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Differences between males and females in brain development and in the organization
and hemispheric lateralization of brain functions have been described, including in
language. Sex differences in language organization may have important implications
for language mapping performed to assess, and minimize neurosurgical risk to,
language function. This study examined the effect of sex on the activation and
functional connectivity of the brain, measured with presurgical functional magnetic
resonance imaging (fMRI) language mapping in patients with a brain tumor. We
carried out a retrospective analysis of data from neurosurgical patients treated at
our institution who met the criteria of pathological diagnosis (malignant brain tumor),
tumor location (left hemisphere), and fMRI paradigms [sentence completion (SC);
antonym generation (AG); and resting-state fMRI (rs-fMRI)]. Forty-seven patients (22
females, mean age = 56.0 years) were included in the study. Across the SC and AG
tasks, females relative to males showed greater activation in limited areas, including
the left inferior frontal gyrus classically associated with language. In contrast, males
relative to females showed greater activation in extended areas beyond the classic
language network, including the supplementary motor area (SMA) and precentral gyrus.
The rs-fMRI functional connectivity of the left SMA in the females was stronger with
inferior temporal pole (TP) areas, and in the males with several midline areas. The
findings are overall consistent with theories of greater reliance on specialized language
areas in females relative to males, and generalized brain areas in males relative to
females, for language function. Importantly, the findings suggest that sex could affect
fMRI language mapping. Thus, considering sex as a variable in presurgical language
mapping merits further investigation.

Keywords: sex effect, presurgical language mapping, brain tumor, functional MRI (fMRI), functional connectivity,
supplementary motor area (SMA), language processing

INTRODUCTION

Image-guided neurosurgery, including presurgical functional mapping with functional magnetic
resonance image (fMRI), is increasingly used by neurosurgeons to perform safer, more precise, and
less invasive brain surgery (Golby, 2015). Accurate presurgical planning is critical for maximizing
tumor removal and maximally preserving eloquent cortices that support critical brain functions,
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such as motor control and language (Tharin and Golby, 2007;
Silva et al., 2018). Presurgical language mapping can facilitate the
neurosurgeon’s decision to limit the extent of tumor resection
in order to preserve function; or give the neurosurgeon more
confidence to proceed with tumor removal, particularly when the
tumor is in close proximity to classical language regions.

For presurgical mapping of language function, fMRI based
on blood oxygen level-dependent (BOLD) signal changes
during language task performance versus rest has been widely
adopted (Bookheimer, 2007). A variety of fMRI paradigms are
available for presurgical brain mapping of language function.
The American Society of Functional Neuroradiology (ASFNR)
recommends for adults a three-task battery consisting of sentence
completion (SC) and silent word generation, followed by either
rhyming, object naming, or passive story listening (Black et al.,
2017). Our recent retrospective study comparing three language
tasks used for presurgical planning [SC, antonym generation
(AG), and auditory naming] demonstrated in a large cohort
of brain lesion patients that SC relative to the other tasks
elicited a greater extent of activation within the posterior
language areas of the dominant hemisphere, and was therefore
considered more effective for determining language laterality
in the brain (Unadkat et al., 2019). Despite the progress in
evaluating language paradigms for fMRI presurgical mapping in
brain tumor patients (Tie et al., 2014, 2015; Black et al., 2017),
the influence of demographic factors such as sex has not yet been
systematically evaluated.

The study of sex differences in language processing can be
dated back to the late 1950s. Early work claimed that females
outperform males in terms of general language abilities from
childhood and through adulthood (Anastasi, 1958). However,
subsequent work suggested that females outperform males
specifically in verbal fluency tasks, whereas males outperform
females in visuospatial tasks including mental rotation (Herlitz
et al., 1999). Shaywitz and colleagues were among the first to
employ fMRI to study sex differences in language processing in
the brain (Shaywitz et al., 1995). Their findings suggested that
females’ language networks are more bilateral, while males’ are
more left-lateralized. A number of later fMRI studies supported
the idea that the better performance of females relative to males
in verbal fluency tasks is related to a greater dependence on
declarative memory for the processing of complex language
forms in females (Kansaku et al., 2000; Phillips et al., 2001; Becker
et al., 2007). In contrast, males relative to females may rely more
on procedural memory for the processing of complex linguistic
forms (Ullman, 2001; Becker et al., 2007).

Whether there exist sex differences in performance of
language paradigms used for presurgical evaluation is unknown.
This issue is important because sex differences in presurgical
language mapping could affect the accuracy of this procedure,
and subsequent language outcomes and interventions. In
the context of presurgical language mapping, it is also
important to consider whether there are sex differences in
neurosurgical patients over and beyond the differences observed
in neurologically healthy individuals (Coates, 2015). In brain
tumor patients, sex differences in language mapping could reflect
influences of sex on language processing per se (as seen in the

general population), as well as influences of sex on brain tumor
location, resilience to the disease, and neuroplasticity, that could
affect language organization and function in these patients (Hyer
et al., 2018; Ostrom et al., 2018a). Evidence for sex differences
in brain tumor patients comes from epidemiological studies
showing that the male to female incidence ratio of glioblastoma,
the most common malignant brain tumor (MBT), is 1.6:1 in the
United States (Ostrom et al., 2018a), and the survival rate is better
in females compared to males with glioblastoma (median survival
of 22.6 versus 15.9 months) (Ostrom et al., 2018b).

