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Obesity and atherosclerosis are the most prevalent metabolic diseases.

ApoE−/− and ob/obmice are widely used as models to study the pathogenesis

of these diseases. However, how gut microbes, gut bacteriophages, and

metabolites change in these two disease models is unclear. Here, we used

wild-type C57BL/6J (Wt) mice as normal controls to analyze the intestinal

archaea, bacteria, bacteriophages, and microbial metabolites of ob/ob and

ApoE−/− mice through metagenomics and metabolomics. Analysis of the

intestinal archaea showed that the abundances of Methanobrevibacter and

Halolamina were significantly increased and decreased, respectively, in the

ob/ob group compared with those in the Wt and ApoE−/− groups (p

<0.05). Compared with those of the Wt group, the relative abundances

of the bacterial genera Enterorhabdus, Alistipes, Bacteroides, Prevotella,

Rikenella, Barnesiella, Porphyromonas, Riemerella, and Bifidobacterium were

significantly decreased (p < 0.05) in the ob/ob mice, and the relative

abundance of Akkermansia was significantly decreased in the ApoE−/−

group. The relative abundances of A. muciniphila and L. murinus were

significantly decreased and increased, respectively, in the ob/ob and

ApoE−/− groups compared with those of the Wt group (p < 0.05).

Lactobacillus_ prophage_ Lj965 and Lactobacillus _ prophage _ Lj771 were

significantly more abundant in the ob/ob mice than in the Wt mice.

Analysis of the aminoacyl-tRNA biosynthesis metabolic pathway revealed

that the enriched compounds of phenylalanine, glutamine, glycine, serine,

methionine, valine, alanine, lysine, isoleucine, leucine, threonine, tryptophan,

and tyrosine were downregulated in the ApoE−/− mice compared with

those of the ob/ob mice. Aminoacyl-tRNA synthetases are considered
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manifestations of metabolic diseases and are closely associated with obesity,

atherosclerosis, and type 2 diabetes. These data o�er new insight regarding

possible causes of these diseases and provide a foundation for studying the

regulation of various food nutrients in metabolic disease models.

KEYWORDS

ob/ob mice, ApoE−/− mice, metagenomic, metabolomic, gut microbe

Introduction

The intestinal microbiota is composed of trillions of bacteria,

archaea, and viruses forming complex ecosystems and is

regarded as a modulator of host health (1). Bacterial species

commonly serve as a commensal ecosystem that benefits host

health by facilitating host metabolism, ameliorating immune

cells, and providing barrier protection (2). However, ecological

disorders can occur if the gut microenvironment is unbalanced

(3). Although causality between intestinal dysbacteriosis and

metabolic diseases (e.g., obesity and atherosclerosis) has been

extensively reported (4), the mechanism of the pathogenesis

remains unclear. Accumulating studies have shown that

GRAPHICAL ABSTRACT

Overall experimental design.

intestinal dysbacteriosis is associated with key tripartite

interaction between bacteriophages and their bacterial and

human hosts (5).

Atherosclerosis, a chronic inflammatory disease thought to

result from intestinal flora disorders, is becoming prevalent

globally (6). The relative abundances of Enterobacteriaceae,

Streptococcus, Clostridium, and other microorganisms are

significantly increased in the intestinal tracts of patients

with coronary atherosclerosis, thus inhibiting enrichment of

beneficial intestinal bacteria. Additionally, the abundances of

Streptococcus and Enterobacteriaceae are positively correlated

with blood pressure and myocardial indices, respectively (7,

8). Although the exact pathogenesis of atherosclerosis is
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complex and unclear, inflammation, especially the release

of proinflammatory cytokines by macrophages infiltrated by

atherosclerotic plaques, is believed to be pivotal (4). ApoE−/−

and ob/ob mice are often used as animal models to study

the pathogenesis of metabolic diseases (7). Epidemiological

studies have shown that the microbial compositions of

ApoE−/−and ob/ob mice differ significantly from those of

normal controls and are characterized by low abundances

of butyrate-producing bacteria and increased opportunistic

pathogens (4, 9). Leptin is the main metabolite of adipocytes,

which regulates energy homeostasis, bone growth, and immune

responses. Moreover, leptin-impaired signal transduction is

closely related to metabolic diseases, including obesity and type

2 diabetes (10). Researchers have used ob/ob mice as metabolic

disease models to study how probiotics regulate the intestinal

flora and determine whether improvements in the intestinal

flora are related to amelioration of lipid and glucose metabolism

(9, 11).

ApoE−/− and ob/ob mice are commonly used as model

organisms to clarify the roles of dietary practices in obesity and

atherosclerosis treatment. Several studies revealed that dietary

intake can relieve these metabolic diseases by modulating the

composition and structure of the host’s gut microbiota (12–

14). However, changes in intestinal bacteria, bacteriophages,

and metabolomics of mice with metabolic diseases remain

unclear (15, 16). Here, we used metagenomic and metabolomic

methods to study the composition and structures of intestinal

bacteria and phages and the intestinal metabolomic changes in

ob/ob and ApoE−/− mice compared with those of wild-type

(Wt) mice. Our results provide insight for further studying the

pathophysiology and pharmacology of metabolic diseases such

as obesity and atherosclerosis.

