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Background: Chronic Helicobacter pylori (HP) infection is considered the major cause of
non-cardia gastric cancer (GC). However, how HP infection influences the metabolism and
further regulates the progression of GC remains unknown.

Methods: We comprehensively evaluated the metabolic pattern of HP-positive (HP+) GC
samples using transcriptomic data and correlated these patterns with tumor
microenvironment (TME)–infiltrating characteristics. The metabolic score was
constructed to quantify metabolic patterns of individual tumors using principal
component analysis (PCA) algorithms. The expression alterations of key metabolism-
related genes (MRGs) and downstream metabolites were validated by PCR and
untargeted metabolomics analysis.

Results: Two distinct metabolic patterns and differential metabolic scores were identified
in HP+ GC, which had various biological pathways in common and were associated with
clinical outcomes. TME-infiltrating profiles under both patterns were highly consistent with
the immunophenotype. Furthermore, the analysis indicated that a lowmetabolic score was
correlated with an increased EMT subtype, immunosuppression status, and worse
survival. Importantly, we identified that the expression of five MRGs, GSS, GMPPA,
OGDH, SGPP2, and PIK3CA, was remarkably correlated with HP infection, patient
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survival, and therapy response. Furthermore, the carbohydrate metabolism and citric acid
may be downstream regulators of the function of metabolic genes in HP-induced GC.

Conclusion: Our findings suggest that there is cross talk between metabolism and
immune promotion during HP infection. MRG-specific transcriptional alterations may serve
as predictive biomarkers of survival outcomes and potential targets for treatment of
patients with HP-induced GC.

Keywords: Helicobacter pylori, gastric cancer, cancer metabolism, tumor environment, prognosis

INTRODUCTION

Gastric cancer (GC) is the fifth most common and fourth most
common cause of cancer-related death worldwide (Sung et al.,
2021). Chronic Helicobacter pylori (HP) infection is considered
the major cause of non-cardia gastric cancer, with almost all cases
due to the presence of these bacteria (Plummer et al., 2015).
However, despite the high significance of HP for human health, it
seems that the molecular infection mechanisms and intracellular
signaling pathways during colonization have not been fully
elucidated. Therefore, the identification of new subtypes and
functional pathways of HP-induced GC by recognizable
molecular profiles and the exploration of novel key gene
targets for monitoring GC progression are urgent requirements.

Host metabolic dysregulation in cancer pathogenesis is
emerging as a key strategy for microbial remodeling of the
infection microenvironment (Kim I.-J. et al., 2018). A growing
body of evidence has demonstrated a strong connection between
HP infection and metabolism. HP infection is associated with
lipid and glucose metabolism (Gao et al., 2008; Satoh et al., 2010;
Buzás, 2014). Changes in the expression of metabolism-related
genes may underlie the molecular mechanism of cancer cell
metabolic reprogramming. Zhou et al. revealed that HP
infection promoted hepatic insulin resistance by affecting the
c-Jun/miR-203/SOCS3 signaling pathway (Zhou et al., 2015). We
and others have previously identified gene markers of HP+ GC
that have prognostic significance (Liu et al., 2019; Liu et al., 2020).
However, the impact of metabolism-related genes (MRGs) on
prognosis and therapy in HP + GC has not been clearly defined.

Encouragingly, recent advances in the field of cancer
immunotherapy, such as immune checkpoint inhibitors (ICIs),
have led to new and powerful cancer management models.
However, large numbers of patients do not respond to these
clinically approved immunomodulatory drugs. In addition to
immune mechanisms (e.g., recruitment of immunosuppressive
cells or factors and impaired antigen presentation) that may lead
to immune escape of tumor cells, increasing evidence supports
the hypothesis that the dysregulation of energy metabolism could
also contribute to the failure of cancer immunotherapy
(Martinez-Outschoorn et al., 2017). Notably, metabolic
enzymes and their products have become increasingly
important as potential drug targets in recent years (Beger
et al., 2016; DeBerardinis and Chandel, 2016). HP has been
proposed to be involved in immune escape by limiting M1
macrophage activation and polyamine metabolism (Hardbower
et al., 2016). It remains unknown whether there are metabolic

interactions between immune cells and cancer cells in HP-
induced GC.

In the present study, we comprehensively explored the
expression of genes across key cellular metabolic pathways in
HP-induced GC from GEO datasets. Subsequently, we confirmed
two subgroups (Cluster 1 and Cluster 2) using consensus
clustering for MRGs associated with HP infection that
stratified the prognosis, different immune cell infiltration, and
CTLA4 expression in GC patients. Next, we developed a
methodology to quantify the metabolic pattern (a metabolic
score). Importantly, we identified significantly high and low
expression of multiple MRGs—GSS, GMPPA, OGDH, SGPP2,
and PIK3CA—correlated with patient survival, chemotherapeutic
drug sensitivity in HP-positive (HP+) GC, and ICI therapeutic
response. We further validated that HP infection remarkably
upregulated the expression of the five MRGs in MKN45 GC cells.
Meanwhile, the downstream metabolite alteration and activated
pathways were validated by metabolomics. These findings may
contribute to a better understanding of the unique pathogenesis
of HP-induced GC and allow for maximum efficacy of genetic,
cellular, and immune therapies.

MATERIALS AND METHODS

Data Collection and Processing
We downloaded level 3 mRNA expression, mutation, and clinical
data from 375 GCs and 32 normal control samples from The
Cancer Genome Atlas (TCGA, http://cancergenome.nih.gov/),
and we derived GSE62254 from the Gene Expression Omnibus
(GEO, https://www.ncbi.nlm.nih.gov/geo/). We obtained
immune subtype information of the TCGA sample from
UCSC Xena (http://xena.ucsc.edu/). Clinical information on
GSE62254 was acquired from Cristescu et al. (2015).
Additionally, 72 controls with HP− GC samples and 55 cases
with HP+ GC were enrolled from GSE62254, which exploited the
GPL570 platform (Affymetrix Human Genome U133 Plus 2.0
Array). The mRNA microarray dataset was normalized before
being downloaded from the GEO database. The probe identifiers
of the gene matrix file were converted to gene symbols according
to the annotation file of the corresponding platform. The sum of
gene expression values was processed by log2, and if multiple
probes corresponded to the same gene symbol, the average value
was used as the final expression value. The relevant data provided
by TCGA and GEO are public and open; therefore, additional
ethical approval was not required.
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Metabolism-Related Gene Extraction
In the present research, all MRGs originated from the Kyoto
Encyclopedia of Genes and Genomes (KEGG)
metabolism–related gene sets (“c2. cp.kegg.v7.2. symbols”;
http://software.broadinstitute.org/gsea/downloads.jsp). By
integrating the entire gene set of the samples with the
metabolic gene set, 860 metabolism-related genes
(Supplementary Table S1) were identified in the
transcriptome data. Gene expression was also extracted from
GSE62254 and analyzed.