To examine the possibility of sex influences on presurgical
language mapping, we retrospectively analyzed language task
fMRI activation maps and resting-state (RS) fMRI connectivity
maps in 47 neurosurgical patients with MBTs who met the
study inclusion criteria. The study was restricted to patients
with high-grade brain tumors to reduce confounding effects
of functional reorganization (that are more common in
patients with low-grade brain tumors and longer survival rates)
(Ghinda and Duffau, 2017).

MATERIALS AND METHODS

Participants
We retrospectively analyzed data from all brain tumor patients
who underwent both task-based fMRI language mapping and
rs-fMRI at Brigham and Women’s Hospital between September
1st, 2012 and August 1st, 2018. The inclusion criteria were:
(1) diagnosis of MBT, defined by a final pathology diagnosis
of high-grade brain tumor (WHO III-IV) according to the
2016 World Health Organization Classification of Tumors of
the Central Nervous System (Louis et al., 2016); (2) brain
tumor located in the left hemisphere; (3) presurgical fMRI
assessment with SC and AG tasks, and resting state (RS). In
total, 47 patients with MBTs were found eligible for inclusion
in the study, 22 females (54.5 ± 10.1 years) and 25 males
(57.6 ± 17.3 years). The MBTs included primary and recurrent
glioblastoma, anaplastic astrocytoma, primary and recurrent
anaplastic oligodendrogliomas, and metastases. All the patients
were native English speakers, and none were fluent in a
second language. The patients’ demographic information is
reported in Table 1, including handedness determined by the
Edinburgh Handedness Inventory (EHI) (Oldfield, 1971) and
language dominance assessed by clinical fMRI reports (consisting
of a qualitative assessment of the activation lateralization
during language tasks in the entire brain, performed by
a neuroradiologist).

All the procedures of this study were in accordance with
the Declaration of Helsinki and approved by the Partners
Institutional Review Board. The study protocol was fully
explained to the patients prior to the acquisition of fMRI, and
then patients provided written informed consent for research use
of their imaging and clinical data.

Image Acquisition
Prior to MRI scanning, the patients underwent standard MR
screening and were instructed on how to perform the language
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TABLE 1 | Demographic and clinical characteristics of the patients.

Sex p-Value

Female (n = 22) Male (n = 25)

Age (mean ± SD, years) 54.5 ± 10.1 57.6 ± 17.3 0.135a

Handedness, number of patients (median EHI value) 0.567b

Left (EHI < −25) 3 (−50) 4 (−75)

Right (EHI > + 25) 18 (100) 18 (97.5)

Ambidextrous (−25 < EHI < + 25) 0 2 (0)

Tumor location (number of patients) 0.343b

Frontal 5 6

Temporal 9 13

Parietal 3 1

Insula 0 2

Occipital 1 0

Frontotemporal 2 0

Frontoparietal 1 2

Frontoinsula 0 1

Temporoparietal 1 0

Tumor classification 0.559b

GBM (recurrent GBM) 15 (7) 20 (8)

Anaplastic astrocytoma 2 3

AO (recurrent AO) 3 (2) 1 (0)

Metastasis 2 1

Tumor volume (median, IQR, cm3) 23.1 (8.5–34.2) 19.2 (9.9–48.8) 0.874a

Language dominance 0.611b

Left 17 22

Right 2 1

Bilateral 3 2

Seizures, number of patients 0.679b

No 17 18

Unknown 5 7

AED, number of patients 0.291b

Yes 10 17

No 8 5

Unknown 4 3

aMann–Whitney U-test, bChi-Squared Test of sex differences. AED, anti-epileptic drug; AO, anaplastic oligodendrogliomas; EHI, Edinburgh Handedness Inventory; GBM,
glioblastoma; IQR, interquartile range; SD, standard deviation. Language dominance was assessed by the clinical fMRI report (consisting of a qualitative assessment of
the activation lateralization during language tasks in the entire brain, performed by a neuroradiologist). Seizures were tallied in the period of 24 h preceding the scan and
the period of the scan.

tasks. Patients did not receive fMRI (and were excluded from this
study) if they had any contraindications to MR scanning or failed
to understand the task instructions.

Structural and functional MRI was performed on a 3.0
Tesla Siemens scanner (Siemens Trio, Verio, Skyra, and
Prisma Systems, Munich, Germany; see details of scanners
in Supplementary Material S1) with a 20-channel head coil.
Participants were placed in a supine position with their
head fixed by positioning cushions to minimize head motion
artifacts. BOLD fMRI was acquired using single-shot T2∗-
weighted gradient echo planar imaging (EPI) with the following
parameters: repetition time (TR) = 2000 ms, echo time
(TE) = 30 ms, flip angle = 85◦, Matrix = 64 × 64, field of view
(FOV) = 220 mm × 220 mm, voxel size = 3.44 × 3.44 × (4.0 or
5.0) mm3, 24 or 32 axial slices, ascending interleaved sequence.

A high resolution T2 weighted image was also acquired for the
clinical fMRI report. Structural MRI was performed for surgical
planning as clinically indicated, including a high resolution
T1 weighted anatomical image with contrast (gadolinium)
administration (axial 1 mm slices). The structural images were
used for spatial co-registration and normalization of the fMRI.