Materials and methods

Experimental design

Thirty-six-week-old homozygous male mice were purchased

from GemPharmatech Co., Ltd. (Jiangsu, China): ten ApoE-

deficient mice (B6/JGpt-Apoeem1Cd82/Gpt; ApoE−/− group),

ten obese leptin-deficient mice (B6/JGpt-Lepem1Cd25/Gpt;

ob/ob group), and ten Wt mice (C57BL/6JGpt; Wt group). Body

weight and blood glucose levels differed significantly among

the three groups (p < 0.05; Supplementary Figure S1).

The normal animal diet (D12450J) was prepared by

Jiangsu Xietong Pharmaceutical Bioengineering Co., Ltd.

(Supplementary Table S1). All animal experiments were

performed in the Animal Center of South China Agricultural

University. Mice were fed the D12450J diet for 1 week of dietary

acclimation, before exposure to a 7-day D12450J feeding. Three

or four mice were grouped and fed in a cage with poplar bedding

under controlled conditions (temperature: 23 ± 2◦C, humidity:

70–75%, and a 12-h/12-h light-dark cycle). Poplar bedding

and drinking water were refreshed every 2 days. Water/food

consumption and changes in body weight were monitored

three times per week. Animal experiments were conducted

under National Institute of Health (NIH) guidelines (NIH

Publication No. 85-23 Rev. 1985) under supervision of the

Animal Experimentation Ethics Review Committee of South

China Agricultural University (Guangzhou, China).

Sample collection, DNA extraction, and
sequencing

Fecal samples were collected from all mice 2 weeks after

feeding and immediately frozen at −80◦C for experimentation.

DNA was extracted from the fecal samples using the E.Z.N.A.
R©

stool DNA kit (Omega Bio-tek, Norcross, GA, USA) per

the manufacturer’s protocols. Briefly, DNA buffer was added

to the sample for viral capsid lysis and purified through

spin-column. The extracted DNA was eluted with TE buffer.

The DNA concentration and purity were determined using

a Nanodrop 2000 (Thermo Scientific, USA) and stored at

−80◦C until sequencing. Metagenomic shotgun sequencing

libraries were constructed and sequenced at Shanghai Biozeron

Biological Technology Co., Ltd. The sequencing libraries were

constructed using a Nextera XT DNA Library Preparation

kit (Illumina). High-sensitivity double-stranded DNA kits

were used to determine the concentrations of all libraries

on a Qubit Fluorometer (Thermo Fisher Scientific). After

sequencing in the Illumina NovoSeq instrument in pair-

end 150-bp (PE150) mode, quality control was performed

using Trimmomatic (http://www.usadellab.org/cms/uploads/

supplementary/Trimmomatic) on raw sequence reads to remove

adaptor contaminants and low-quality reads. Using the BWA

mem algorithm with M-k 32 -t 16 parameters (http://bio-bwa.

sourceforge.net/bwa.shtml), quality-control reads were mapped

to the mouse genome (NCBI). After removing host-genome

contaminants and low-quality data, the clean reads were used

for further analysis.

Reads-bases phylogenetic annotation

According to the default database downloaded from Broad

Institute (min-score-identity = 0.90, identity margin = 0.02),

taxonomy of the clean reads for each sample was measured

through the PathSeq pipeline distributed in GATK v4.1.3

(https://github.com/usadellab/Trimmomatic) (17). By default,

alignments were discarded in PathSeq once two read pairs did

not point to the same organism. All bacteriophage, archaeal,

and bacterial genome sequences in the NCBI RefSeq database

were consistent with those in the taxonomy database. All reads

were then classified into seven phylogenetic levels: domain,
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phylum, class, order, family, genus, and species or unclassified.

Annotations generated in PathSeq were used to construct the

host-genome and phage relationships.

Alpha- and beta-diversity analyses

To determine the diversity indices, including the richness

and Shannon diversity indices, rarefaction analysis was

performed using Mothur v.1.21.1. Beta-diversity analysis was

conducted through the community ecology package, vegan, in

R. Bray-Curtis distance matrices with 999 permutations was

applied to measure the virome community similarity using

vegan in R. Based on a Spearman’s rank correlation coefficient

>0.6 and p < 0.05, correlations between the virus and other

elements (other species and metabolites) were determined in R.

The relationships were visualized using a correlation heatmap

and network diagrams constructed in Gephi (https://gephi.org).

Metabolomic profiling analysis

Targeted metabolomic analysis of the fecal samples was

performed using Metabo-Profile (Shanghai, China). The

metabolites were detected according to previously published

references (18). The sample preparation procedures were

performed as per previously published methods with minor

modifications (19). UPLC-MS/MS (ACQUITY UPLC-Xevo

TQ-S, USA) was used to quantify the microbial metabolites (20).

Reserve solutions of all 164 representative reference chemicals

of the microbial differential metabolites were prepared in

methanol, ultrapure water, or sodium hydroxide solution as

per the internal standards (Supplementary Table S2). Internal

standards were added to the samples to monitor data quality

and compensate for matrix effects (21). After generating raw

data files from the UPLC-MS/MS, peak integration, calibration,

and quantitation were performed for each metabolite using

MassLynx software (v4.1, Waters, Milford, MA, USA) (22).