WGCNA Analysis
The expression file of GSE62254 was applied for the weighted
gene co-expression network analysis (WGCNA) via WGCNA
R package. We applied WGCNA to investigate the link
between the clinical traits and expression modules
(Langfelder and Horvath, 2008). At first, the gene pairs with
Pearson coefficients above the threshold were fitted into a
matrix. Next, the adjacent matrix was established by power
function. The module detection of closely related gene clusters
is performed once the weighted network is constructed. To
evaluate the degree of gene association in the network and to
minimize spurious connections among genes, topological
overlap was inserted to discern the modules of highly
similar genes. At last, similar gene expression patterns are
grouped into the same color module. We used the Heatmap
toolkit in R to calculate correlations between gene modules and
clinical features and to plot the heatmap.

Disease Connectivity Analysis and
Consensus Clustering for HP-Associated
MRGs
Diseases enriched with 44 HP-MRGs (Supplementary Table S1)
were recognized by the Comparative Toxicogenomic Database
(http://ctdbase.org/, Bonferroni-corrected p value<0.05) (Davis
et al., 2019). To further explore the function of HP-MRGs, the
HP+ GC patients were grouped into different clusters by
ConsensusClusterPlus (resample rate of 80%, 50 iterations,
and Pearson correlation, http://www.bioconductor.org/) on the
basis of 44 HP-MRG expression (Wilkerson and Hayes, 2010).
We used the consensus clustering algorithm to identify subgroups
number and their stability. In addition, principal component
analysis (PCA) was applied to explore the gene expression models
in distinct HP+ GC groups.

Tumor-Infiltrating Immune Cell Evaluation
and ESTIMATE
We estimated the abundances of 22 distinct TIICs with the
expression profile of HP+ GC by using the CIBERSORT
algorithm (http://cibersort.stanford.edu/) (Newman et al.,
2015), which is considered more suitable for analyzing the
unknown mixture content and noise than the former
deconvolution approach. In this research, the fraction of
immune cells of GSE62254 samples was estimated using R
package “CIBERSORT.” The Estimation of Stromal and

Immune Cells in Malignant Tumors using Expression data
(ESTIMATE) algorithm (Yoshihara et al., 2013), which makes
use of gene expression signatures to predict the cellularity of
the tumor and the purity of the tumor. We used the
ESTIMATE algorithm via the R “estimate package”
(Yoshihara et al., 2013) to determine the stromal scores,
ESTIMATE scores, and immune scores for each sample
included in GSE62254, respectively.

Construction of the Metabolic Score
First, an unsupervised clustering method (K-means) (Wong and
Hartigan, 1979) for categorizing the patients in the GSE62254
cohort as per HP-MRGs values was used. Furthermore, the
random forest classification algorithm was used to conduct
dimension reduction for reducing noise or redundant genes
(Kursa and Rudnicki, 2010). Next, the clusterProfiler R
package (Yu et al., 2012) was applied to annotate gene
patterns. A consensus clustering algorithm (Monti et al., 2003)
was adopted to identify the cluster of genes. Then we curated the
expression profiles of the finalized genes (Supplementary Table
S1) for the PCA and extracted principal component 1 as the
signature score. This approach focuses mainly on the scores of
well-correlated (or anticorrelated) genes with the largest blocks in
the set, while reducing the contribution weight of genes that are
not related to other pool members. Last, we applied an equation
similar to the previous study (Sotiriou et al., 2006; Zeng et al.,
2019) to define the metabolic score:

Metabolic score � ∑


PC1i −∑


PC1j,

where i is the score of signature for clusters with positive Cox
coefficients and j is the expression of genes with negative Cox
coefficients.

GSEA and GSVA
We utilized gene set variation analysis (GSVA) (Hänzelmann
et al., 2013) with the “GSVA” R package to explore different
biological pathways in different metabolic clusters and different
metabolic scores. We downloaded the gene sets of
“c2.cp.kegg.v7.1.symbols.gmt” from the MSigDB database for
conducting GSVA. Adjusted p-values less than 0.05 and |
log2FC|>0.2 were considered statistically significant. Similarly,
gene set enrichment analysis (GSEA) is a computational method
for determining whether a largely defined set of genomes exhibits
a statistically significant difference in the biological state
(Subramanian et al., 2005). Based on the median expression
value of prognostic metabolic signature genes (MSGs) in HP+
GC, the patients were classified into two subgroups, and the
“c2.cp.kegg.v7.1.symbols.gmt” genomic enrichment analysis was
performed, with a p-value < 0.05 regarded as statistically
significant.

Prediction of Drug Sensitivity
The chemotherapy drug sensitivity was accessed through the
Genomics of Drug Sensitivity in Cancer (GDSC; https://www.
cancerrxgene.org/) database (Yang et al., 2013). In addition,
the half maximal inhibitory concentration (IC50) was
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estimated with the R package “pRRophetic” (Geeleher et al.,
2014). In addition, we systematically searched for gene
expression profiles for ICI treatment that were publicly
available and combined with response outcome
information. In our study, two cohorts of immunotherapy
were eventually included: metastatic GC treated with
pembrolizumab (an anti-PD-1 mcAb) (Kim S. T. et al.,
2018) and melanoma treatment with ipilimumab (an anti-
CTLA-4 mcAb) (Nathanson et al., 2017). Normalized gene
expression profiles and response results of pretreatment
biopsy samples were downloaded from Tumor Immune
Dysfunction and Exclusion (TIDE, http://tide.dfci.harvard.
edu./download/) for further analysis.

Cell Culture and HP Infection
Human GC cell lines MKN45 were acquired from the Cell
Resource Center, Institute of Biochemistry, and Cell Biology at
the Chinese Academy of Science (Shanghai, China). MKN45 cells
were cultured in RPMI-1640 (MACGENE, Beijing, China)
containing 10% fetal bovine serum (Gibco, Carlsbad, CA,
United States). All cultures were kept in a 5% CO2 humidified
incubator at 37°C. HP strains 26695 and SS1 were kindly offered
by Dr. Jihui Jia (Department of Microbiology, School of Basic
Medical Science, Shandong University, Jinan, China). The HP
strains were inoculated into Brucella broth supplemented with
5% FBS under microaerophilic conditions (5% O2, 10% CO2, and
85% N2) at 37°C. The bacteria were harvested and immediately
transferred to cell cultures at a multiplicity of infection (MOI) of
100 and collected after 6 h.

qRT-PCR Analysis
We extracted total RNA from the cells using RNA TRIzol
reagent (CWBIO) to assess the expression levels of the five
prognostic MRGs. cDNA synthesis was performed using a
reverse transcription kit (CWBIO) according to the
manufacturer’s instructions. Quantitative real-time
polymerase chain reaction (qRT-PCR) analysis was
conducted on a LightCycler 480 Real-Time PCR system.
The relative mRNA expression level was calculated by using
the 2−ΔΔCt approach and standardized to β-actin.
Supplementary Table S2 showed the primer sequences.

Metabolomics Sample Collection and
Preparation
A total of 37 serum samples were gathered from September
2019 to October 2020, provided by Jinan Central Hospital, all
from fasted subjects. The study was approved by the Ethics
Committee of the Jinan Central Hospital (Jinan, China) and
performed in accordance with the relevant guidelines and
regulations. After collection, all serum samples were kept at
−80°C until use.