Stimulus Paradigm
The fMRI language tasks consisted of SC and AG. The SC
task alternates between a high-level control condition in which
the patient is shown non-pronounceable letter strings, and an
experimental condition in which coherent sentences missing a
single word are shown and the patient is instructed to complete
the sentence silently. Six cycles of the control followed by the
SC conditions are presented for a total duration of 4 min.
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In the AG task, the patient is presented with a single word,
and is instructed to silently think of an antonym to that
word. This condition alternates with a control condition in
which a crosshair is shown. Six cycles of the AG and control
conditions are presented for a total duration of 5 min. The
stimuli were presented using a visual and audio stimulation
system (Nordic Neurolab, Bergen, Norway). During the rs-fMRI
scan, participants were instructed to keep still with their eyes
closed for a duration of 4 (6 patients), 5 (23 patients), or
7 min (18 patients).

Brain Tumor Mapping
Brain tumor mapping was performed to defend against the
possibility of a confounding effect of sex on tumor location.
In each patient, we defined a conservative brain tumor mask
that included a prior resection cavity and surrounding edema,
as determined by both high density and proximity to the
tumor boundary in the T1-enhancement MRI. Brain tumor
masks were semi-automatically drawn on the T1-enhancement
MRI by a post-doctoral research fellow and reviewed by
a clinical fellow using the Brainlab Surgery Platforms and
Software1 and 3D Slicer2. Both investigators were blinded to
the patients’ clinical information. The brain tumor volume was
calculated in each patient based on the brain tumor mask.
The transformation matrix created in the normalization process
(see below fMRI data preprocessing) was applied to all brain
tumor images for registration to the standard MNI-152 template
(1 mm isotropic voxels) using FLIRT (FMRIB’s Linear Image
Registration Tool3).

fMRI Preprocessing
fMRI analysis was performed using FSL (FMRIB Software
Library Version 6.004) (Jenkinson et al., 2012). The first five
dummy scan volumes were discarded to allow for stabilization
of the BOLD signal. fMRI pre-processing included (1) head
motion correction using Motion Correction FLIRT (MCFLIRT)
(Jenkinson et al., 2012); (2) non-brain tissue removal of
functional images using the default Brain Extraction Tool
(BET) (Smith, 2002); (3) indirect normalization; (4) non-
linear spatial smoothing using a Gaussian kernel with a full
width at half maximum (FWHM) value of 6 mm; (5) high-
pass filtering to remove linear drifts and low frequency noise.
For rs-fMRI, additional preprocessing steps were performed,
including denoising using CompCor strategy implemented in
CONN Toolbox5 (Behzadi et al., 2007), and bandpass filtering
(0.008–0.09 Hz).

Normalization of brain images into a standard space is
necessary for comparison across individuals but challenging
in the presence of extensive brain pathology related to
a tumor. For example, it may be difficult to determine
the boundary between gray matter and the surrounding

1https://www.brainlab.com
2https://www.slicer.org/
3https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FLIRT
4https://fsl.fmrib.ox.ac.uk/fsl
5http://www.nitrc.org/projects/conn

cerebral spinal fluid filled spaces in highly progressive MBT.
We employed an optimized brain extraction algorithm for
brains with pathological structures which has shown better
performance on brain tissue extraction than other available
tools (Lutkenhoff et al., 2014). To facilitate group level analyses,
the fMRI images were indirectly normalized to the Montreal
Neurological Institute (MNI) space. A binary lesion mask was
first created and used to weight the linear registration of
the functional images to the T1 images, and subsequently to
the standard MNI-152 template using cost function masking
(Brett et al., 2001; Andersen et al., 2010) implemented
with FMRIB’s Linear Image Registration Tool (FLIRT v6.0)
(Jenkinson et al., 2002, 2012). These steps are available in
the FMRI Expert Analysis Tool (FEAT v6.0) module in the
FSL package. An example of the optimized normalization
procedure in one patient with a large brain tumor is shown in
Supplementary Material S2.

Task-Based fMRI Analysis
The first-level fMRI analysis was carried out using the general
linear model (GLM) module of FSL. The resulting z-maps
were non-parametrically thresholded using a cluster threshold of
Z > 3.1 (p < 0.05, corrected for multiple comparisons). Motion
signals were discarded from fMRI by regressing out a confound
matrix consisting of the 6 motion parameters.

For the second-level analysis (fixed-effects), a two-way
ANCOVA (sex × language task) was performed using
GLM and covariates of age, tumor volume, tumor location,
handedness, and scanner type. The tumor location was coded
according to the lobe (frontal, temporal, insula, parietal,
occipital, frontotemporal, frontoparietal, frontoinsula, and
temporoparietal). The continuous (age and tumor volume) and
categorical (tumor location, handedness scores, and scanner
type) covariates were mean-centered across all participants
by subtracting the overall mean value from each covariate.
The resulting z-maps were non-parametrically thresholded
using a cluster threshold of Z > 3.1 (p < 0.05, corrected for
multiple comparisons).

