and Flavobacterium have also been tested with
positive effects. Regarding yeast, the genera Saccharomyces is the
most commonly used. Interestingly, in numerous investigations the
mixture of different probiotic candidates, mainly LAB or Bacillus
spp. together or with other species (see Table 1) resulted in higher
disease resistance against bacteria (also reviewed in 108). Indeed, as
mentioned throughout the review, the combination of different
probiotics and other immunostimulants resulted in higher positive
effects on the host, not only regarding pathogen resistance but also
on growth performance or in the immune response.

In almost all studies described in Table 1, the probiotic
candidates were administered along with the diet. Lactobacillus
spp. constitutes one of the probiotics for which antibacterial
activity has been more frequently shown. Thus, the dietary
supplementation of L. rhamnosus increased disease resistance
of rainbow trout against A. salmonicida (31); Nile tilapia against
E. tarda (224) and, in combination with L. lactis, also increased
disease resistance of Nile tilapia against Streptococcus agalactiae
(117). In case of dietary inclusion of L. plantarum, it has also
been shown that significantly increased disease resistance of
common carp and L. rohita against A. hydrophila (148, 196);
rainbow trout against Lactoccocus garvieae (261); Epinephelus
coioides against Streptococcus sp. (186) and Nile tilapia against
Aeromonas sobria (234). Other bacteria species of genera
Lactobacillus, such as L. pentosus, L. acidophilus, L. fermentum,
L. delbrueckii or L. casei have also been studied as probiotic
candidates improving disease resistance against a variety of
bacterial pathogens, when administered with the diet alone or
in combinations (see Table 1). Regarding Lactococcus spp., it has
been shown that diet supplementation of these probiotic species
also led to the improvement disease resistance of common carp
against A. hydrophila (155); Chromileptes altivelis against
Frontiers in Immunology | www.frontiersin.org 7
V. harveyi (158); rainbow trout against A. salmonicida (38);
olive flounder against E. tarda (241), S. iniae (239, 240) and also
against Streptococcus parauberis (156); Nile tilapia against
Staphylococcus aureus (233); Oreochromis mossambicus against
A. hydrophila (48) and brown trout against A. salmonicida (244).
In many other studies, Carnobacterium spp. were the selected
microorganisms to be investigated as probiotic candidates and
dietary administration of these bacteria species resulted in
enhanced disease resistance of Atlantic cod against V.
anguillarum (189, 190); and rainbow trout against Y. ruckeri
and/or A. salmonicida (203, 209). Also, in some investigations,
the mixture of these bacteria together with A. hydrophila and
Vibrio spp., resulted in increased resistance of rainbow trout
against A. salmonicida (203, 206, 262). Similar results were also
revealed in numerous investigations where Bacillus spp. appears
as the selected probiotic agent to study the control of fish disease
(Table 1). For example, dietary supplementation of B. subtilis
and B. licheniformis significantly increased disease resistance of
rainbow trout against Y. ruckeri (207). Likewise, rainbow trout
fed Bacillus spp. and A. sobria showed enhanced disease
resistance against S. iniae (210), and L. rohita fed B. subtilis
showed enhanced disease protection against E. tarda (193) and
A. hydrophila (194, 197). In case offish-fed with Aeromonas spp.,
increased disease resistance against S. iniae and A. salmonicida
were shown (206, 208, 210, 262). Another study worth
mentioning is that of Gong et al. (182), that isolated a new
Pediococcus pentosaceus strain (SL001) which exhibited a wide
antimicrobial spectrum against fish pathogens, including A.
hydrophila, Aeromonas veronii, A. sobria, E. tarda, L. garvieae,
and Plesiomonas shigelloide. Less frequent are the studies that
used yeasts as probiotic agents; however, we found a few of them
in the literature in which dietary supplementation with S.
cerevisiae significantly increased the disease resistance of
Ephinephelus spp. against streptococcosis (188) or Nile tilapia
against A. hydrophila (225); in the same way, fish-fed
Debaryomyces hansenii presented increased disease resistance
against A. hydrophila (201). The effect of dietary inclusion of
other selected probiotics, such as Clostridium butyricum or
Enterobacter cloacae, to control fish disease against a variety of
bacterial pathogens, such as vibriosis or yersiniosis, respectively,
are also summarized in Table 1.