The study included the HP+ GC group (6 patients), HP GC
group (19 patients), and HP− non-atrophic gastritis (NAG)
group (12 patients). Clinical information of included patients
was presented in Supplementary Table S3. The inclusion
criteria for patients are given as follows: patients newly

diagnosed with GC or NAG and had not received previous
surgery, radiotherapy, or chemotherapy. The cancer or
gastritis diagnosis was conducted by using the
histopathological analysis of tissue specimens.

LC–MS/MS Analysis and Data Processing
LC–MS/MS analyses were conducted by a UHPLC system
(Vanquish, Thermo Fisher Scientific) with a UPLC BEH
Amide column (2.1 mm × 100 mm, 1.7 μm) coupled to a Q
Exactive HFX mass spectrometer (Orbitrap MS, Thermo). The
mobile phase consisted of 25 mmol/L ammonium acetate and
25 mmol/L ammonia hydroxide in water (pH � 9.75) (A) and
acetonitrile (B). The autosampler temperature was 4°C, and the
injection volume was 3 μl.

A QE HFX mass spectrometer was used for its ability to
acquire MS/MS spectra on the information-dependent
acquisition (IDA) mode using the control of acquisition
software (Xcalibur, Thermo). In this mode, acquisition
software continuously evaluates the full scan MS spectrum.
The ESI source conditions were set as follows: a sheath gas flow
rate of 30 Arb, Aux gas flow rate of 25 Arb, capillary
temperature of 350°C, full MS resolution of 60000, MS/MS
resolution of 7500, collision energy of 10/30/60 in NCE mode,
and spray voltage of 3.6 kV (positive) or −3.2 kV (negative).

The raw data were converted to the mzXML format using
ProteoWizard and processed with an in-house program, which
was developed using R and based on XCMS, for peak detection,
extraction, alignment, and integration. Then an in-house MS2
database (BiotreeDB) was applied for metabolite annotation. The
cutoff for annotation was set at 0.3.

To provide comparative interpretations and visualization of
the metabolic differences between HP+ patients and HP−
controls, principal component analysis (PCA) and orthogonal
signal correction partial least-squares discriminant analysis
(OPLS-DA) were applied. The quality of the model was
described by R2X and Q2 values. Metabolites driving the
difference in the metabolic profiles between the HP+ group
and the HP− group were identified according to the variable
importance in the projection (VIP) threshold of 1 from the OPLS-
DA model.

Statistical Analysis
Statistical analyses were performed using R language (version
4.0.4) or GraphPad Prism (version 6). Differences between the
two groups were analyzed by using the Wilcoxon rank-sum test
or Kruskal–Wallis rank-sum test. Data from qRT-PCR groups
were described as mean (±) SD and evaluated by using two-tailed
Student’s t-tests. The Kaplan–Meier method was adopted to
generate survival curves for the subgroups in each dataset, and
the log-rank (Mantel–Cox) test was applied to determine the
statistical significance of the differences. We generated survival
curves using the “survival” R package. Univariate analysis was
performed using R depending on a Cox proportional hazard
model via the survival package. Unless otherwise stated, the p
values were two-sided, and p < 0.05 was considered statistically
significant.
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RESULTS

Identification of Metabolic
Pathway–Specific Genes in HP+ GC
To identify MRGs that play an important role in the development
of HP-induced GC, we first extracted the major metabolic
pathway genes in GSEA using the TCGA and GEO databases
to identify the intersections (Figure 1A). Subsequently, 860
MRGs (Supplementary Table S1) were selected for further
analysis. Next, 127 GC samples containing HP infection
information in GSE62254 were included in the WGCNA. In
this study, a power of β � 4 (scale-free R2 � 0.87) was selected as
the soft threshold (Supplementary Figure S1A). Then the
hierarchical clustering tree for 860 MRGs was determined by
conducting hierarchical clustering for dissTOM (Supplementary
Figure S1B), and we identified the most significant correlation
modules with clinical features. Finally, a total of nine modules
were identified (Figure 1B). The black module was found to have
the highest correlation with HP infection (Figure 1B), and these
module genes (HP-MRGs, Supplementary Table S1) were
selected for further analysis.

Disease Connectivity Analysis and
Metabolic Patterns Mediated by HP-MRGs
Disease connectivity analysis showed that HP infection was
significantly associated with metabolic disease, digestive system
disease, cancer, and other diseases (Table 1), which demonstrates
that HP may contribute to the development of disease by
regulating the expression of HP-MRGs. To further explore the
clinical relevance of 44 HP-MRGs in the black module, we
clustered the HP-induced GC samples into subgroups based
on the metabolic gene expression using the
“ConsensusClusterPlus” R package. k � 2 was determined to
have optimal clustering stability from k � 2 to 9 based on the
expression similarity of 44 HP-MRGs and the proportion of

ambiguous clustering measures (Figure 2A; Supplementary
Figures S1C,D, S4). Accordingly, a total of 55 HP+ GC
samples were clustered into two subtypes (Cluster 1: n � 30
and Cluster 2: n � 25). The overall survival (OS, p � 0.014) of
Cluster 1 was longer than that of Cluster 2 (Figure 2B), indicating
that these HP-MRGs could classify the HP+ GC samples at a
prognostic level. Similarly, HP− GC samples of GEO and TCGA
database were also performed based on 44 HP-MRGs using the
“ConsensusClusterPlus” R package (Supplementary Figures
S2–S6). And HP− GC samples were divided into two subtypes
(Cluster 1 and Cluster 2), respectively. However, there was no
significant prognostic difference between Cluster 1 and Cluster 2
in the HP−GC samples (Supplementary Figures S2D, S3D). For
clarifying the mechanism of the subgroup difference in HP+ and
HP− samples, we further performed gene ontology biological
processes and pathway enrichment analysis of 44 HP-MRGs in
the black module viaMetascape (http://metascape.org/), which is
an effective and efficient tool for experimental biologists to
comprehensively analyze (Zhou et al., 2019). Not surprisingly,
we found that most HP-MRGs were enriched in the metabolic
process (Supplementary Figures S1E,F). Meanwhile, response to
a stimulus, response to acid chemical, and neutrophil
degranulation were also enriched (Supplementary Figures
S1E,F), consistent to the results of WGCNA analysis. These
findings suggested that HP-MRG is involved in both metabolic
processes and processes in response to external stimuli and
inflammatory responses, which reveals why the HP+ samples
get such clinical signature. Moreover, the gene expression pattern
was analyzed between the two subtypes by using the principal
component analysis (PCA) method (Figure 2C), and we found
that the gene expression profiles between the two subtypes were
differentiated well. In addition, the clinicopathological features
between the two subtypes were also compared (Figure 2D). As
shown in the heatmap, the expression of most HP-associated
MRGs differed significantly between the two subtype groups.
Cluster 2 was preferentially associated with a high TNM-T stage

FIGURE 1 | Identification of metabolism-related genes and WGCNA. (A) Venn diagrams of metabolism-related genes within the TCGA dataset, GEO dataset, and
GSEA database. (B)Module–trait relationship heatmap based on the Pearson correlation coefficient between module eigengenes and clinical parameters (HP and age).
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TABLE 1 | Top 24 enriched diseases of 44 HP-MRGs analyzed with the Comparative Toxicogenomics Database.