The iMAP platform (v1.0; Metabo-Profile, Shanghai, China)

was used for statistical analysis. Principal component analysis

(PCoA) and orthogonal partial least square discriminant

analysis (OPLS-DA) (23) were used to visualize the metabolic

differences among the experimental groups. The biological

patterns, functions, and pathways of the differentially expressed

metabolites were analyzed using the Matabo Analyst online tool

(version 4.0) (24).

Fecal metabolomic analysis

Thawed fecal samples (5mg) were dispersed in 25 µL of

water and homogenate with zirconium oxide beads for 3min,

before metabolite extraction with 120 µL of a mixture of

methanol and internal standard. The homogenate process was

repeated once, then the mixture was centrifuged at 18000 ×

g for 20min. Next, 20 µL of supernatant was transferred to

a 96-well plate. The subsequent procedures were performed

on an Eppendorf epMotion Workstation (Eppendorf Inc.,

Humburg, Germany). The plate was sealed, and derivatization

was performed at 30◦C for 60min. Next, 330 µL of ice-cold 50%

methanol solution was added to dilute the sample. The plate was

then stored at−20◦C for 20min, then centrifuged at 4000× g at

4◦C for 30min. The supernatant (135 µL) was then transferred

to a new 96-well plate with 10 µL of internal standards in each

well. The derivatized stock standards were then serially diluted.

Correlation analysis

Spearman’s rank correlations and their significances were

calculated using the cor and cor.test functions in R, respectively

(25). The correlation (r-value) was calculated and is shown in

yellow to blue, representing positive and negative correlations,

respectively (Figure 1).

Statistical analysis

GraphPad Prism 8.3 (GraphPad Software, La Jolla, CA,

USA) and TBtools software (26) were used to construct the

graphs. All data are expressed as means ± standard deviation.

A two-tailed Wilcoxon’s rank-sum test was used to identify

statistically significant differences between two groups using

SPSS (version 23.0, Chicago, IL, USA). P < 0.05 was considered

statistically significant.

Results

Overall intestinal microbiota diversity in
the ApoE–/-, ob/ob, and Wt Mice

The intestinal microbiotas composed of archaea, bacteria,

and bacteriophages were characterized by metagenomic

sequencing. Alpha diversity (e.g., richness and Shannon indices)

was used to characterize variations in the gut microbiotas.

Archaeal, bacterial, and bacteriophage diversity did not differ

significantly between the ApoE−/−, ob/ob, and Wt mice (p >

0.05; Figures 2A–F).

Next, we further analyzed the differences in species

distributions among the three mouse groups. Figures 2G–I

show the differences in species abundance compositions among

groups. The β-diversity data are shown through PCoA plot

of the weighted UniFrac distance. Analysis of the intestinal

microbial archaea, bacteria, and bacteriophages of the three

groups showed that as the sample points became closer on the
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FIGURE 1

Correlation analysis of di�erential metabolites and intestinal microorganisms. Correlation analyses of di�erential metabolites with abundances

>1% and archaea (A), bacteria (B), and bacteriophages (C) with relative abundances >1%. The correlation (r-value) was calculated and is shown

in red to green, representing positive and negative correlations, respectively.

coordinate axis, the species abundance compositions among the

samples became more similar in the corresponding dimension.

Archaeal principal components 1 and 2 explained 55.26 and

31.68% of the changes, respectively (Figure 2G). Bacterial

principal components 1 and 2 explained 68.67 and 14.66% of

the changes, respectively (Figure 2H). Bacteriophage principal

components 1 and 2 explained 60.42 and 25.17% of the changes,

respectively (Figure 2I).

Overall, these data have shown that the diversity of Archaeal,

bacterial, and bacteriophage were no significant difference, but

there were differences in species composition in the ApoE−/−,

ob/ob, and Wt mice, indicating that ApoE-deficient and obese

leptin-deficient have certain effects on the composition of

gut microbes.

Gut archaeal compositions in the
ApoE–/-, ob/ob, and Wt mice

Thirty stool samples were shotgun sequenced

through the Illumina MiSeq platform and analyzed using

metagenomics (Figure 3). Intestinal archaea were mainly

composed of the phyla Euryarchaeota and Thaumarchaeota

(Supplementary Figure S2A) in all three groups. The relative

Euryarchaeota abundances were 97.40 ± 2.36%, 99.66 ± 0.69%

and 98.16 ± 3.34% for the Wt, ob/ob and ApoE−/− groups,

respectively. Supplementary Figures S2B,C shows the relative

abundances of the top six gut archaea at the genus and species

levels. Methanosarcina, Methanobrevibacter, and Halolamina

were the dominant intestinal archaeal genera in the Wt, ob/ob,

and ApoE−/− groups, with relative abundances of 82.19 ±

8.30%, 90.77 ± 10.27%, and 76.47 ± 12.51%; 5.46 ± 4.55%,

1.01 ± 1.47, and 5.71 ± 3.82%; and 4.18 ± 4.33%, 0.13 ±

0.24%, and 0.68 ± 2.16%, respectively (Figure 3A). The relative

abundance of Methanosarcina was significantly increased in

the ob/ob group compared with that of the ApoE−/− group

(p < 0.05). The relative abundance of Methanobrevibacter was

significantly decreased in the ob/ob group compared with that

of the Wt and ApoE−/− groups (p < 0.05), and the relative

abundance of Halolamina was significantly decreased in the

ob/ob group compared with that of the Wt group (Figure 3A).