Probiotics Providing Resistance
to Viral Pathogens
Some studies searching for bacteria with antiviral activity have
been carried out in fish, especially during the 80s and 90s
(Table 2). In 1988, Kamei et al. performed a plaque reduction
assay to screen the antiviral activity of bacteria isolated from
fresh water salmonid hatcheries against infectious hematopoietic
necrosis virus (IHNV). The results showed that different
Pseudomonas spp. and Aeromonas spp. strains produced a 90%
plaque reduction (263). In 1997, Maeda et al. performed a
natural infection of the yellow jack (Carangoides bartholomaei)
larvae with Sima-aji Neuro Necrosis Virus (SJNNV), reporting
that the bacterial strain Pseudoalteromonas undina VKM-124
showed an inhibitory activity towards SJNNV (250),
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TABLE 1 | Probiotics assayed in vivo in aquacultured species which have shown to confer significant resistance against bacterial pathogens.

Fish species Probiotic Probiotic
administration

route

Pathogen Pathogen
administration

route

Reference

A. anguilla E. faecium and B. toyoi Diet E. tarda Anal (174)
A. japonica L. pentosus Diet E. tarda i.p. (175)
C. auratus and
X. helleri

Lactobacillus sp., Bacillus sp. and commercial
aquaculture probiotic (CA probiotic)

Diet P. fluorescens IMM (176)

C. auratus gibelio Bacillus sp. Diet A. hydrophila i.p. (177)
C. macrocephalus x C.
gariepinus (hybrid)

B. siamensis Diet A. hydrophila i.p. (178)

C. gariepinus L. acidophilus Diet S. xylosus,
A. hydrophila and
S. agalactiae

i.p. (179)

C. catla B. circulans Diet A. hydrophila IMM (180)
C. altivelis L. lactis Diet V. harveyi i.p. (158)
C. idellus S. xiamenensis and

A. veronii
Diet A. hydrophila i.p. (181)

C. idella P. pentosaceus Diet A. hydrophila i.p. (182)
C. carpio A. veronii, V. lentus and

F. sasangense
Diet A. hydrophila i.p. (183)

C. carpio L. plantarum Diet A. hydrophila i.p. (148)
C. carpio L. delbrueckii Diet A. hydrophila i.p. (159)
C. carpio L. lactis Diet A. hydrophila i.p. (155)
D. labrax V. fluvialis Diet V. anguillarum i.p. (184)
D.labrax E. gallinarum Diet V. anguillarum IMM (185)
E. coioides L. plantarum Diet Streptococcus sp. i.m. (186)
E. coioides P. pentosaceus Diet V. anguillarum i.p. (187)
Epinephelus spp. S. cerevisiae Diet Streptococcus sp. i.m. (188)
G. morhua C. divergens Diet V. anguillarum IMM (189)
G. morhua C. divergens Diet V. anguillarum IMM (190)
G. morhua P. gallaeciensis IMM V. anguillarum IMM (191)
L. rohita B. subtilis Diet A. hydrophila i.p. (192)
L. rohita B. subtilis Diet E. tarda i.p. (193)
L. rohita B. subtilis Diet A. hydrophila i.p. (194)
L. rohita P. aeruginosa Diet A. hydrophila i.p. (195)
L. rohita L. plantarum Diet A. hydrophila i.p. (196)
L. rohita Bacillus spp. Diet A. hydrophila i.p. (197)
L. crocea B. subtilis Diet V. harveyi i.p. (198)
L. calcarifer L. casei, L. plantarum, L. pentosus, L. fermentum,

E. faecium and
B. subtilis

Diet A. hydrophila i.p. (199)

M. miiuy C. butyricum Diet V. anguillarum and
A. hydrophila

i.p. (200)

M. rosacea D. hansenii Diet A. hydrophila i.p. (201)
O. mykiss C. butyricum Oral V. anguillarum i.p. (202)
O. mykiss P. fluorescens IMM V. anguillarum IMM (63)
O. mykiss Carnobacterium sp. Diet A. salmonicida CO (203)
O. mykiss L. rhamnosus Diet A. salmonicida CO (31)
O. mykiss Pseudomonas spp. and Carnobacterium spp. IMM V. anguillarum IMM (204)
O. mykiss A. hydrophila, Vibrio spp., Carnobacterium spp. and an

unidentified Gram-positive coccus
Diet A. salmonicida CO, i.m., i.p. (205)

O. mykiss A. hydrophila, V. fluvialis, Carnobacterium spp. and an
unidentified Gram-positive coccus

Diet A. salmonicida CO (206)

O. mykiss B. subtilis and
B. licheniformis

Diet Y. ruckeri i.p. (207)