Language lateralization was assessed for each task and
for the combination of tasks using a laterality index (LI)
calculated based on the amplitude of activation in the left and
right hemispheres in anatomically-defined language regions-
of-interest (ROIs) (Rolls et al., 2015). The anterior language
ROI included the pars opercularis, pars triangularis, and pars
orbitalis of the inferior frontal gyrus (IFG). The posterior
language ROI included the posterior aspect of the superior and
middle temporal gyri (STG/MTG), angular gyrus (AG), and
supramarginal gyrus (SMG) [Talairach y coordinates−28 to−59
(Ochiai et al., 2004; Liebenthal et al., 2014)]. All ROIs were
then inverted into patient-individual space using FSL command-
line utilities. The LI calculation was adjusted to correct for
the possibility that language ROIs were affected by the lesion.
In each patient, the areas of overlap between the lesion and
the language ROIs were masked and non-lesioned language
ROIs were created. The lesion-free anterior and posterior
language ROIs, and their combination (anterior + posterior),
in each hemisphere, were used to compute the LI using
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a Lesion-Adjusted Formula (Dietz et al., 2016), as follows:

LI =
# Left Active Voxels

Left Nonlesioned Voxels −
# Right Active Voxels

Right Nonlesioned Voxels
# Left Active Voxels

Left Nonlesioned Voxels +
# Right Active Voxels

Right Nonlesioned Voxels

,

where active voxels were tallied only within the non-lesioned
portion of each ROI. Language lateralization was defined as left
(LI ≥ 0.2), right (LI ≤ −0.2), or bilateral (−0.2 < LI < 0.2)
(Binder et al., 1996; Unadkat et al., 2019).

Resting-State Functional Connectivity
(RSFC) Analysis
The seed-to-voxel RSFC analysis across the whole brain
was performed using the CONN Toolbox v.18.a http://www.
nitrc.org/projects/connand SPM12 (Welcome Trust Centre for
Neuroimaging, UCL, United Kingdom) running in MATLAB
R2018a (MathWorks, Inc., Natick, MA, United States).

The supplementary motor area (SMA) was selected as the seed
for functional connectivity analysis because this area showed a
main effect of sex in the ANCOVA and none of the participants
had a tumor infiltrating this area. The effect of sex on SMA
functional connectivity was corrected for multiple comparisons
using the seed-level false discovery rate (FDR) approach with
a significance threshold of p < 0.05 (two-sided). The same
covariates were used in the RSFC analysis as in the task-
based fMRI analysis.

Statistical Analysis
The statistical analyses of clinical characteristics were performed
in an open-source statistical software package, JASP (JASP
Version 0.92.0, University of Amsterdam, Netherlands6)
(Marsman and Wagenmakers, 2017). Group differences in
continuous clinical variables were determined using the non-
parametric Mann–Whitney U-test or the two-sample Student’s
t-test, depending on the distributions of the variables. Group
differences in categorical variables were determined using the
Pearson χ2 test. The statistical significance threshold was set at
p < 0.05 (two-tailed) for all the analyses.

RESULTS

Clinical Characteristics
The patients’ demographic and clinical characteristics are
reported in Table 1. The number of patients with left, right,
and ambidextrous handedness, as determined by EHI, was
7, 36, and 2, respectively (two patients’ EHI information
was missing). The number of patients with left, right, and
bilateral hemispheric dominance for language, as assessed
by clinical fMRI, was respectively, 39 (33 right-handed,
4 left-handed, and 1 ambidextrous), 3 (1 right-handed, 2
left-handed), and 5 (2 right-handed, 1 left-handed, and
1 ambidextrous). There were no significant differences
between the female and male patients in the demographic

6https://jasp-stats.org/

FIGURE 1 | Brain tumor location by sex. (A) The aggregate map of brain
tumor location in male patients. The peak tumor locations are in in the medial
aspect of the left middle temporal [9/25 patients; peak coordinate (x, y, z):
–34, –15, –10] and inferior frontal (6/25 patients; peak coordinate: –28, 25, 0)
cortex. (B) The aggregate map of tumor location in female patients. The peak
tumor location is in the lateral aspect of the left posterior middle temporal
gyrus (MTG) (7/22 patients; peak coordinate: –52, –42, 1). The heat maps
represent the number of patients with a tumor infiltrating the brain at each
location.

and clinical characteristics, including age (p = 0.135),
handedness (p = 0.567), tumor location (p = 0.343),
pathological classification (p = 0.559), tumor volume
(p = 0.874), and language dominance based on the fMRI
clinical report (p = 0.611).

The aggregate map of brain tumor location in male patients
(Figure 1A) shows that the peak tumor locations in males were
in the medial aspect of the left middle temporal [9/25 patients;
peak coordinate (x, y, z): −34, −15, −10] and inferior frontal
(6/25 patients; peak coordinate: −28, 25, 0) cortex, whereas
the peak tumor location in females was in the lateral aspect of
the left posterior middle temporal gyrus (MTG) (7/22 patients;
peak coordinate: −52, −42, 1) (Figure 1B). The tumor location
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was therefore included as a covariate in all the fMRI analyses,
and the interpretation of the fMRI results was constrained in
the brain areas differentially affected by tumor in the male and
female patients.

Whole Brain Activation
Figure 2 and Table 2 report the main effect of sex across language
tasks. Compared with the females, the males showed greater
activation in the left SMA, bilateral precentral gyrus, left inferior
parietal lobule (IPL), and right Rolandic operculum. Compared
with the males, the females showed greater activation in small
volumes of the right cuneus, left inferior opercular and triangular
parts of the IFG, and left superior parietal lobule (SPL).