Figure 3B shows the intestinal archaeal species compositions

with relative abundances of >1%. Five species belonged

to Euryarchaeota, of which, Methanobrevibacter_smithii

and Halolamina_sediminis were significantly decreased in

the ob/ob group compared with those of the Wt group;

Methanoculleus_chikugoensis and Methanolacinia_paynteri

were significantly increased in the ApoE−/− group compared

with those of the Wt group, and Methanosarcina_mazei was

significantly decreased in the ob/ob group compared with

that of the ApoE−/− group (Figure 3B). One species from

Thaumarchaeota, Candidatus_Nitrosopumilus_salaria, was

significantly decreased in the ob/ob group compared with that

of the Wt group (Figure 3B).

Overall, compared with that of the ApoE−/− group,

the relative abundance of Methanosarcina was significantly

increased in the ob/ob group, which indicated that this

Methanosarcina is related to obese leptin-deficient.

Gut bacterial compositions in the
ApoE–/-, Ob/ob, and Wt mice

Supplementary Figures S3A–C show the intestinal bacterial

compositions at the phylum, genus, and species levels to

illustrate the specific changes in microbial communities in the

ApoE−/− and ob/ob mice compared with those of the Wt mice.

At the phylum level, the relative abundances of Firmicutes,

Bacteroidetes, and Verrucomicrobia did not significantly differ
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FIGURE 2

Microbiome alpha- and beta-diversity indices. (A–C) Archaeal, bacterial, and bacteriophage richness; (D–F) Shannon indexes for archaea,

bacteria, and bacteriophages; (G–I) Scatter plot of principal component (PC) analysis. PC1 and PC2 clusterings for each group.

among the groups (p> 0.05; Figure 3C). The relative abundance

of Proteobacteria was significantly increased in the ob/ob group

compared with that in the ApoE−/− and Wt groups (p <

0.05). The relative abundance of Actinobacteria was significantly

decreased in the ob/ob group compared with that of the Wt

group, and the relative abundance of Deferribacteres in the

ob/ob mice was significantly decreased compared with that

of the ApoE−/− group (p < 0.05). Figure 3D shows the top

20 dominant bacterial genera (relative abundance >1.00%).

At the genus level, the relative abundances of Lactobacillus

and Akkermansia were predominant. Compared with the Wt

group, the relative abundances of Enterorhabdus, Alistipes,

Bacteroides, Prevotella, Rikenella, Barnesiella, Porphyromonas,

Riemerella, and Bifidobacterium were significantly decreased

(p < 0.05) in the ob/ob group, and the relative abundance

of Akkermansia was significantly decreased in the ApoE−/−
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FIGURE 3

Relative abundances of archaea, bacteria and bacteriophages at the phylum, family, genus and species levels and their significantly di�erent

compositions in Wt, ob/ob, and ApoE−/− mice. (A,B) Relative abundances of archaea at the genus and species levels. (C) Relative abundances of

bacteria at the phylum level. (D,E) Relative abundances of bacteria at the genus and species levels. (F) Relative abundances of bacteriophages at

the family level.

group. Compared with the ob/ob group, the relative abundances

of Lactobacillus, Akkermansia, Alistipes, Rikenella, Barnesiella,

Porphyromonas, and Riemerella were significantly higher in the

ApoE−/− group (Figure 3D). Figure 3E shows the compositions

of the top 20 species, including six species from Firmicutes,

11 from Bacteroidetes, two from Actinobacteria, and one

from Verrucomicrobia. Lactobacillus_murinus (L. murinus) and

Akkermansia_muciniphila (A. muciniphila) had the highest
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relative abundances in the three groups (Figure 3E). Compared

with theWt group, the relative abundances ofA.muciniphila and

L. murinuswere significantly decreased and increased (p< 0.05)

in the ob/ob and ApoE−/− groups, respectively. These species

may be the key species of metabolic diseases (Figure 3E).

Overall, these data have shown that the gut dominant

microbiota have changed after knockout of ApoE-deficient and

obese leptin-deficient, which may be closely associated with

metabolic diseases.

Gut bacteriophage composition and
associations between phages and their
bacterial host in ApoE–/-, ob/ob, and Wt
mice

Supplementary Figures S4A,B shows the differences in

intestinal bacteriophage community structures among the

three mouse groups. At the family level, the most common

bacteriophages were Siphoviridae (94.85 ± 2.08%, 58.85 ±

21.92% and 4.43 ± 1.06%), Myoviridae (4.62 ± 1.59%, 34.44

± 17.63% and 94.90 ± 1.33%), and Podoviridae (0.27 ±

0.14%, 5.98 ± 6.02% and 0.39 ± 0.25%) in the Wt, ob/ob,

and ApoE−/− groups, respectively (Figure 3F). Compared

with the Wt group, the relative abundances of Myoviridae

and Podoviridae were significantly increased, and the relative

abundance of Siphoviridae was significantly decreased in the

ob/ob and ApoE−/− mice (Figure 3F). Compared with the

ob/ob group, the relative abundances of Myoviridae and

Podoviridae were significantly increased, and the relative

abundance of Siphoviridae was significantly decreased in the

ApoE−/− mice (Figure 3F).