O. mykiss A. sobria Diet S. iniae i.p. (208)
O. mykiss C. maltaromaticum and

C. divergens
Diet Y. ruckeri and

A. salmonicida
i.p. (209)

O. mykiss L. lactis and L. mesenteroides Diet A. salmonicida CO (asymptomatic
carrier)

(38)

O. mykiss Bacillus spp. and A. sobria Diet A. salmonicida,
L. garvieae,
S. iniae,
V. anguillarum,

i.p. (210)
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TABLE 1 | Continued

Fish species Probiotic Probiotic
administration

route

Pathogen Pathogen
administration

route

Reference

V. ordalii and
Y. ruckeri

O. mykiss B. subtilis Diet Aeromonas sp. i.p. (211)
O. mykiss A. sobria and

B. thermosphacta
Diet A. bestiarum i.m. (212)

O. mykiss L. mesenteroides and
L. plantarum

Diet L. garvieae CO (196)

O. mykiss E. cloacae and
B. mojavensis

Diet Y. ruckeri IMM (213)

O. mykiss E. faecalis Diet V. anguillarum i.p. (214)
O. mykiss Kocuria Diet V. anguillarum i.p. (215)
O. mykiss Kocuria Diet V. anguillarum and

V.ordalii
i.p. (216)

O. mykiss Enterobacter sp.
and E. amnigenus

Diet F. psychrophilum i.m. (217)

O. mykiss Pseudomonas sp. Diet F. psychrophilum i.m. (218)
O. mykiss Kocuria and Rhodococcus i.p. V. anguillarum i.p. (219)
O. mykiss E. faecalis Diet A. salmonicida i.p. (220)
O. mykiss Enterobacter sp. Diet F. psychrophilum i.p. (221)
O. mykiss E. casseliflavus Diet S. iniae i.p. (222)
O. mykiss E. faecalis Diet L. garvieae i.p. (163)
O. mykiss L. delbrukei subsp. bulgaricus, L. acidophilus

and C. farmeri
Diet L. garvieae i.p. (116)

O. fasciatus L. sakei Diet E. tarda i.p. (223)
O. mossambicus Lactic acid bacteria Diet A. hydrophila IMM (48)
O. niloticus L. rhamnosus Diet E. tarda i.p. (224)
O. niloticus S. cerevisiae Diet A. hydrophila i.p. (225)
O. niloticus B. subtilis and

L. acidophilus
Diet A. hydrophila,

P. fluorescens and
S. iniae

i.p. (226)

O. niloticus B. pumilus Diet A. hydrophila i.p. (227)
O. niloticus M. luteus and Pseudomonas spp. Diet A. hydrophila i.p. (228)
O. niloticus L. brevis and

L. acidophilus
Diet A.hydrophila i.p. (229)

O. niloticus B. licheniformis Diet S. iniae i.p. (230)
O. niloticus B. amyloliquefaciens Diet Y. ruckeri and

C. perfringens
i.p. (231)

O. niloticus B. subtilis Diet S. agalactiae i.p. (166)
O. niloticus B. pumilus Diet S. agalactiae i.m. (232)
O. niloticus L. garvieae Diet S. aureus i.p. (233)
O. niloticus L. plantarum and B. velezensis Diet S. agalactiae i.p. (154)
O. niloticus L. rhamnosus and L. lactis subsp. lactis Diet S. agalactiae i.p. (117)
O. niloticus L. plantarum Diet A. sobria i.p. (234)
O. niloticus L. plantarum Diet S. agalactiae i.p. (235)
O. niloticus L. plantarum Diet S. agalactiae i.p. (123)
Oreochromis sp. B. subtilis,

B. licheniformis,
Bacillus sp. and Pediococcus sp.

Diet S. agalactiae CO (236)

P. hypophthalmus B. amyloliquefaciens and B. pumilus Diet E. ictaluri i.p. (171)
P. bocourti B. aerius Diet A. hydrophila i.p. (237)
P. olivaceus B. licheniformis Diet S. iniae IMM (238)
P. olivaceus L. lactis Diet S. iniae CO (239)
P. olivaceus L. lactis and L. plantarum Diet S. iniae i.p. (240)
P. olivaceus L. lactis Diet E. tarda i.p. (241)
P. olivaceus L. lactis Diet S. parauberis Oral (156)
P. fluviatilis P. chlororaphis Diet A. sobria IMM (242)
R. canadum B. subtilis Diet V. harveyi i.p. (243)
S. trutta L. lactis and

L. mesenteroides
Diet A. salmonicida Asymptomatic

carrier
(244)