Disease name Disease categories p-value Corrected
p-value

Annotated
genes
quantity

Annotated genes Genome
frequency

Metabolism, inborn errors Genetic disease (inborn)|
metabolic disease

3.37E-12 1.09E-09 12 AGPAT2|APRT|ASS1|GSS|IDH2|ITPA|
LDHB|OGDH|OPLAH|PC|PDHB|PMM2

706/44146
genes: 1.60%

Nutritional and metabolic
diseases

3.17E-11 1.02E-08 15 AGPAT2|APRT|ASS1|CA3|ENTPD6|GSS|
IDH2|ITPA|LDHB|OGDH|OPLAH|PC|
PDHB|PIK3CA|PMM2

1656/44146
genes: 3.75%

Pathological conditions,
signs, and symptoms

1.4E-09 4.53E-07 18 AKR1B1|ALOX15|BDH1|BLVRA|CA3|
CANT1|DGKZ|ENTPD2|ENTPD6|GMPPA|
GPX2|IDH2|ITPA|LDHB|PAFAH1B1|PC|
PIK3CA|PMM2

3421/44146
genes: 7.75%

Metabolic diseases Metabolic disease 2.04E-09 6.59E-07 13 AGPAT2|APRT|ASS1|GSS|IDH2|ITPA|
LDHB|OGDH|OPLAH|PC|PDHB|PIK3CA|
PMM2

1540/44146
genes: 3.49%

Genetic diseases, inborn Genetic disease (inborn) 2.55E-09 8.22E-07 15 AGPAT2|APRT|ASS1|CANT1|GMPPA|
GSS|IDH2|ITPA|LDHB|OGDH|OPLAH|PC|
PDHB|PIK3CA|PMM2

2275/44146
genes: 5.15%

Congenital, hereditary, and
neonatal diseases and
abnormalities

8.69E-09 2.81E-06 16 AGPAT2|APRT|ASS1|CANT1|GMPPA|
GSS|IDH2|ITPA|LDHB|OGDH|OPLAH|
PAFAH1B1|PC|PDHB|PIK3CA|PMM2

2912/44146
genes: 6.60%

Pathologic processes Pathology (process) 3.42E-08 1.11E-05 14 AKR1B1|BDH1|BLVRA|CA3|CANT1|
DGKZ|ENTPD2|GPX2|IDH2|ITPA|LDHB|
PAFAH1B1|PC|PIK3CA

2342/44146
genes: 5.31%

Digestive system diseases Digestive system disease 3.99E-08 1.29E-05 15 AKR1B1|ALOX15|ASS1|BDH1|BLVRA|
CA3|DGAT2|ENTPD2|GMPPA|GPX2|
LDHB|OGDH|PC|PIK3CA|PMM2

2793/44146
genes: 6.33%

Liver diseases Digestive system disease 3.25E-07 0.000105 12 AKR1B1|ASS1|BDH1|BLVRA|CA3|
DGAT2|ENTPD2|GPX2|LDHB|OGDH|PC|
PIK3CA

1964/44146
genes: 4.45%

Neoplasms Cancer 1.7E-06 0.00055 15 AKR1B1|ALOX15|APRT|DEGS1|ENTPD6|
GPX2|GSS|IDH2|LDHB|PAFAH1B1|PC|
PDHB|PIK3CA|PMM2|PYGB

3736/44146
genes: 8.46%

Carcinoma, renal cell Cancer|urogenital disease
(female)|urogenital disease
(male)

9.17E-06 0.00296 4 APRT|LDHB|PDHB|PIK3CA 131/44146
genes: 0.30%

Amino acid metabolism,
inborn errors

Genetic disease (inborn)|
metabolic disease

1.33E-05 0.0043 4 ASS1|GSS|OGDH|OPLAH 144/44146
genes: 0.33%

Liver cirrhosis Digestive system disease|
pathology (process)

2.74E-05 0.00885 7 AKR1B1|BDH1|BLVRA|CA3|ENTPD2|
LDHB|PC

895/44146
genes: 2.03%

Kidney neoplasms Cancer|urogenital disease
(female)|urogenital disease
(male)

4.11E-05 0.01327 4 APRT|LDHB|PDHB|PIK3CA 192/44146
genes: 0.43%

Fibrosis Pathology (process) 4.19E-05 0.01354 7 AKR1B1|BDH1|BLVRA|CA3|ENTPD2|
LDHB|PC

957/44146
genes: 2.17%

Brain diseases, metabolic,
inborn

Genetic disease (inborn)|
metabolic disease|nervous
system disease

0.000052 0.0168 4 ASS1|IDH2|PC|PDHB 204/44146
genes: 0.46%

Chemical and drug-induced
liver injury

Digestive system disease 5.44E-05 0.01756 5 BDH1|CA3|DGAT2|OGDH|PC 410/44146
genes: 0.93%

Kidney diseases Urogenital disease (female)|
urogenital disease (male)

5.98E-05 0.01931 6 APRT|DGKH|IDH2|LDHB|PDHB|PIK3CA 688/44146
genes: 1.56%

Brain diseases, metabolic Metabolic disease|nervous
system disease

9.14E-05 0.02951 4 ASS1|IDH2|PC|PDHB 236/44146
genes: 0.53%

Diabetes complications Endocrine system disease 0.000109 0.03522 3 AKR1B1|ASS1|DGKH 92/44146
genes: 0.21%

Pyruvate metabolism,
inborn errors

Genetic disease (inborn)|
metabolic disease

0.000115 0.0373 2 PC|PDHB 16/44146
genes: 0.04%

Liver cirrhosis, experimental Digestive system disease|
pathology (process)

0.000116 0.03761 6 AKR1B1|BDH1|BLVRA|CA3|LDHB|PC 777/44146
genes: 1.76%

Neoplasms by site Cancer 0.000117 0.03763 11 AKR1B1|ALOX15|APRT|DEGS1|GPX2|
GSS|LDHB|PDHB|PIK3CA|PMM2|PYGB

2958/44146
genes: 6.70%

Neoplastic processes Cancer|pathology (process) 0.000133 0.04289 5 GPX2|IDH2|LDHB|PAFAH1B1|PIK3CA 496/44146
genes: 1.12%

HP-MRGs: Helicobacter pylori–associated metabolism-related genes.
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(p < 0.01). Multivariable cox regression analysis revealed that the
TNM stage is an important factor affecting prognosis of HP
infection–induced GC patients (Supplementary Table S4). The
previous findings revealed that the clustering metabolic subtypes
defined by HP-MRGs were closely related to the heterogeneity of
GC patients with HP infection.