We summarized the bacteriophage species according

to their known bacterial hosts. The relative abundances

of the predominant bacteriophage species Lactobacillus_

prophage_ Lj965 and Lactobacillus _ prophage _ Lj771

in the Wt and ApoE−/− mice were significantly higher

than those in the ob/ob mice. Escherichia_virus_Lambda,

Enterobacteria_phage_HK630, Enterobacteria_

phage_HK629, Escherichia_virus_24B, Shigella_phage_SfII,

Shigella_phage_SfIV, Enterobacteria_phage_SfV,

Enterobacteria_phage_SfI, Escherichia_phage_pro147,

Enterobacteria_phage_fiAA91-ss, Escherichia_virus_P2,

Escherichia_phage_pro483, Yersinia_phage_L-413C,

Enterobacteria_phage_WPhi, Escherichia_virus_ADB2,

Escherichia_virus_T1, and Shigella_virus_ PS were the

predominant intestinal phages in the ob/ob mice (relative

abundance >1%). These species had relative abundances of

<0.3 and 0.6% in the Wt and ApoE−/− mice, respectively

(Figure 4A).

The heatmap of the bacteriophages and their host

bacteria shows the relative abundances of the 21 most

abundant bacteriophages in the three groups (Figure 4B).

The bacteriophage/bacteria relationship was characterized by

high abundances of some phages and decreased bacterial host

abundances in others. Compared with those of the Wt mice,

Shigella_phages, Enterobacter_phages, Enterococcus_phages,

and Klebsiella_phages had lower abundances, and Shigella,

Enterobacter, Enterococcus, and Klebsiella had higher

abundances in the ob/ob mice (Figure 4B). Ralstonia_phages

and Propionibacterium_phages were highly abundant, but the

corresponding Ralstonia and Propionibacterium bacteria had

low abundances in the ApoE−/− mice (Figure 4B). Escherichia

and Escherichia_phages had less stringent relationships in only a

few ob/ob mice, and Staphylococcus and Staphylococcus_phages

had less stringent relationships in only a few ApoE−/− mice

(Figure 4B).

Our study showed that the relative abundance of intestinal

phage Podoviridae, Lactobacillus_prophage_Lj965, and

Lactobacillus_prophage_Lj771 were significantly elevated in ob

mice, which are closely associated with metabolic diseases, such

as ulcerative colitis and type 2 diabetes.

Compositions and di�erential analyses of
targeted fecal metabolites in Wt, ob/ob,
and ApoE–/- mice

Targeted UPLC-MS/MS analyses of the feces from Wt,

ob/ob, and ApoE−/− mice revealed 163 metabolites, mainly

including carbohydrates (7.36%), amino acids (21.47%),

secondary bases (13.5%), organic acids (14.11%), fatty

acids (19.63%), short-chain fatty acids (5.52%), phenols

(2.45%), benzenoids (2.45%), benzoic acids (3.07%),

phenylpropanoic acids (2.45%), and indoles (3.07%; Figure 5A).

Supplementary Figure S5 shows the relative abundance of

each metabolite class in each group. The abundance patterns

of the metabolites differed significantly among the groups

by PCoA analysis (Figure 5B). Compared with those of the

Wt mice, acetoacetic acid, 3-hydroxybutyric acid, xylulose,

ribulose, tartaric acid, and 3-hydroxyphenylacetic acid-3 were

significantly upregulated in the ApoE−/− mice (Figure 5C),

and deoxycholic acid (DCA), lithocholic acid (LCA),

glycodeoxycholic acid (GDCA), glutamine, α-ketoisovaleric

acid, and butyric acid were significantly upregulated in the

ob/ob mice (Figure 5D). Compared with those of the ob/ob

mice, lysine, citrulline, DCA, eicosapentaenoic acid (EPA),

GDCA and glutamine were downregulated in the ApoE−/−

mice (Figure 5E).

Overall, these data have shown that the key metabolites in

intestinal microorganisms of ApoE-deficient and obese leptin-

deficient mice with metabolic diseases may play causal roles in

the pathophysiology of metabolic diseases.
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FIGURE 4

Proportions of bacteriophage species and matched alignments with their bacterial hosts and association predictions between the

bacteriophages and bacteria. (A) The main bacteriophages were classified according to annotation results. The average relative abundances of

these aggregated bacteriophages were calculated in phage reads with known bacterial hosts. (B) Abundance heatmap of bacteriophages and

their host bacteria, showing the relative abundances of the 21 most abundant bacteriophages in the three mouse groups.

Metabolites potential biomarkers and
metabolic pathway analysis

Figure 6A shows the top nine differential potential

biomarker metabolites (p < 0.05). The common metabolites

among the Wt, ApoE−/−, and ob/ob mice were DCA,

LCA, lysine, citrulline, EPA, GDCA, glutamine, methionine,

and phenylalanine.