S. salar P. fluorescens IMM A. salmonicida CO (62)
S. maximus Roseobacter spp. IMM V. anguillarum IMM (245)
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consequently increasing the survival rate of the yellow jack
larvae. In another study, carried out by Son et al., the dietary
administration of the probiotic L. plantarum enhanced disease
resistance of the grouper E. coioides against grouper iridovirus
(GIV). Interestingly, fish fed L. plantarum also showed enhanced
growth and innate immune responses, such as respiratory burst
or plasma lysozyme activity among other effects (186). In a
similar way, Chiu et al., found that the dietary administration of
the yeast probiotic, S. cerevisiae P13 isolated from fermented
peaches, enhanced disease resistance of E. coioides against GIV
(188). Two years later, Liu et al., observed a similar effect in fish
supplemented with B. subtilis E20 isolated from fermented boiled
soybeans and then infected with GIV (252). Decreased fish
mortality and increased survival rate were observed. In both
studies, the administered probiotics also enhanced the innate
immune responses (respiratory burst, plasma lysozyme activity,
phagocytosis activity and alternative complement activity).
Frontiers in Immunology | www.frontiersin.org 10
Also, dietary supplementation with commercial probiotic
named Lactobacil, individually or mixed with Sporolac, in olive
flounder naturally infected with lymphocystis disease virus
(LCDV) enhanced disease resistance (256). In another study,
hulong grouper fed B. subtilis 7k were significantly strengthened
in innate immune functions when compared with those fed with
control diets. Moreover, B. subtilis 7k supplementation inhibited
infection by Singapore grouper iridovirus (SGIV) (253).

In other cases, probiotic strains have been used as vectors to
administer viral antigens to the host. Through this strategy,
probiotics would exert all their beneficial effects and be at the
same time vaccine vectors. Along this line, a study carried out by
Min et al. with rainbow trout orally immunized with
Lactobacillus-expressing the VP2 and VP3 protein of the
infectious pancreatic necrosis virus (IPNV) resulted in reduced
viral loads, as analyzed by real-time RT-PCR after IPNV
challenge (254). Likewise, oral immunization of rainbow trout
TABLE 1 | Continued

Fish species Probiotic Probiotic
administration

route

Pathogen Pathogen
administration

route

Reference

S. maximus L. Roseobacter sp. Diet
(bioencapsulated in
rotifers)

V. anguillarum Diet
(bioencapsulated in
rotifers)

(246)

S. maximus Bacillus spp. Diet V. anguillarum i.p. (247)
S. schlegeli P. acidilactici Diet E. tarda i.p. (162)
S. senegalensis S. putrefaciens and

S. baltica
Diet P. damselae subsp.

piscicida
i.p. (248)

S. senegalensis S. putrefaciens Diet P. damselae subsp.
piscicida

i.p. (249)

S. aurata Micrococcus and Vibrionaceae Diet L. anguillarum i.p. (29)
April 2
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i.p., intraperitoneal injection; i.m., intramuscular injection; IMM, immersion; CO, cohabitation.
TABLE 2 | Probiotics assayed in vivo in aquacultured species which have shown to confer significant resistance against viral pathogens.

Fish species Probiotic Probiotic
administration

route

Pathogen Pathogen
administration

route

Reference

C. bartholomaei P. undina IMM SJNNV n.d. (250)
C. carpio L. plantarum (expressing G protein from SVCV) Oral Spring Viremia of Carp Virus

(SVCV)
Injection (n.d.) (251)

E. coioides L. plantarum Diet Grouper Iridovirus (GIV) i.p. (186)
E. coioides S. cerevisiae Diet Grouper Iridovirus (GIV) i.m., i.p. (188)
E. coioides B. subtilis Diet Iridovirus (GIV) i.p. (252)
E. fuscoguttatus
x
E. lanceolatus
(hybrid)

B. subtilis Diet Singapore grouper iridovirus
(SGIV)

IMM (253)

O. mykiss L. casei
(expressing VP2 & VP3 from IPNV)

Oral Infectious Pancreatic Necrosis
Virus (IPNV)

i.p. (254)

O. mykiss L. lactis and L. lactis (expressing G protein from VHSV) Diet Viral haemorrhagic septicaemia
virus (VHSV)

i.p. (255)

O. mykiss L. casei
(expressing AHA1-CK6 and VP2 from IPNV

Diet Infectious Pancreatic Necrosis
Virus (IPNV)

i.p. (246)

P. olivaceus Commercial probiotics: Lactobacil and Sporolac (Inter Care
Ltd, Mehsana, Gujarat)

Diet Lymphocystis disease virus
(LCDV)