Metabolic Patterns Characterized by
Distinct Immune Landscapes
To discover the biological behaviors among these distinct
metabolic patterns (Clusters 1/2), we carried out GSVA
enrichment analysis. As shown in Figure 3A, Cluster 2 was
markedly enriched in carcinogenic and stromal activation
pathways such as the TGF-β signaling pathway, ECM receptor
interaction, focal adhesion, mTOR signaling pathway, and MAPK

signaling pathways. However, Cluster 1 presented enrichment
pathways prominently associated with metabolic pathway
activation, such as the citrate cycle (TCA cycle), pyruvate
metabolism, and peroxisomes. Several previous studies have
reported that such immune rejection tumors are characterized
by an abundant population of immune cells that are preserved in
the stroma surrounding the nests of tumor cells, rather than
penetrating their parenchyma (Chen and Mellman, 2017).
Furthermore, the ESTIMATE algorithm was applied to quantify
the overall infiltration of immune cells (immune score), stromal
cells (stromal score), and tumor cell purity (ESTIMATE score) in
two clusters. Intriguingly, the results showed that Cluster 2
exhibited significantly higher stromal scores, immune scores,
and ESTIMATE scores than Cluster 1 (Figures 3B–D),
suggesting that Cluster 2 was surrounded by more non-tumor
components (e.g., immune cells and stromal cells).

FIGURE 2 | Differential clinicopathological features and overall survival of HP-induced gastric cancer in the Cluster 1/2 subgroups. (A) Consensus clustering matrix
for k � 2. (B) Kaplan–Meier overall survival (OS) curves for patients in the Cluster 1/2 subgroup. (C) PCA plots for validation of the stability and reliability of the
classification. (D) Heatmap and clinicopathologic features of the two clusters (Clusters 1/2) defined by the MRG consensus expression. *p < 0.05, **p < 0.01, ***p <
0.001.
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We further evaluated the immune infiltration profile by
CIBERSORT, a deconvolution algorithm for assessing the
immune cell landscape in the tumor microenvironment
using support vector regression. A consistent result was also

observed in the expression stratification of such HP-MRGs.
Monocytes and resting mast cells were significantly more
enriched in Cluster 2 than in Cluster 1 (Figure 3E). Taken
together, the aforementioned analysis demonstrated that

FIGURE 3 | TME characteristics and relevant biological pathways in Cluster 1/2 subtypes. (A)GSVA enrichment analysis showing the activation states of biological
pathways in the Cluster 1/2 subtypes. (B–D) The stromal score, immune score, and ESTIMATE score of the two clusters were analyzed and plotted. (E) The infiltrating
levels of 22 immune cell types in Cluster 1/2 subtypes (assume blue is Cluster 1 and red is Cluster 2). The significant differences of the three gene clusters were compared
through the Kruskal–Wallis H test. (F) Comparison of the CTLA4 expression levels across the two clusters.
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Cluster 2 was classified as an immune-excluded phenotype
featuring reduced immune cell infiltration and stromal
activation. Cluster 1 is an immune-desert phenotype
characterized by immune suppression and activation of
metabolic pathways associated with immune regulation.
Considering that CTLA-4 is a well-documented indicator to
predict the treatment response to anti-CTLA-4, we also
compared the CTLA-4 expression level between the two
clusters and observed a significant upregulation of the
CTLA-4 expression in Cluster 2. We were surprised to
confirm that the different metabolic patterns were also
characterized by different immune infiltration profiles.

Metabolic Score Construction and Its
Clinical Relevance
Although we have determined the role of distinct metabolic
patterns in prognosis and immune infiltration based on HP-
MRG expression, these analyses are population-based and do
not precisely predict the metabolic patterns of personalized
tumors. Hence, we established a scoring method named the
metabolic score, derived from the identified MSGs
(Supplementary Table S1), to quantify the metabolic
pattern of individual HP-induced GC. An alluvial diagram
was applied to visualize the attribute changes of individual
patients (Figure 4A). These results indicated that patients with
EMT subtypes, all in Cluster 2, had the lowest metabolic score
compared to the other three molecular subtypes. Comparing

the performance of cluster and molecular subtypes in terms of
the gene expression, we found a partial consistency in the
expression of key genes between molecular subtypes and
clusters, especially EMT subtypes and Cluster 2
(Supplementary Figure S8A; Supplementary Table S5).
Next, the alluvial diagram was applied to visualize the
attribute changes of individual patients in HP− GC samples
of GEO and TCGA database (Supplementary Figures S8B,C).
The results showed that the large variability in the distribution
of ACRG subtypes between HP+ and HP− samples of the GEO
database, suggesting that the subtypes are more specific in HP+
samples. Notably, Cluster 1 showed a higher metabolic score
than Cluster 2 (Figure 4B), as exhibited by processes related to
the activation of many metabolic pathways in Cluster 1
(Figure 3A), further corroborating the correctness of the
scoring scheme. We also classified HP+ GC based on MSI
and MSS provided by GSE62254. As expected, Cluster 2 has a
higher percentage of MSS than Cluster 1 (Supplementary
Figure S7), which suggest that such genetic alternation
between clusters may be the main “driver” for OS
difference. Subsequently, patients with a high TNM-T stage
were linked to a low metabolic score (Figure 4C), consistent
with the previous result that metabolic patterns were related to
the TNM-T stage. As anticipated, patients with high metabolic
scores were significantly correlated with a more favorable
prognosis (p � 0.033, Figure 4D). However, the metabolic
score was not an independent factor for OS in HP+ GC
(Supplementary Table S4). Similarly, we conducted the

FIGURE 4 | Construction of the metabolic score and exploration of the relevance of clinical features and biological pathways. (A) Alluvial diagram of metabolism-
related gene clusters in groups with different ACRG subtypes (EMT, MSI, MSS/TP53-, and MSS/TP53+), metabolic scores, and survival outcomes. (B,C) Metabolic
score differences in the Cluster 1/2 subtypes and different tumor T stages. (D) Kaplan–Meier curves for high (n � 27) and low (n � 28) metabolic score groups of HP-
induced gastric cancer. (E) GSVA enrichment analysis showing the activation states of biological pathways in high– and low–metabolic score subtypes.
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GSVA enrichment analysis to explore the biological behaviors
between high and lowmetabolic scores. As shown in the
heatmap, a high metabolic score was significantly correlated
with metabolic pathway activation, such as the glutathione

metabolism and fructose and mannose metabolism
(Figure 4E). In short, the metabolic score allows for a
better assessment of the metabolic pattern of individual
tumors.