A pathway-associated metabolite sets library pathway

enrichment analysis was conducted for the three groups. The

metabolite pathway analysis suggested that these pathways

were mainly involved in aminoacyl-tRNA biosynthesis; valine,

leucine, and isoleucine biosynthesis; phenylalanine, tyrosine,

and tryptophan biosynthesis; phenylalanine metabolism;

valine, leucine, and isoleucine degradation; ubiquinone and

other terpenoid-quinone biosynthesis; alanine, aspartate,

and glutamate metabolism; synthesis and degradation

of ketone bodies; cyanoamino acid metabolism; glycine,

serine, and threonine metabolism; butanoate metabolism

and biosynthesis of unsaturated fatty acids (Figure 6B,

Supplementary Figure S6). Differential expressions in the

synthesis and degradation of ketone bodies pathways

in the Wt and ApoE−/− mice showed that acetoacetic

acid was significantly upregulated in the ApoE−/− mice

(Supplementary Figure S7A). The Kyoto Encyclopedia of Genes

and Genomes (KEGG) metabolites pathway of aminoacyl-

tRNA biosynthesis was differentially regulated in the Wt and

ob/ob mice (Supplementary Figure S7B). Asparagine, histidine,

phenylalanine, glutamine, serine, methionine, valine, alanine,

lysine, leucine, threonine, and tyrosine were significantly

upregulated, and aspartic acid was downregulated in the

ob/ob mice. Comparing the aminoacyl-tRNA biosynthesis

metabolic pathways showed that the enriched compounds of

phenylalanine, glutamine, glycine, serine, methionine, valine,

alanine, lysine, isoleucine, leucine, threonine, tryptophan, and

tyrosine were downregulated in ApoE−/− mice compared with

those of the ob/ob mice (Supplementary Figure S7C).

Microbiota correlation analysis of the Wt,
ob/ob, and ApoE–/- mice

We performed correlation analyses of the

archaebacteria, bacteria and bacteriophages, and metabolites.

Candidatus_Nitrosoarchaeum and Halococcus were significantly

positively correlated with citric acid (p < 0.05), and

Candidatus_Methanomethylophilus was significantly

positively correlated with oleic acid, linoleic acid, and

serine (p < 0.05; Figure 1A). Lachnospiraceae_bacterium_28-

4 was significantly correlated with arginine (p < 0.05).
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FIGURE 5

Targeted fecal metabolomics analysis of the Wt, ApoE−/−, and ob/ob mice. (A) Metabolite divisions among the three mouse groups. (B) Scatter

plot of the principal component (PC) analysis. PC1 and PC2 clusterings for each group. (C–E) Volcano plot of di�erentially expressed genes for

Wt vs ApoE−/− (C), Wt vs ob/ob (D), and ob/ob vs ApoE−/−(E), with p < 0.05 and log2 fold-change >0. Each point represents a metabolite. Red

and blue dots indicate upregulation and downregulation, respectively; gray dots indicate no statistical di�erence.

Anaerotruncus_sp._G3(2012) was significantly positively

correlated with DCA, serine, oleic acid, linoleic acid, and

N-acetyl-D glucosamine. Firmicutes_bacterium_ASF500

was significantly positively correlated with α-muricholic

acid (α-MCA), DCA, serine, oleic acid, linoleic acid, and

N-acetyl-D-glucosamine. Lachnospiraceae_bacterium_28-

4 was significantly positively correlated with arginine.

Mucispirillum_schaedleri was significantly positively correlated

with DCA and oleic acid. Oscillibacter_sp._1-3 was significantly

positively correlated with oleic acid, linoleic acid, N-acetyl-

D-glucosamine, wMCA, DCA, serine, and methionine (p

< 0.05).

Significant negative correlations were found between

Lactobacillus_animalis and wMCA; Lactobacillus_murinus

and wMCA; Enterorhabdus_mucosicola and xylose;

Alistipes_sp._AL-1 and phenylacetic acid, glutamine and

alanine; Alistipes_sp._MarseilleP2431 and phenylacetic acid,

glutamine and alanine; Alistipes_onderdonkii and phenylacetic

acid, alanine and glutamine; and Alistipes_sp._HGB5 and

glutamine, alanine and phenylacetic acid (p < 0.05; Figure 1B).

Enterobacteria_phage_fiAA91-ss, Enterobacteria_phage_P4,

Enterobacteria_phage_WPhi, Escherichia_phage_pro147,

Escherichia_phage_pro483, Escherichia_virus_P2, and

Yersinia_phage_L-413C were significantly positively correlated

with phenylacetic acid (Figure 1C).

Correlations between intestinal microbes
and metabolites in Wt, ob/ob, and
ApoE–/-mice

To further examine extended network links, we evaluated

archaeal, bacterial, and bacteriophage abundances for

associations with key metabolite levels. The resulting network

contained 30 nodes and 43 edges, representing significant

correlations among archaea, bacteria, bacteriophages, and

metabolites (Figure 7). Alistipes_onderdonkii, Alistipes_sp._AL-

1, Alistipes_sp._HGB5, and Alistipes_sp._Marseille-P2431

were significantly negatively correlated with 7-KetoLCA (p

< 0.05). Significant positive correlations were found between

Anaerotruncus_sp._G3(2012) and DCA, asparagine and GDCA;

Firmicutes_bacterium_ASF500 and asparagine, acetoacetic

acid, bHDCA and GDCA; and Oscillibacter_sp._1-3 and

3-DHCA, asparagine, DCA, acetoacetic acid, bHDCA, and

GDCA; Candidatus_Nitrosopumilus_salaria and asparagine

and DCA; Methanoculleus_chikugoensis and acetoacetic acid
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FIGURE 6