Natural infection (256)
i.p., intraperitoneal injection; i.m., intramuscular injection; IMM, immersion; n.d., not determined.
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with recombinant L. lactis NZ3900 expressing the G gene of viral
hemorrhagic septicemia virus (VHSV) resulted in a significant
reduction of viral loads and decreased fish mortality after viral
challenge (255). Increased resistance to IPNV was also detected
in rainbow trout orally immunized with recombinant L. casei
expressing the viral antigens (264). Similar results were observed
in common carp orally immunized with recombinant L.
plantarum expressing the G protein of spring viremia of carp
virus (SVCV).
Probiotics Providing Resistance
to Parasites
Although parasitic infections often provoke lower mortalities
than viral and bacterial pathogens, they adversely affect animal
health, with an enormous impact on aquaculture from an
economic point of view. Despite this, not many studies have
investigated the capacity of probiotics to confer resistance against
different types of parasites (Table 3). In one of these studies,
Pieters et al. demonstrated that the oral administration of A.
sobria GC2 and Brochothrix thermosphacta BA211 to rainbow
trout conferred increased resistance against Ichthyophthirius
multifiliis (Ich), with the A. sobria GC2 strain being more
effective in its protecting role (212). In a similar study, dietary
supplementation with B. subtilis spores expressing Clonorchis
sinensis paramyosin protected grass carp from cercaria infection
(257). In another study, catfish exposed to L. plantarum showed
a reduced infection with Saprolegnia parasitica (259). Finally, in
Yanuhar et al. (258), probiotic formulations containing a mixture
of Bacillus spp., Lactobacillus sp. and Nitrosomonas sp., were
administered at different doses to Koi carp and resulted in
increased disease protection against Myxobolus sp., in terms of
gill tissue damage reduction. Further investigations are needed in
fish to explore additional effects of probiotic treatment on the
resistance to parasitic infections.
GENERAL CONCLUSIONS

The use of probiotics in aquaculture is a promising approach to
increase fish health status and reduce the impact of infectious
diseases. Reports in the past years, have broadly established that
there is a wide range of probiotic microorganisms that can produce
beneficial effects to the host, including immunostimulatory effects,
increased resistance to pathogens, stimulation of growth, increased
Frontiers in Immunology | www.frontiersin.org 11
digestion or even improved water quality. Despite all these studies,
the use of probiotics in aquaculture is not as extended as would be
expected taking into account the effort that has been devoted to this
research field in the past years. In this sense, we thought of
importance to gather in a specific review all direct evidence of
increased protection to pathogens conferred by probiotic
administration. As visualized in this review, most of the efforts
have been directed to establish how probiotics can protect against
bacterial infections, but much less is known regarding their antiviral
or antiparasitic effects. Nevertheless, probiotic application is a
dynamic research field in the sense that there is a continuous
search for new probiotic candidates that have even more beneficial
effects. Despite the numerous reports on fish probiotics, the
mechanisms through which these probiotics exert their effects has
not yet been clarified in many cases. Other practical and safety
issues also need to be addressed to convince farmers that probiotics
are safe and eco-friendly alternatives to chemotherapy. Thus, for
each probiotic candidate, the best administration regime should be
established, determining for how long these probiotics should be
administered to colonize the mucosal surfaces and obtain optimal
results. Finally, the safety of each candidate has to be established
beyond doubt, including a determination of the antibiotic resistance
and a confirmation that any resistance will not be transferred to
surrounding microorganisms. Hopefully, all these studies focused
on providing insights on the mechanisms of action of probiotics,
practical administration issues and safety will contribute to
stimulate the regular use of probiotics in aquaculture.
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TABLE 3 | Probiotics assayed in vivo in aquacultured species which have shown to confer significant resistance against parasites.

Fish species Probiotic Probiotic administration route Pathogen Pathogen administration route Reference

C. idellus B. subtilis Diet C. sinensis CO (257)
C. carpio Bacillus spp., Lactobacillus sp.

and Nitrosomonas sp.
IMM Myxobolus sp. Natural infection (258)

O. mykiss A. sobria and B. thermosphacta Diet I. multifilis IMM (212)
P. hypophthalmus L. plantarum IMM S. parasitica IMM (259)
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38. Balcázar JL, De Blas I, Ruiz-Zarzuela I, Vendrell D, Gironés O, Muzquiz JL.
Enhancement of the immune response and protection induced by probiotic
lactic acid bacteria against furunculosis in rainbow trout (Oncorhynchus
mykiss). FEMS Immunol Med Microbiol (2007) 51(1):185–93. doi: 10.1111/
j.1574-695X.2007.00294.x