Figure 3 and Table 3 report the effect of sex in each language
task. In the SC task, the males showed greater activation than
the females in the bilateral precentral gyrus, left SMA, and left
IPL, and the females showed greater activation than the males
in the right precuneus, left pars opercularis, and left SPL. In
the AG task, the males showed greater activation in the left
precentral gyrus and SMA, left precuneus, left IPL, and right
Rolandic operculum, while the females showed greater activation
in the right precuneus, left SPL, and left pars triangularis. The
main effect of language task across sex and the interaction
between task and sex are reported in Supplementary Materials
S3, S4, respectively.

Language Lateralization
Table 4 reports the lesion-adjusted LI for males and females in
the language ROIs for each task and the combination of tasks.
Only the posterior language ROI in the SC task showed sex
differences in LI (p = 0.015). This ROI was significantly more left
lateralized in the males.

SMA-Based Functional Connectivity
The left SMA was selected as the seed for functional connectivity
analysis because this area showed sex differences in the
performance of language task-based fMRI, and it was well outside
the areas afflicted by tumor in all participants (Figure 4). The
results of the functional connectivity analysis are reported in
Figure 5 and Table 5. The males compared to the females
showed increased functional connectivity between the left SMA
and the left cerebellum, left and right ventromedial prefrontal
cortex (vmPFC), right lingual gyrus, and anterior cingulate cortex
(ACC) (Figure 5, cold color rendered areas). Compared to the
males, the females showed increased functional connectivity
between the left SMA and the bilateral inferior TP, and right
putamen (Figure 5, warm color rendered areas).

DISCUSSION

In this retrospective study, the activation patterns induced by
SC and AG tasks used for presurgical language mapping were
compared between male and female patients with MBT. The
male (n = 0.25) and female (n = 22) patients were matched
on all the demographic and clinical variables. Although brain
tumor location overlapped considerably between the male and

female patients, it involved the medial aspect of the left middle
temporal and inferior frontal cortex in more male patients, and
the lateral aspect of the left posterior MTG in more female
patients. Tumor location was therefore included as a covariate
in all the fMRI analyses, and the interpretation of fMRI results
was constrained in the brain areas differentially affected by tumor
in the male and female patients. The findings revealed a main
effect of sex across language tasks, including in areas spared by
lesion in all patients. The males relative to the females showed
stronger activation in relatively extensive brain areas, including
areas associated with generalized cognitive (i.e., not language-
specific) processing (left SMA and IPL, bilateral precentral gyrus).
The females relative to the males showed stronger activation in
limited brain areas, including areas classically associated with
language processing (left IFG). Sex differences were also observed
in the RSFC patterns of the left SMA: in males relative to females
the left SMA connectivity tended to be stronger with midline
areas (ventromedial prefrontal cortices, lingual gyrus, anterior
cingulate) and the cerebellum, and in females relative to males
it tended to be stronger with lateral temporal areas (bilateral
inferior temporal poles).

Brain Areas Showing Males > Females
Activations
Compared to the females, the males showed greater activation in
extensive brain areas including the left SMA and IPL, bilateral
precentral gyrus, and right Rolandic operculum, across language
tasks. The SMA is implicated mainly in motor control (Goldberg,
1985; Tanji, 1994). However, lesion and stimulation studies
suggest that the SMA also plays a pivotal role in higher-order
cognitive control, including control of speech perception and
speech initiation (Krainik et al., 2003; Tourville and Guenther,
2011; Hertrich et al., 2016). Neurosurgical resection involving
the SMA may lead to the “SMA syndrome” characterized by
contralateral akinesia and mutism (Laplane et al., 1977; Bannur
and Rajshekhar, 2000). The left SMA was shown to be recruited
during sentence-level (Zacà et al., 2012, 2013; Black et al., 2017)
and word-level (Wise et al., 1991; Warburton et al., 1996; Black
et al., 2017) language processing. Interestingly, the SMA was
found to more frequently be affected by low-grade brain tumors
than MBTs (Duffau and Capelle, 2004), consistent with our
finding of no tumor infiltration in the SMA in any of the patients.
Because the SMA was spared by lesion in the present patient
sample, the finding of greater left SMA activation in males relative
to females may specifically be attributed to greater engagement of
this area in language processing in the males.

Areas in the bilateral precentral gyrus have also been shown to
support motor aspects of language function (Price, 2000, 2010).
Damage to the left precentral gyrus is associated with speech
production deficits (Mori et al., 1989; Itabashi et al., 2016).
A meta-analysis of studies examining brain volume and density
has previously reported a significantly larger gray matter volume
in the left precentral gyrus in males relative to females (Ruigrok
et al., 2014). In the present study, the effect of sex on activation in
the left precentral gyrus was extensive, also covering part of the
right precentral gyrus, and could not be explained strictly by a
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FIGURE 2 | Main effect of sex across the two language tasks. The areas rendered by the red-yellow color scale indicate greater activation in females compared to
males, whereas the areas rendered by the blue-light blue color scale indicate greater activation in males relative to females (Z-score > 3.1, cluster size > 200 voxels,
corrected p < 0.05).

TABLE 2 | Main effect of sex across the two language tasks.