Potential biomarker metabolites and KEGG pathway analysis. (A) Box-scatter plot of potential biomarker metabolites of the top 9 di�erential

metabolites ordered by p-value; (B) Bubble plot of enriched KEGG pathways. Bubble size represents the number of metabolites enriched in the

pathway.

and bHDCA; Methanolacinia_paynteri and acetoacetic acid,

bHDCA, asparagine, and GDCA; Methanosarcina_mazei and

7KetoLCA; and Methanoculleus_chikugoensis and asparagine

and GDCA (p < 0.05). Enterobacteria_phage_fiAA91ss,

Enterobacteria_phage_P4, Enterobacteria_phage_WPhi,

Escherichia_phage_pro147, Escherichia_phage_pro483,

Escherichia_virus_P2, and Yersinia_phage_L-413C were

significantly positively correlated with 7-KetoLCA (p < 0.05).

In summary, ourmulti-omics analysis provides fundamental

data for investigating the causal relationship of key microbial

species and their metabolites in the occurrence and development

of metabolic diseases, especially obesity. Metabolite pathway

analysis showed that these metabolite pathways were mainly

involved in the biosynthesis of aminoacyl-tRNA andwere widely

present in organisms. These data offer new insights regarding

possible causes of these diseases and provide a foundation for

studying the regulation of various food nutrients in metabolic

disease models.

Discussion

ApoE−/− and ob/ob mice are widely used to study the

pharmacology and pathogeneses of metabolic diseases (4).

Here, we measured the weight and blood glucose levels of

the three mouse groups and found significant differences

in ob/ob and ApoE−/− mice compared with those of Wt

mice (Supplementary Figure S1), indicating that gene knockout

strongly affects the weight and blood glucose levels of mice. We

described the structure and compositions of the gut archaea,

bacteria, bacteriophages, and metabolites in the ob/ob and

ApoE−/− mice compared with those of the Wt mice. To

our knowledge, this is the first study to focus on the gut

archaea, bacteria, bacteriophages, and metabolites of ob/ob and

ApoE−/− mice. These data enable better understanding obesity,

cardiovascular disease, diabetes, and their related treatments.

Our results showed no significant differences in microbial

diversity among ob/ob and ApoE−/− mice compared with

those of Wt mice (p > 0.05), likely because the ob/ob

and ApoE−/− mice were still young and showed early

subtle pathological symptoms (Figures 2A–F). The relative

abundance of Methanosarcina was significantly increased in

the ob/ob group compared with that of the ApoE−/−

group (p < 0.05). Studies have increasingly focused on

the metabolism of Methanosarcina fermentation products

(methane) in the intestines, mainly focusing on the relationship

between Methanosarcina and intestinal dysfunction. The

number of intestinal methanogens in patients with irritable

bowel syndrome is often less than that of the normal

population. Intestinal methanogens have also been associated

with obesity (27).

Compared with the Wt group, the relative abundances of

A. muciniphila and L. murinus were significantly decreased

and increased (p < 0.05) in the ob/ob and ApoE−/− groups,
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FIGURE 7

Interaction network of metagenomic and metabolomic features for mice with metabolic diseases (ApoE−/− and ob/ob) groups and wild-type

(Wt) control group. Red squares represent metabolites; yellow triangles represent archaea; pink circles represent bacteriophages; blue-purple

triangles represent bacteria. Red and green lines represent positive and negative correlations, respectively. Interactions were visualized using

Cytoscape.

respectively. These may be key species in metabolic diseases

(Figure 3E). A. muciniphila is a typical species of intestinal

bacteria. Akkermansia belongs to the Verrucomicrobia phylum

(28) and human intestinal mucin-degrading bacteria (29).

Decreased abundances of intestinal Akkermansia in metabolic

diseases may be related to diet-induced obesity, type 2 diabetes,

liver injury, and other metabolic disorders (23, 30). Previous

studies have shown decreased abundances of A. muciniphila

in the guts of patients with ulcerative colitis and metabolic

disorders, suggesting that A. muciniphila may have potential

anti-inflammatory properties (31). When ApoE−/− mice were

treated with A. muciniphila for 8 weeks after consuming a

western-type diet, their lipid metabolism did not change, but

the expressions of proinflammatory cytokines and intercellular

adhesion molecule 1 (ICAM-1) in the aorta decreased, and

infiltration of macrophages into aortic atherosclerosis decreased

(7, 32). These results suggest that A. muciniphila can positively

regulate the intestinal microflora (33), improve intestinal barrier

functions, and protect against obesity and atherosclerosis (34).

However, further research is needed to explore the correlation

between A. muciniphila and ulcerative colitis and metabolic

diseases, especially in humans. Studies have demonstrated that

L. murinus can reduce inflammation associated with aging in

calorie-restricted mice (35), and its abundance is significantly

decreased in the intestinal tracts of cirrhotic rats (36). However,

the L. murinus abundance is high in obese and atherosclerotic

mice. Studies have found that antibiotic-induced ecological

disorders, especially excessive growth of L. murinus, can impair

intestinal metabolic functions and lead to the development

of alopecia. Additionally, high salt intake has been linked

to depletion of L. murinus, which has been associated with

increased CD4+Rorγt+TH17 cells and blood pressure (31, 37,

38).