39. Chahad Bourouni O, El Bour M, Mraouna R, Abdennaceur H, Boudabous A.
Preliminary selection study of potential probiotic bacteria from aquacultural
area in Tunisia. Ann Microbiol (2007) 57(2):185. doi: 10.1007/BF03175205

40. Medina M, Sotil G, Flores V, Fernández C, Sandoval N. In vitro assessment
of some probiotic properties and inhibitory activity against Yersinia ruckeri
of bacteria isolated from rainbow trout Oncorhynchus mykiss (Walbaum).
Aquac Rep (2020) 18:100447. doi: 10.1016/j.aqrep.2020.100447

41. Hai NV. The use of probiotics in aquaculture. J Appl Microbiol (2015) 119
(4):917–35. doi: 10.1111/jam.12886
April 2021 | Volume 12 | Article 653025

https://doi.org/10.1126/science.147.3659.747
https://doi.org/10.1126/science.147.3659.747
https://doi.org/10.1111/j.1365-2672.1989.tb05105.x
https://doi.org/10.1080/10408699991279187
https://doi.org/10.1080/10408699991279187
https://www.who.int/foodsafety/publications/fs_management/probiotics/en/index.html
https://www.who.int/foodsafety/publications/fs_management/probiotics/en/index.html
https://doi.org/10.1016/S0044-8486(98)00199-9
https://doi.org/10.1016/S0044-8486(98)00199-9
https://doi.org/10.1128/mmbr.64.4.655-671.2000
https://doi.org/10.1007/s10499-020-00509-0
https://doi.org/10.1016/j.rvsc.2017.01.016
https://doi.org/10.1088/1755-1315/430/1/012026
https://doi.org/10.1007/s13199-018-0580-1
https://doi.org/10.1007/s13199-018-0580-1
https://doi.org/10.3389/fmicb.2018.02429
https://doi.org/10.1080/23308249.2019.1683151
https://doi.org/10.1080/01652176.2016.1172132
https://doi.org/10.1080/01652176.2016.1172132
https://doi.org/10.1186/s41936-020-00190-y
https://doi.org/10.1186/s41936-020-00190-y
https://doi.org/10.14303/irjm.2018.023
https://doi.org/10.1016/j.fsi.2015.02.023
https://doi.org/10.1002/9781119152125.ch8
https://doi.org/10.1007/s10499-012-9509-5
https://doi.org/10.1007/s10499-012-9509-5
https://doi.org/10.1016/j.fsi.2013.09.032
https://doi.org/10.1016/j.aquaculture.2013.10.006
https://doi.org/10.5402/2012/916845
https://doi.org/10.1007/s12602-018-9439-2
https://doi.org/10.1016/j.aquaculture.2008.02.021
https://doi.org/10.1016/j.aquaculture.2008.02.021
https://doi.org/10.1016/j.aquaculture.2008.03.014
https://doi.org/10.1111/j.1365-2109.2005.01400.x
https://doi.org/10.1016/S0044-8486(99)00187-8
https://doi.org/10.1016/S0044-8486(01)00593-2
https://doi.org/10.1007/s10482-012-9703-5
https://doi.org/10.1007/s12010-014-1270-y
https://doi.org/10.1186/s12866-018-1260-2
https://doi.org/10.1016/S0044-8486(01)00714-1
https://doi.org/10.1016/j.aquaculture.2010.02.007
https://doi.org/10.1016/j.aquaculture.2010.02.007
https://doi.org/10.1111/j.1574-695X.2007.00294.x
https://doi.org/10.1111/j.1574-695X.2007.00294.x
https://doi.org/10.1007/BF03175205
https://doi.org/10.1016/j.aqrep.2020.100447
https://doi.org/10.1111/jam.12886
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Simón et al. Probiotic Effects Against Fish Pathogens
42. Chen D-D, Yao Y-Y, Cui Z-W, Zhang X-Y, Guo X, Zhou Y-Y, et al.
Comparative study of the immunoprotective effect of two grass carp-sourced
Bacillus subtilis spore-based vaccines against grass carp reovirus.
Aquaculture (2019) 504:88–95. doi: 10.1016/j.aquaculture.2019.01.055

43. Gao X-Y, Liu Y, Miao L-L, Li E-W, Hou T-T, Liu Z-P. Mechanism of anti-
Vibrio activity of marine probiotic strain Bacillus pumilus H2, and
characterization of the active substance. AMB Express (2017) 7(1):23.
doi: 10.1186/s13568-017-0323-3
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144. Navarrete P, Tovar-Ramıŕez D. Use of yeasts as probiotics in fish
aquaculture. In: MP Hernandez-Vergara and CI Perez-Castro, editors.
Sustainable Aquaculture Techniques 1. London, UK: IntechOpen (2014).
p. 135–72. doi: 10.5772/57196

145. Wang X, Li H, Zhang X, Li Y, Ji W, Xu H. Microbial flora in the digestive
tract of adult penaeid shrimp (Penaeus chinensis). J Ocean Univ Qingdao
(2000) 30:493–8.