FIGURE 5 | Overall survival and GSEA of five MSGs in GC patients. Overall survival outcomes in HP+ and HP− GC patients dichotomized by median (A,B) GSS
expression, (D,E) GMPPA expression, (G,H) OGDH expression, (J,K) SGPP2 expression, and (M, N) PIK3CA expression. Enrichment plots from the gene set
enrichment analysis (GSEA) between high and low (C)GSS expression, (F)GMPPA expression, (I)OGDH expression, (L) SGPP2 expression, and (O) PIK3C expression
groups in HP+ GC patients. MSGs: metabolic signature genes.
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Expression, Prognosis, and GSEA of MSGs
in HP+ GC
Tumor-related alterations in metabolism have functional
consequences on the progression of disease, treatment effects,
and survival outcomes (Vander Heiden and DeBerardinis, 2017).
We dichotomized the expression profiles for each of the 25
previously selected MSGs by the median expression and
calculated the effect of high vs low expression on the OS of
HP+ GC patients. We confirmed five genes that were significantly
related to patient survival in HP+ GC patients (Figures
5A,D,G,J,M). These genes were GSS, which encodes the
proteins that function as a homodimer to catalyze the second
step of glutathione biosynthesis; GMPPA, which encodes a
GDP–mannose pyrophosphorylase; OGDH, which encodes
one subunit of the 2-oxoglutarate dehydrogenase complex
located in the mitochondrial matrix; SGPP2, which encodes a
transmembrane protein that degrades the bioactive signaling
molecule sphingosine-1-phosphate (S1P) and is induced
during inflammatory responses; and PIK3CA, an integral part
of the PI3K pathway. Thus, detailed studies of GSEA in HP+ GC
are presented.

Previous studies indicated that HP infection could increase the
production of reactive oxygen species (ROS) and decrease the
levels of glutathione (GSH) in gastric epithelial cells (Wada et al.,
2018). The heightened expression of GSS, involved in the
glutathione metabolism, is correlated with increased HP+ GC
patient survival (Figure 5A) but not HP-negative (HP−) GC
(Figure 5B). GSEA revealed that the differential expression of
GSS in HP+ GC was associated with glyoxylate and dicarboxylate
metabolism, pyruvate metabolism, and selenoamino acid
metabolism (Figure 5C).

Similar to GSS, the elevated expression of GMPPA, OGDH, and
SGPP2, which plays important roles in the energy metabolism and
the inflammatory response, was also correlated with better HP+
GC patient survival (Figures 5D,G,J). However, the OGDH and
SGPP2 expression in HP−GCwas not significantly associated with
patient survival (Figures 5E,H,K). Likewise, GSEA suggested that
the differential expression of these three genes in HP+ GC was
coenriched in key metabolism-related pathways, such as glyoxylate
and dicarboxylate metabolism, pyruvate metabolism, and
selenoamino acid metabolism (Figures 5F,I,L).

In contrast to GSS, GMPPA, OGDH, and SGPP2, low
expression of PIK3CA was associated with better OS outcomes
in patients with HP+ GC (Figure 5M) but not in patients with
HP− GC (Figure 5N). Similarly, GSEA showed that the
differential expression of PIK3CA in HP+ GC was enriched in
metabolism-related pathways, such as glyoxylate and
dicarboxylate metabolism, pyruvate metabolism, and mTOR
signaling pathway (Figure 5).

To further ascertain the extent to which each of the HP+ GC
survival–related MRGs could influence patient outcomes, we
generated a hazard ratio (HR) for each gene and the various
clinical variables by univariate and multivariate analyses
(Table 2). As expected, the HRs of GSS, GMPPA, OGDH, and
SGPP2 indicated a reduced risk of death, while the opposite was
true for PIK3CA. However, only the TNM stage is an
independent prognostic factor in HP+ GC patients.
Meanwhile, in MKN45 cells, HP infection markedly
upregulated the expression of the five MRGs (Figure 6A).
Taken together, these five genes are closely associated with HP
infection and patient survival.

Identification of Differential Metabolites and
Pathways via Prognostic MSGs Induced
by HP
Metabolic profiling conducted in this research included sample
preparation, metabolite extraction, and LC/MS analysis. Typical
total ion current (TIC) chromatograms of quality control (QC)
samples analyzed by UHPLC-QE-MS in the positive mode (ESI+)
or negative mode (ESI-) are presented in Supplementary Figure
S9A,B, respectively. In this study, original data in the ESI mode
were chosen for further analysis. We first checked the experimental
system by including the QC samples in PCA. As presented in
Supplementary Figures S9C,D, all QCs are concentrated in the
center of the axes, suggesting the stability of the analytical system
and the reliability of the data. On the basis of the class information,
PLS-DAwith better discriminative power than PCAwas performed
to describe the metabolic profile. Thus, an OPLS-DA model was
developed. Comparison of all pairs using the score plots of the first
three potential components of the PLS-DA model showed
significant clustering, which indicated a clear separation (Figures

TABLE 2 | Univariate and multivariate analyses of the correlation of clinical variables and expression of metabolic genes with overall survival in HP+ GC.

Parameter Variables Univariate analysis Multivariate analysis

HR (95% CI) p value HR (95% CI) p value

Sex Male vs. Female 1.153 (0.514–2.589) 0.73 2.12 (0.742–6.076) 0.16
Age ≤65 vs. > 65 (years old) 0.541 (0.227–1.291) 0.166 0.83 (0.303–2.281) 0.72
T stage T1-2 vs. T3-4 3.37 (1.549–7.335) 0.002 3.84 (1.308–11.301) 0.01
N stage N0 vs. N1-3 2.651 (0.794–8.850) 0.113 2.84 (0.681–11.863) 0.15
M stage M0 vs. M1 8.637 (2.744–27.189) <0.001 11.10 (2.252–54.672) 0.003
PIK3CA Expression (low vs. high) 2.611 (1.161–5.873) 0.02 2.84 (0.941–8.588) 0.06
OGDH Expression (low vs. high) 0.25 (0.104–0.599) 0.002 0.83 (0.275–2.554) 0.75
SGPP2 Expression (low vs. high) 0.449 (0.200–1.008) 0.052 1.11 (0.342–3.580) 0.87
GMPPA Expression (low vs. high) 0.407 (0.181–0.918) 0.03 0.87 (0.315–2.425) 0.80
GSS Expression (low vs. high) 0.412 (0.183–0.93) 0.032 0.83 (0.253–2.719) 0.76
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6B,D). No overfitting for the negative mode was noticed according
to the permutation validation (Figures 6C,E). These results
confirmed the high goodness of fit and predictive capability of
the PLS-DA models. Then a total of 81 differentially accumulated
metabolites in the HP+ GC vs. HP− GC group and 98 differential
metabolites in the HP+ GC vs. HP− NAG group were identified
depending on the variable importance in the projection (VIP) > 1 in
the loading plot. A general overview of the metabolic profile is
shown in the heatmap, which includes 81 and 98 different
metabolites in the two groups (Figure 6F). Next, we performed

the KEGG pathway analysis of differential metabolites in the two
groups. The results revealed that 64 KEGG pathways and 65 KEGG
pathways were enriched (Figure 6G). To determine which
metabolites or pathways HP infection acts on by affecting
prognostic MSGs, we took intersections of the enriched
pathways and GSEA. Interestingly, the glyoxylate and
dicarboxylate metabolism pathway, which is a carbohydrate
metabolism pathway, was identified, and citric acid was a
common differential metabolite in this pathway (Figure 6G).
We found that the expression level of citric acid was decreased