Cluster size Brain regions L/R BA Peak MNI coordinates Z-values

x y z

Female > Male

403 Cuneus/precuneus R 7 8 −78 38 7.62

286 Pars triangularis/opercularis L 44 −42 14 22 9.26

230 Superior parietal lobule L 7 −36 −48 62 6.49

Male > Female

7542 SMA L 6 −2 −2 66 12.17

Precentral gyrus L 6 −46 −10 50 13.66

Post-central gyrus L 7 −6 −46 66 6.42

Precentral gyrus R 6 46 −6 42 6.28

Superior frontal gyrus L 8 −6 42 48 5.96

2303 Inferior parietal lobule L 39/7 −42 −58 48 8.41

458 Rolandic operculum R 40 54 −24 24 6.75

286 Posterior cingulate gyrus R 23 0 −30 34 6.75

Z-score > 3.1, cluster size > 200 voxels, corrected p < 0.05.BA, Brodmann area; MNI, Montreal Neurological Institute; SMA, supplemental motor area; L, left; R, right.

sex difference in tumor location (because the incidence of tumor
in the left precentral gyrus was higher in the males).

The left IPL (Brodmann area 40) is part of a dorsal auditory-
motor stream implicated in speech perception and phonological
processing (Liebenthal et al., 2013; Hickok and Poeppel, 2015;
Liebenthal and Möttönen, 2018). However, in this area, the
finding of greater activation in the males may be confounded by
the greater occurrence of lesions in the females.

Taken together, the findings of stronger activation of the
left SMA and bilateral precentral gyrus are consistent with the

possibility of greater engagement of a network of areas associated
with motor and speech control during language processing in
males relative to females.

Brain Areas Showing Females > Males
Activations
Compared to the males, the females showed greater activation in
the left IFG, left SPL, and right cuneus/precuneus in both tasks.
The left pars opercularis in the IFG is thought to be an important
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FIGURE 3 | Sex differences in each language task. (A) Sex difference in the sentence completion (SC) task. (B) Sex difference in the antonym generation (AG) task.
The areas rendered by the red–yellow color scale indicate greater activation in females relative to males, whereas the areas rendered by the blue-light blue color
scale indicate greater activation in males relative to females (Z-score > 3.1, cluster size > 150 voxels, corrected p < 0.05).
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TABLE 3 | Sex differences in each language task (post hoc analysis).

Task Cluster size Brain regions L/R BA Peak MNI coordinates Z-values

x y z

SC task Female > Male

691 Precuneus R 7 8 −76 38 4.03

450 Pars opercularis L 44 −40 14 18 7.39

364 Superior parietal lobule L 40 −30 −48 68 3.88

Male > Female

5069 Precentral gyrus L 6 −36 −6 60 12.82

SMA L 6 −2 1 65 10.58

Precentral gyrus R 6 36 −18 68 5.47

1221 Inferior parietal lobule L 7 −38 −58 50 6.06

413 Rolandic operculum R 40 54 −14 24 4.90

AG task Female > Male

1202 Precuneus R 7 6 −78 42 7.55

391 Superior parietal lobule L 40 −40 −42 62 6.64

426 Pars triangularis L 45 −42 14 22 6.47

Male > Female

5068 Precentral gyrus L 4 −44 −10 54 9.36

SMA L 6 −4 −4 70 8.53

1439 Precuneus L 31 0 −64 32 7.43

Angular gyrus/IPL L 39/40 −44 −58 46 7.39

168 Rolandic operculum R 40 54 −24 24 5.02

Z-score > 3.1, cluster size > 150 voxels, corrected p < 0.05.AG, antonym generation; BA, Brodmann area; MNI, Montreal Neurological Institute; SC, sentence completion;
SMA, supplemental motor area; L, left; R, right.

node of the articulatory network involved in speech production
and phonological processing, as well as syntactic processing
(Geschwind, 1970; Ojemann, 1979; Poeppel, 1996; Binder et al.,
2009). Structural brain imaging studies in healthy adults have
revealed larger gray matter volumes in the left IFG (opercularis
and triangularis) in females compared to males (Im et al., 2006;
Ruigrok et al., 2014; Kurth et al., 2017). Functional brain imaging
studies in healthy adults have also indicated that females show
greater activation in the IFG than males during emotional speech
perception (Schirmer et al., 2004) and mental rotation (Hugdahl
et al., 2006) tasks. Our findings are consistent with these previous
reports suggesting sex differences in the function of the left IFG.
However, the present findings are limited by the fact that the male
patients had a higher occurrence of tumors in medial aspect of the
left IFG, which could have contributed to the finding of greater
left IFG activation in the females.

The region of the cuneus and precuneus has been associated
with high-level cognitive functions including episodic memory
retrieval (Lundstrom et al., 2003; Sadigh-Eteghad et al.,
2014), visuospatial imagery (Cavanna and Trimble, 2006), self-
reflection, and consciousness (Vogt and Laureys, 2005; Cavanna
and Trimble, 2006). Studies in patients with a disorder affecting
language, such as primary progressive aphasias (Rohrer et al.,
2010) and schizophrenia (Mashal et al., 2014), support the notion
that this area may be involved in phonological processing. The
common finding of increased activation of the precuneus and
posterior cingulate in tasks emphasizing semantic processing
has been tied to a role for this general area (similar to that
of the parahippocampal gyrus) as an interface between the

semantic memory and episodic retrieval systems by virtue of
strong connectivity with the hippocampus (Binder et al., 2009).
In the present study, the greater activation of the precuneus in
the females relative to the males could reflect a greater reliance
on episodic memory for semantic processing in the females.