146. Nath S, Matozzo V, Bhandari D, Faggio C. Growth and liver histology of
Channa punctatus exposed to a common biofertilizer. Nat Prod Res (2019)
33(11):1591–8. doi: 10.1080/14786419.2018.1428586

147. Hamdan AM, El-Sayed AFM, Mahmoud MM. Effects of a novel marine
probiotic, Lactobacillus plantarum AH 78, on growth performance and
immune response of Nile tilapia (Oreochromis niloticus). J Appl Microbiol
(2016) 120(4):1061–73. doi: 10.1111/jam.13081

148. Soltani M, Abdy E, Alishahi M, Mirghaed AT, Hosseini-Shekarabi P. Growth
performance, immune-physiological variables and disease resistance of
common carp (Cyprinus carpio) orally subjected to different
concentrations of Lactobacillus plantarum. Aquac Int (2017) 25(5):1913–
33. doi: 10.1007/s10499-017-0164-8

149. Yu L, Zhai Q, Zhu J, Zhang C, Li T, Liu X, et al. Dietary Lactobacillus
plantarum supplementation enhances growth performance and alleviates
aluminum toxicity in tilapia. Ecotoxicol Environ Saf (2017) 143:307–14.
doi: 10.1016/j.ecoenv.2017.05.023

150. Zhai Q, Wang H, Tian F, Zhao J, Zhang H, Chen W. Dietary Lactobacillus
plantarum supplementation decreases tissue lead accumulation and
alleviates lead toxicity in Nile tilapia (Oreochromis niloticus). Aquac Res
(2017) 48(9):5094–103. doi: 10.1111/are.13326

151. Alishahi M, Tulaby Dezfuly Z, Mohammadian T, Mesbah M. Effects of two
probiotics, Lactobacillus plantarum and Lactobacillus bulgaricus on growth
April 2021 | Volume 12 | Article 653025

https://doi.org/10.31989/ffhd.v4i7.2
https://doi.org/10.1016/j.fsi.2019.08.020
https://doi.org/10.1016/j.fsi.2019.08.020
https://doi.org/10.1016/j.fsi.2019.08.047
https://doi.org/10.1016/j.fsi.2019.08.047
https://doi.org/10.22092/ijfs.2018.117757
https://doi.org/10.1016/j.fsi.2015.12.028
https://doi.org/10.1007/s12602-019-09554-5
https://doi.org/10.1016/j.fsi.2017.12.066
https://doi.org/10.1016/j.fsi.2019.12.046
https://doi.org/10.1016/j.fsi.2019.12.046
https://doi.org/10.1016/j.fsi.2019.04.014
https://doi.org/10.1016/j.fsi.2019.04.014
https://doi.org/10.1016/j.fsi.2016.10.026
https://doi.org/10.3389/fmicb.2019.02663
https://doi.org/10.1016/j.fsi.2010.02.017
https://doi.org/10.111/j.1574-695X.2007.00343.x
https://doi.org/10.1016/j.fsi.2019.12.054
https://doi.org/10.1023/A:1017521900442
https://doi.org/10.1086/422228
https://doi.org/10.1111/j.1365-2095.2004.00327.x
https://doi.org/10.1111/j.1365-2095.2012.00943.x
https://doi.org/10.1111/j.1365-2095.2012.00943.x
https://doi.org/10.1007/s13197-011-0240-4
https://doi.org/10.1016/j.aquaculture.2019.02.053
https://doi.org/10.1016/j.aquaculture.2019.02.053
https://doi.org/10.1016/j.fsi.2019.06.056
https://doi.org/10.1016/j.aquaculture.2019.06.011
https://doi.org/10.1016/j.fsi.2018.11.052
https://doi.org/10.1016/j.aquaculture.2019.734741
https://doi.org/10.1016/0044-8486(91)90028-6
https://doi.org/10.1271/bbb.56.1678
https://doi.org/10.5772/57196
https://doi.org/10.1080/14786419.2018.1428586
https://doi.org/10.1111/jam.13081
https://doi.org/10.1007/s10499-017-0164-8
https://doi.org/10.1016/j.ecoenv.2017.05.023
https://doi.org/10.1111/are.13326
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Simón et al. Probiotic Effects Against Fish Pathogens
performance and intestinal lactic acid bacteria of Cyprinus Carpio. Iran J Vet
Med (2018) 12(3):207–18. doi: 10.22059/IJVM.2018.235444.1004816