FIGURE 6 | PCR analysis and identification of differential metabolites and pathways via prognostic MSGs induced by HP. (A) qRT-PCR analysis of the mRNA levels
of the five MRGs in MKN45 cells. (B, D) Score plots for the first three latent components of the PLS-DAmodel for HP GC vs. HP neg GC (B) and HP GC vs. HP neg NAG
(D). (C, E) Results of the 1,000 times permutation test of the OPLS-DA model for HP GC vs. HP neg GC (B) and HP GC vs. HP neg NAG (D). (F) Heatmap for relative
abundances of all identified differential metabolites in the HP GC vs. HP neg GC and HP GC vs. HP neg NAG. (G) Venn diagrams of KEGG pathways within HP GC
vs. HP neg GC, HP GC vs. HP neg NAG and GSEA. (H) Boxplot depicting the expression level of citric acid in the HP GC vs. HP neg GC and HP GC vs. HP neg NAG
subgroups. *p < 0.05, **p < 0.01, ***p < 0.001, ***p < 0.0001 by Student’s t-test. HP GC: Helicobacter pylori–positive gastric cancer; HP neg GC: Helicobacter
pylori–negative gastric cancer; HP neg NAG: Helicobacter pylori–negative non-atrophic gastritis.
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in both groups after HP infection (Figure 6H). Therefore, the
aforementioned results suggested that the carbohydrate metabolism
and citric acid may be downstream regulators of the function of

metabolic genes in HP-induced GC. A previous study reported that
citric acid showed a potent inhibitory activity on growth of
Helicobacter pylori strains in vitro.

FIGURE 7 | Assessing the immuno-/chemotherapeutic response of high and low expression of the fiveMSGs. (A–C)Box plots for the estimated IC50 of cisplatin in
high and low (A)GSS, (B)GMPPA, and (C)OGDH expression. (D–F)Box plots for the estimated IC50 of paclitaxel in high and low (D)OGDH, (E) PIK3CA and (C) SGPP2
expression. (G,H) Box plots for the estimated IC50 of gemcitabine in high and low (G)GSS and (H) GMPPA expression. (I) Box plots for the estimated IC50 of cytarabine
in high and low GMPPA expression. (J) The proportion of metastatic GC patients who responded to PD-1 blockade immunotherapy with low or high expression of
GSS, GMPPA, OGDH, and PIK3CA. (K) The fraction of melanoma patients with a clinical response to anti-CTLA-4 immunotherapy in the low- or high-SGPP2 expression
groups. MSGs: metabolic signature genes.
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Predictive Value of Prognostic MSGs as
Biomarkers for Therapeutic Effects
Based on the fact that these five genes (GSS, GMPPA, SGPP2,
OGDH, and PIK3CA) have prognostic utility in HP+ GC, they
are attractive therapeutic targets and deserve further exploration,
especially considering that treatment with chemotherapy and
immunotherapy drugs may phenocopy the effects of the
expression of these metabolic genes. Thus, we first investigated
conventional chemotherapy drug sensitivity in HP+GC. In detail,
the estimated IC50 levels of cisplatin were distinctly lower in low
expression than in high expression of GSS, GMPPA, and OGDH,
suggesting that these three genes could be used as biomarkers
whose low expression indicates the tumor is more sensitive to
cisplatin (Figures 7A–C). Similarly, we found that high
expression of OGDH and SGPP2 was correlated with being
more sensitive to paclitaxel, but the opposite was true for
PIK3CA (Figures 7D–F).

Additionally, we estimated the IC50 levels of two
antimetabolic chemotherapeutic agents, gemcitabine and
cytarabine, in the high- and low-expression groups of five
prognostic MSGs. The results showed that the low expression
of GSS and GMPPA was correlated with higher sensitivity to
gemcitabine (Figures 7G,H), while low expression of GMPPA
indicated higher sensitivity to cytarabine (Figure 7I).

Currently, immunotherapy, such as immune checkpoint
inhibitor therapy, is increasingly being used for cancer
treatment, and it can be synergistic with chemotherapy (Yang,
2015). We first examined the distribution of prognostic MSG
expression among five immune subtypes reported by a recent
study (Thorsson et al., 2018) and found that there was a
significant difference in GSS, GMPPA, SGPP2, and PIK3CA
among the five immune subtypes (Supplementary Figure
S10), suggesting that most prognostic MSGs are closely
associated with the tumor immune microenvironment. Then
in the anti-PD-1 cohort (Nathanson et al., 2017), patients with
high expression of GSS and PIK3CA exhibited significant clinical
advantages (Figure 7J). Efficacy and immune response to anti-
PD-1 treatment were demonstrated in patients with low GMPPA
and OGDH expression compared to those with high expression
(Figure 7J). In the anti-CTLA-4 cohort (Kim S. T. et al., 2018),
higher SGPP2 expression in melanoma patients was associated
with a better therapeutic benefit (Figure 7K). Taken together, our
findings strongly suggest that the expression of these five genes is
associated with the response to immune/chemotherapy.

DISCUSSION

Increasing evidence has shown that HP infection significantly
affects metabolic changes in the host (Niemelä et al., 1996; Buzás,
2014). Although studies have revealed the important role of
MRGs and metabolism-based models for predicting GC
survival outcomes (Luo et al., 2020; Wen et al., 2020), altered
metabolic profiles in HP-induced GC have not been
comprehensively recognized. The alterations of metabolism-
related genes enable cancer cells to reprogram the metabolism

to meet the increased energy demands for survival. Therefore,
identifying HP infection–related metabolic signatures, which
influence metabolic activities, signaling cascades, and tumor
progression, will provide novel insights into HP-induced GC
and delineate multiple effective strategies for therapeutic
intervention.

Rapidly growing tumor cells require essential metabolites to
proliferate and create an immunosuppressive microenvironment.
How HP infection alters immunometabolism remains unclear. In
the present study, based on the HP infection status, we identified
two distinct metabolic patterns (Clusters 1/2) characterized by
different immune phenotypes (immune desert and immune
exclusion phenotypes), which were associated with diverse
anticancer immunity. Of note, Cluster 2 was classified as an
immune-excluded phenotype and had worse T staging and
immune cell suppression status, leading to a worse prognosis.
The immune-desert phenotypes were correlated with immune
tolerance and minimal activation of cancer-specific T cells (Kim
and Chen, 2016). Regarding the immune-excluded phenotype,
the stroma may be confined within the tumor envelope or may
penetrate the tumor itself, making it appear that the immune cells
are actually inside the tumor (Gajewski, 2015; Joyce and Fearon,
2015). A recent report revealed that the TME plays an important
role in the progression of tumors and immunotherapy
responsiveness (Binnewies et al., 2018). As shown in our data,
the Cluster 2 pattern was significantly related to increased levels
of tumor-infiltrating monocytes and CTLA-4, supporting the
potential predictive value of immunotherapy for HP-induced GC.