Increased SMA RSFC in Males Versus
Females
We selected the left SMA as the seed for functional connectivity
analysis because this area showed sex differences, and it was well
outside the area afflicted by tumor in all participants (Figure 4).
While the SMA is classically associated with motor function, as
evident from the fact that brain surgery in this region can lead to
the SMA syndrome consisting of contralateral transient akinesia,
mutism, and post-operative motor and speech production deficits
(Laplane et al., 1977; Bannur and Rajshekhar, 2000; Oda et al.,
2018), there is also evidence to suggest that this area supports
certain receptive aspects of language, such as inner speech during
language encoding (Hertrich et al., 2016), lexical disambiguation
(Chee et al., 1999), syntax and prosody integration (Kotz and
Schwartze, 2010), and context-tracking (Bradley et al., 2013).
The purpose of the RSFC analysis was to examine the possibility
of sex-specific functional connectivity of the left SMA with
distributed brain areas supporting language.

In the males relative to the females, increased RSFC
was seen between the left SMA and the bilateral vmPFC,
right ACC and lingual gyrus, and left cerebellum. The role
of the vmPFC is not well-understood: this area has been
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TABLE 4 | Lateralization index results within the language ROI in the
dominant hemisphere.

Task Laterality p-Value*

Left Bilateral Right

Anterior ROI

SC Female 15 6 1 0.318

Male 19 3 3

AG Female 14 7 1 0.552

Male 12 11 2

SC + AG Female 15 5 2 0.988

Male 17 6 2

Posterior ROI

SC Female 11 6 5 0.015

Male 22 1 2

AG Female 11 8 3 0.452

Male 17 6 2

SC + AG Female 12 6 4 0.412

Male 18 5 2

Global

SC Female 15 4 3 0.431

Male 21 2 2

AG Female 11 9 2 0.645

Male 15 7 3

SC + AG Female 12 8 2 0.298

Male 19 5 1

*Non-parametric Mann–Whitney U-test. AG, antonym generation; SC, sentence
completion; ROI, region-of-interest.

suggested to participate in high-order mental tasks, such as
decision making and assessment of one’s own mental and
emotional state (Ramnani and Owen, 2004; Gilbert et al.,
2006; Koechlin and Hyafil, 2007; Koechlin, 2011). The ACC,
directly structurally connected to the SMA via several short
U-fibers (Vergani et al., 2014), is also thought to be involved
in high-order functions such as conflict monitoring (Botvinick
et al., 2004), cognitive control (Bush et al., 2000), reward-
based decision making (Apps et al., 2016; Rigney et al., 2018),
and serving as an interface between emotion and cognition
(Allman et al., 2001).

The lingual gyrus, in contrast, is a part of the visual cortex
involved in the processing of visual features including letters
and visual words (Machielsen et al., 2000). Structurally, males
have been shown to have larger GMV in the lingual gyrus (Lotze
et al., 2019), and this may contribute to the sex difference in the
SMA-lingual RSFC pattern observed here. The SMA is also not
directly structurally connected with the lingual gyrus, such that
the functional connectivity between the two areas may reflect the
integration of distinct brain networks (Sporns, 2013).

Overall, the findings are consistent with the possibility that
in males relative to females, the functional connectivity of the
left SMA was stronger with areas implicated in non-linguistic
cognitive processing and control. This domain-non-specific
perceptual and cognitive functional network may contribute
more significantly to ongoing mental processing in males
compared to females.

Increased SMA RSFC in Females Versus
Males
Compared to the males, the females showed increased RSFC
between the left SMA and bilateral inferior TP and right putamen.

The TP has been implicated in language processing, based on
findings in patients with semantic dementia showing activation
in this area during semantic tasks such as object naming and
word recognition (Tsapkini et al., 2011; Bonner and Price, 2013;
Pascual et al., 2015; Collins et al., 2017). Studies of patients with
TP atrophy suggest that patients suffering from semantic variant
primary progressive aphasia tend to have the maximal atrophy
in the left TP (Collins et al., 2017), whereas patients with right
TP atrophy often suffer from social-emotional deficits along with
prosopagnosia (Chan et al., 2009; Irish et al., 2013). The putamen
is structurally connected with the TP (Middleton and Strick,
1996; Fan et al., 2014) and has also been associated with language
processing (Vigneau et al., 2011; Viñas-Guasch and Wu, 2017).

Taken together, the findings are consistent with the possibility
that in females relative to males, the functional connectivity of
the left SMA was stronger with areas implicated in semantic
processing, including areas specialized in the processing of
emotional and social concepts. This language and emotion
processing functional network may contribute more significantly
to ongoing mental processing in females compared to males.

Language Lateralization
Prior work suggests that activation in the posterior temporal
cortex is more left lateralized in males relative to females in
a narrative listening block-design task (Kansaku et al., 2000).
Consistent with this work, we also found greater left lateralization
in the posterior language area (specifically pMTG) in males. The
present finding was limited to the SC task, in line with the idea
that sex differences in language lateralization may be language
paradigm-dependent (Kitazawa and Kansaku, 2005).