152. Van Doan H, Hoseinifar SH, Dawood MAO, Chitmanat C, Tayyamath K.
Effects of Cordyceps militaris spent mushroom substrate and Lactobacillus
plantarum on mucosal, serum immunology and growth performance of Nile
tilapia (Oreochromis niloticus). Fish Shellfish Immunol (2017) 70:87–94.
doi: 10.1016/j.aquaculture.2018.03.019

153. Van Doan H, Doolgindachbaporn S, Suksri A. Effect of Lactobacillus
plantarum and Jerusalem artichoke (Helianthus tuberosus) on growth
performance, immunity and disease resistance of Pangasius catfish
(Pangasius bocourti, Sauvage 1880). Aquac Nutr (2016) 22(2):444–56. doi:
10.1111/anu.12263

154. Van Doan H, Hoseinifar SH, Khanongnuch C, Kanpiengjai A, Unban K,
Srichaiyo S. Host-associated probiotics boosted mucosal and serum
immunity, disease resistance and growth performance of Nile tilapia
(Oreochromis niloticus). Aquaculture (2018) 491:94–100. doi: 10.1016/
j.aquaculture.2018.03.019

155. Feng J, Chang X, Zhang Y, Yan X, Zhang J, Nie G. Effects of Lactococcus lactis
from Cyprinus carpio L. as probiotics on growth performance, innate
immune response and disease resistance against Aeromonas hydrophila.
Fish Shellfish Immunol (2019) 93:73–81. doi: 10.1016/j.fsi.2019.07.028

156. Nguyen TL, Park C-I, Kim D-H. Improved growth rate and disease
resistance in olive flounder, Paralichthys olivaceus, by probiotic
Lactococcus lactis WFLU12 isolated from wild marine fish. Aquaculture
(2017) 471:113–20. doi: 10.1016/j.aquaculture.2017.01.008

157. Nguyen TL, Chun W-K, Kim A, Kim N, Roh HJ, Lee Y, et al. Dietary
probiotic effect of Lactococcus lactis WFLU12 on low-molecular-weight
metabolites and growth of olive flounder (Paralichythys olivaceus). Front
Microbiol (2018) 9:2059. doi: 10.3389/fmicb.2018.02059

158. Sun Y, He M, Cao Z, Xie Z, Liu C, Wang S, et al. Effects of dietary
administration of Lactococcus lactis HNL12 on growth, innate immune
response, and disease resistance of humpback grouper (Cromileptes
altivelis). Fish Shellfish Immunol (2018) 82:296–303. doi: 10.1016/
j.fsi.2018.08.039

159. Zhang C-N, Zhang J-L, Guan W-C, Zhang X-F, Guan S-H, Zeng Q-H, et al.
Effects of Lactobacillus delbrueckii on immune response, disease resistance
against Aeromonas hydrophila, antioxidant capability and growth
performance of Cyprinus carpio Huanghe var. Fish Shellfish Immunol
(2017) 68:84–91. doi: 10.1016/j.fsi.2017.07.012

160. Sewaka M, Trullas C, Chotiko A, Rodkhum C, Chansue N,
Boonanuntanasarn S, et al. Efficacy of synbiotic Jerusalem artichoke and
Lactobacillus rhamnosus GG-supplemented diets on growth performance,
serum biochemical parameters, intestinal morphology, immune parameters
and protection against Aeromonas veronii in juvenile red tilapia
(Oreochromis spp.). Fish Shellfish Immunol (2019) 86:260–8. doi: 10.1016/
j.fsi.2018.11.026

161. Ashouri G, Soofiani NM, Hoseinifar SH, Jalali SAH, Morshedi V, Van Doan
H, et al. Combined effects of dietary low molecular weight sodium alginate
and Pediococcus acidilactici MA18/5M on growth performance,
haematological and innate immune responses of Asian sea bass (Lates
calcalifer) juveniles. Fish Shellfish Immunol (2018) 79:34–41. doi: 10.1016/
j.fsi.2018.05.009

162. Rahimnejad S, Guardiola FA, Leclercq E, Ángeles Esteban M, Castex M,
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