GC is a heterogeneous disease with distinct clinical behaviors
and risk burdens. Genomic and transcriptomic analyses have
identified heterogeneity within GC and classified it into molecular
subtypes characterized by specific genetic aberrations and
expression profiles indicating the presence of important
biological differences (Cristescu et al., 2015). Therefore, we
established a metabolic score to quantify the metabolic
patterns of molecular subtypes for a better classification of
prognostic prediction. A previous study reported that the
diffuse histological type and EMT molecular subtype were
markedly associated with worse survival, while MSI was
associated with better clinical outcomes in gastric cancer
(Zhang et al., 2020). Our study identified 25 potential “subtype
biomarkers” or metabolic signature genes (MSGs) and
established a metabolic score to quantify the metabolic
pattern. Accordingly, the metabolic model featuring the
immune-excluded phenotype displayed a lower metabolic
score and more EMT subtypes, while the model featuring the
immune-desert form exhibited a higher MSI subtype and higher
metabolic score. Through GSVA, genes involved in
immunosuppressive pathways, such as the TGF-β signaling
pathway, were clearly enriched in the low–metabolic score
group. The previous results suggested that HP infection may
exacerbate the close association between the immune
microenvironment and metabolic patterns. Therefore, HP+
GC patients with low metabolic scores have a worse prognosis.
These findings may help improve our understanding of the
mechanisms underlying the formation of different metabolic
patterns in HP+ GC.
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Recent research demonstrated that the alteration of specific
transcripts of metabolic genes could act as a predictive biomarker
of survival outcomes (Prusinkiewicz et al., 2020). Similarly, our
analysis found that the expression of five MRGs (GSS, GMPPA,
OGDH, SGPP2, and PIK3CA) was predictive of survival for HP+
GC. We further confirmed that HP infection remarkably
upregulated the expression of five MRGs in MKN45 GC cells
by using two HP strains. Our data are consistent with other
emerging evidence showing that the intracellular glutathione
(GSH) level was decreased and the GSS mRNA expression was
downregulated in HP-infected AGS GC cells (Matsuoka et al.,
2020). Our findings further confirmed that the GSS expression
may be important for survival outcomes only in HP+ GC.

GMPPA, which is involved in glycolytic processes, has been
implicated as a negative prognostic factor in several tumor types
(Cho et al., 2018; Zhao et al., 2021). However, this is the first time
that GMPPA has been found to play an important role in HP-
induced GC.

OGDH is the first rate-limiting E1 subunit of the OGDH
complex (OGDHC), which serves as a regulatory point in the
crossroad of the TCA cycle and glutamine metabolism. The host
produces effector molecules such as reactive oxygen species
(ROS) to counteract HP infection. Interestingly, OGDH played
a crucial role in the interdependent homeostasis of ROS and
NADPH in GC cells (Lu et al., 2019). We speculated that OGDH
might be the regulatory site of ROS destabilization in response to
HP infection.

SGPP2, one isoform of S1P phosphatases, was reported to be
remarkably associated with intestinal epithelial integrity and
bacterial infiltration into the mucosa (Huang et al., 2016). To
date, little is known about the function of SGPP2 in HP-
induced GC.

PIK3CA, a member of the phosphatidylinositol 3’-kinase
(PI3K) family, is ranked as the second most commonly
mutated oncogene, detected in more than 10% of patients with
eight types of cancer (Arafeh and Samuels, 2019). By GSEA, we
found that high expression of the five prognostic MRGs was more
enriched in cancer and bacteria-induced infectious
disease–related pathways, such as the glyoxylate and
dicarboxylate metabolism pathway and mTOR signaling
pathway. A previous study revealed that inhibition of cellular
mTORC1 was correlated with HP vacuolating cytotoxin (VacA)-
dependent amino acid starvation (Kim I.-J. et al., 2018).
Furthermore, metabolomics combined with transcriptomics
analysis showed that the carbohydrate metabolism and citric
acid might be downstream regulators of the function of
metabolic genes in HP-induced GC. Recently, accumulating
evidence has shown that citrate can act as a metabolic
regulator and is involved in numerous physiological and
pathophysiological processes, such as inflammation and cancer
(Infantino et al., 2011; Icard et al., 2012). Therefore, our study
sheds light on molecular targets and metabolites and pathways
responsible for HP-induced GC from a metabolic perspective.

HP-associated dysbiosis of the gastric flora is of particular
importance in research because studies have shown increased
relative abundance of specific taxa in patients who develop
premalignant lesions and GC (Aviles-Jimenez et al., 2014). More

recently, an exploratory study showed a significant relationship
between the gut microbiome and metabolome datasets by
comparing HP+ and HP− patients (White et al., 2021). The
results of a study on the intragastric microenvironment of
gastric cancer patients showed that the frequency and abundance
of HP were significantly lower in the cancer group than in the non-
cancer group. And Clostridium, Fusobacterium, and Lactobacillus
species were frequently abundant in the gastric cancer group (Hsieh
et al., 2018). The 16sRNA analysis of aforementioned studies
revealed a possible role of Lactobacillus in HP infection leading
to gastric carcinogenesis. The metabolites of Lactobacillus are
important raw materials for glycolysis itself, coinciding with our
results (Figures 6G,H). In conclusion, we observed an important
role of HP or non-HP in altering the microbial diversity of the
gastrointestinal tract and an important impact on the
gastrointestinal metabolism.

Regarding the previously reported relationship between drug
resistance and tumor metabolic characteristics (Yoshida, 2015), we
investigated whether the expression of the five MRGs could be
associated with sensitivity to anticancer drugs. We demonstrated
that the five MRGs were explicitly associated with sensitivity or
resistance to chemotherapy. MRGs can be used as targets for the
personalized treatment of HP-induced GC patients. In future studies,
we intend to elucidate the pharmacological mechanisms of action of
the fiveMRGs (GSS, GMPPA,OGDH, SGPP2, and PIK3CA) against
HP-induced GC through the modulation of their expression.

As mentioned before, metabolic genes are related to immune
dysfunction and inflammatory stress in HP-induced GC.
Furthermore, preclinical reports have confirmed a correlation
between gene mutations and the response or tolerance to
immunotherapy (Burr et al., 2017; George et al., 2017). It is
important to understand and identify the metabolic interplay in
cancer cells and immune cells and discuss the therapeutic
opportunities as a result of this interplay to define targets for
cancer treatment. Our analysis clearly showed that the five MRGs
were strongly associated with immunotherapy response, including
PD-1 andCTLA-4, validating their predictive value. Ourfindings also
demonstrated the activation of the mTOR signaling pathway in
groups with high expression of the five MRGs in HP+ GC. This
suggests that PI3K-AKT-mTOR inhibitors coupled with immune
checkpoint blockade might be beneficial for HP+ GC patients. A
recent report also indicated that combining therapeutic strategies
involving PI3K-AKT-mTOR inhibition with checkpoint blockade
would be effective (O’Donnell et al., 2018). In general, the findings of
the current investigation suggest that HP infection affects the
therapeutic response by influencing the activity of key metabolic
pathways, such as the mTOR pathway, in the host.

In this study, we established and verified a reliable metabolic
model for HP+ GC and systematically linked these metabolic
patterns to the characteristics of tumor immune cell infiltration.
This comprehensive analysis suggested thatmetabolic dysregulation
due to HP infection provided an important basis for a better
understanding of tumor immunomodulation. More extensively,
the five metabolic genes, metabolites, and metabolism pathways
identified in this study provide an interesting starting point for
considering the metabolic differences between HP+ GC and HP−
GC as new prognostic markers or potential therapeutic targets.
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