Limitations
The study had several limitations. First, the lesion location
differed between males and females in our sample: more females
had a lesion involving the lateral aspect of the posterior middle
temporal cortex whereas more males had a lesion involving
the medial aspect of the middle temporal and inferior frontal
cortex. To counter the possibility that tumor effects may have
induced a bias in the comparison across sex in our sample,
the ANCOVA conducted to assess the effect of sex included
tumor location and tumor volume as covariates of no interest.
These covariates were found to not have a significant effect
(p = 0.343 for tumor location and p = 0.874 for tumor volume).
Nevertheless, the findings of greater activation of the left IFG
in the females compared to the males, even though consistent
with other literature in healthy subjects, could in the present
study be due to the greater occurrence of lesions in this area
in the males compared to the females. The greater activation
of the left IPL in the males compared the females could be
explained by the greater occurrence of tumors in this area in
the females compared to the males. Future prospective studies
with larger sample sizes should be conducted to overcome the
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FIGURE 4 | The overlap map of fMRI activation and brain tumor distribution. The white and pink overlays represent the areas affected by brain tumor in the males
and the females, respectively. The blue and red overlays represent the fMRI activation in the two language tasks in the males and the females, respectively. Note that
the supplementary motor area (SMA) (indicated by the yellow circles) is completely outside of the areas afflicted by tumor in both males and females.

limitations of studying patients with MBTs in variable locations.
Furthermore, comparison of sex effects between patients with
MBT and neurologically healthy controls may inform the issue
of pre-existent versus tumor-related sex differences.

Second, patients were included in this study on the basis
of having a MBT in the left hemisphere, and regardless of
handedness, because at our institution presurgical language fMRI
is ordered for all patients with a left hemisphere MBT. The
reasoning is that left hemisphere tumors are likely to be near
or within language regions even in individuals with atypical
language dominance. In the current sample of 47 patients, three
patients (two females) were considered to have right-hemisphere
language dominance and five patients (three females) were
considered to have bilateral language dominance. To counter the
possibility that differences in hemispheric language dominance
may have induced a bias in the comparison across sex in our
sample, we performed a chi-squared test for the relationship
between language dominance and sex. There were no statistically
significant differences in the number of patients with atypical
language dominance across sex (p = 0.611). Future studies with
a larger number of patients with atypical handedness could
investigate the effect of this factor on the relationship between
sex and language function.

Third, formal neuropsychological assessments of speech and
language were not performed on the patients. Based on the
clinical notes provided by the neurosurgeons, we classified
the patients into four language impairment types: (1) normal
language function (18 patients, 8 females); (2) receptive aphasia
(4 patients, none female); (3) expressive aphasia (21 patients,
12 females); and (4) mixed aphasia (4 patients, 2 females).
We performed a chi-squared test for the relationship between
language impairment and sex. There were no statistically
significant differences in the number of patients with different
language impairment type across sex (p = 0.214). Therefore,
language impairment type determined based on the clinical notes
was not included as a variable in the present analyses. However,
we anticipate that the degree of impairment in specific aspects
of speech and language function could importantly interact with
the effect of sex on presurgical language mapping. Thus, future
studies investigating the influence of sex on language would
benefit from formal assessment of language functions.

Finally, 27 of the patients participating in this study
were taking anti-epileptic drugs (AEDs) such as topiramate,
carbamazepine, or lamotrigine at the time of scanning. None of
the patients had a seizure within 24 h of scanning (Table 1).
Taking AEDs and having a seizure may affect language function
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FIGURE 5 | Supplementary motor area resting state functional connectivity maps. The blue color rendered areas show increased FC with the SMA in males, and the
red color rendered areas show increased FC with the SMA in females (cluster size > 200 voxels, corrected p < 0.05).

TABLE 5 | Results of seed-based correlation analysis using SMA as seed region.

Cluster size Brain regions L/R BA Peak MNI coordinates Effect size t-Values

x y z

Female > Male

1130 Inferior temporal pole R 20 28 −8 −44 0.24 5.47

595 Inferior temporal pole L 20 −24 −6 −42 0.21 4.30

287 Putamen R / 30 2 2 0.23 3.78

Male > Female

1995 Cerebellum L / 10 −82 −30 0.23 4.73

1027 Ventromedial prefrontal cortex L 10 0 58 −4 0.24 5.31

Ventromedial prefrontal cortex R 10 2 64 −2 0.24 5.31

1235 Lingual gyrus R 30 16 −48 4 0.25 4.43

609 ACC R 24 6 24 12 0.24 5.38

Cluster size > 200 voxels, corrected p < 0.05. ACC, anterior cingulate cortex; BA, Brodmann area; MNI, Montreal Neurological Institute; L, left; R, right.

and language mapping (Aghakhani et al., 2004; Szaflarski and
Allendorfer, 2012; Xiao et al., 2018). However, AED use and
seizures numbers did not differ significantly between the male
and female patients in this study (Chi-Squared Test, p > 0.05).
Therefore, the risk of AED or seizure effects confounding the
effects of sex observed here was considered to be relatively small.

CONCLUSION

This study aimed to examine the effect of sex on the pattern
of activation and functional connectivity of the brain measured

with fMRI presurgical language mapping in patients with a
MBT. Across SC and AG tasks, females relative to males
showed greater activation in limited areas, including the left IFG
classically associated with language processing. In contrast, males
relative to females showed greater activation in extended areas
beyond the classic language network, including in the SMA and
precentral gyrus. The rs-fMRI functional connectivity of the left
SMA in the females was stronger with TP areas implicated in
semantic and emotion processing, and in the males with several
midline areas implicated primarily in cognitive control. These
findings are overall supportive of theories of greater reliance
on specialized language areas in females relative to males, and
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generalized brain areas in males relative to females, for language
function. Importantly, the findings suggest that sex could affect
fMRI language mapping. Thus, considering sex as a variable in
presurgical language mapping merits further investigation.
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