We next analyzed the most abundant members of

Myoviridae, Siphoviridae, and Podoviridae in the microbial

community structure of bacteriophages. Compared with

those of Wt and ApoE−/−mice, the relative abundances of

Podoviridae, Myoviridae, and Siphoviridae were significantly

increased and decreased, respectively, in the intestinal

tracts of ob/ob mice. Podoviridae has been associated with
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ulcerative colitis and type 2 diabetes and can aggravate

these diseases (39). Myoviridae abundances are significantly

increased (p < 0.05) in patients with type 2 diabetes, although

the mechanism remains unclear (40, 41). Additionally,

Lactobacillus_ prophage_ Lj965 and Lactobacillus _ prophage

_ Lj771 abundances were significantly higher in ob/ob mice

than in Wt mice. Studies have shown that Lactobacillus is

significantly positively associated with Parkinson’s disease

(11, 42). The intestinal microbial composition is closely

related to glucose homeostasis in the blood of obese mice

(34), and a sugar-rich diet can induce Lactobacillus prophage

lysis, which can profoundly impact the intestinal microbial

community (43). Further study is needed to determine

how gut microbes regulate glucose homeostasis in patients

with metabolic diseases and provide microbial resources for

developing new therapies for obesity and related metabolic

disorders (44–46).

Herein, we have shown that the key microbial species

in intestinal microorganisms of mice with metabolic

diseases may play causal roles in the pathophysiology of

metabolic diseases (47). To further support a potential causal

relationship, the characteristics of intestinal metabolites

must be analyzed to achieve similar metabolic disease

characteristics and show a significant correlation with

intestinal microorganisms. Additionally, in the ob/ob mouse

model, the levels of several landmark metabolites, including

short-chain fatty acids, DCA, LCA, GDCA, and glutamine,

were altered. These microbial metabolites are related to

the main intestinal microorganisms, i.e., Lactobacillus,

Bifidobacterium, and Enterobacter, which promote lipid

absorption, which affects triglycerides, cholesterol, glucose,

and energy homeostasis (48, 49). Lactobacillus promotes

the growth of pancreatic ductal carcinoma by activating

tumor-associated macrophages through tryptophan in

metabolic foods (37, 50). Our multi-omics analysis

provides basic data to research the causal relationship

between key microbial species and their metabolites in

the occurrence and development of metabolic diseases,

especially obesity.

Metabolite pathways analysis suggested that these

metabolite pathways were mainly involved in aminoacyl-

tRNA biosynthesis and are widely present in organisms.

With the development of genome and exon sequencing

technology and the discovery of new clinical cases, aminoacyl-

tRNA synthetases (ARSs) are considered manifestations of

metabolic diseases and are closely associated with obesity,

atherosclerosis, and type 2 diabetes (3, 14, 51). The classic

function of ARSs is to provide raw materials for protein

biosynthesis (51). Increasing evidence suggests that ARSs

play important roles in controlling inflammation, immune

response (15, 48), tumorigenesis, and other important

physiological and pathological processes. The availability of

intracellular amino acids is closely related to the regulation

of various cellular processes (44, 52). However, further

work is needed to determine which gut bacteriophages,

bacteria, and metabolites can be used as targets for metabolic

diseases to develop nutritional interventions for obesity and

atherosclerosis-related diseases.
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SUPPLEMENTARY FIGURE S1

Body weight and blood glucose levels in the three mouse groups. (A)

Changes in body weight in the t 31.68% of the changes, respectively

hree mouse groups; (B) Changes in blood glucose in the three mouse

groups. The same letter indicates no significant di�erence; di�erent

letters indicate significant di�erences.

SUPPLEMENTARY FIGURE S2

Proportions of gut archaea at the phylum, genus and species levels. (A)

Proportions of gut archaea at the phylum level; (B) Proportions of gut

archaea at the genus level; (C) Proportions of gut archaea at the species

level.

SUPPLEMENTARY FIGURE S3

Proportions of gut bacteria at the phylum, genus and species levels. (A)

Proportions of gut bacteria at the phylum level; (B) Proportions of gut

bacteria at the genus level; (C) Proportions of gut bacteria at the species

level.

SUPPLEMENTARY FIGURE S4

Proportions of gut bacteriophages at the family and species levels. (A)

Proportions of gut bacteriophages at the family level; (B) Proportions of

gut bacteriophages at the species level.

SUPPLEMENTARY FIGURE S5

Composition of intestinal metabolites in the three groups of mice.

SUPPLEMENTARY FIGURE S6

Bubble plot of the enriched KEGG pathways. Bubble size represents the

number of metabolites enriched in the pathway.

SUPPLEMENTARY FIGURE S7

Di�erential expressions in the intestinal metabolic KEGG pathways in the

three mouse groups. (A) Di�erential expressions in the synthesis and

degradation of the ketone bodies pathways in the Wt and ApoE−/− mice;

(B) The KEGG metabolites pathway of aminoacyl tRNA biosynthesis was

di�erentially regulated in the Wt and ob/ob mice; (C) Comparing the

aminoacyl-tRNA biosynthesis metabolic pathways in ApoE−/− and

ob/ob mice. Red reflects upregulation; blue reflects downregulation.
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