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Abstract
Background: There is recently great interest in haplotype block structure and haplotype tagging
SNPs (htSNPs) in the human genome for its implication on htSNPs-based association mapping
strategy for complex disease. Different definitions have been used to characterize the haplotype
block structure in the human genome, and several different performance criteria and algorithms
have been suggested on htSNPs selection.

Results: A heuristic algorithm, generalized branch-and-bound algorithm, is applied to the searching
of minimal set of haplotype tagging SNPs (htSNPs) according to different htSNPs performance
criteria. We develop a software htSNPer1.0 to implement the algorithm, and integrate three
htSNPs performance criteria and four haplotype block definitions for haplotype block partitioning.
It is a software with powerful Graphical User Interface (GUI), which can be used to characterize
the haplotype block structure and select htSNPs in the candidate gene or interested genomic
regions. It can find the global optimization with only a fraction of the computing time consumed by
exhaustive searching algorithm.

Conclusion: htSNPer1.0 allows molecular geneticists to perform haplotype block analysis and
htSNPs selection using different definitions and performance criteria. The software is a powerful
tool for those focusing on association mapping based on strategy of haplotype block and htSNPs.

Background
Several recent genome-wide and experimental studies sug-
gested that the genome consists of chromosome regions
of strong inter-marker linkage disequilibrium (LD) (i.e.,
haplotype blocks) and has discrete boundaries defined by
recombination hotspots [1-4]. There are a few common
haplotypes of limited haplotype diversity within each
haplotype block, which can be characterized by only a

small number of haplotype tagging SNPs (htSNPs). Hap-
lotype blocks and htSNPs have great implication for asso-
ciation-based mapping of disease genes, by significantly
reducing the genotyping effort with only a modest loss of
power [5]. A new genomic map (i.e., haplotype map) for
characterizing the haplotype structure in human genome
is now underway to speed up the searching for genes
involved in complex diseases.
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A range of operational definitions has been used to iden-
tify haplotype block structures [1,2,6,7], which can be
roughly cataloged into three groups [19]. First, there are
methods based on diversity in the sequence, such as those
of Patil et al. [1] and Zhang et al. [7], which define blocks
with low sequence diversity by some diversity measure.
The second group is based on LD methods, such as that of
Gabriel et al. [2], which defines blocks with generally high
pairwise LD within blocks and low pairwise LD between
blocks. Finally, there are methods that look for direct evi-
dence of recombination, such as that of [6], using the
four-gamete test developed by Hudson and Kaplan [8]
and defining blocks as apparently recombination-free
regions.

There is still no consensus on the performance criteria of
htSNPs selection. Broadly, these criteria are categorized
into two groups. One comprises the diversity criteria
which evaluate the information captured from the origi-
nal haplotype diversity [1,9], such as the α-percent cover-
age, requiring that the total frequencies of all haplotypes
completely distinguished by the htSNPs set should be no
less than α. The other group consists of the association-
based criteria, concerned most directly with the issue of
prediction – the ability of the reduced set H to detect
unknown SNPs in the set A of all SNPs within the genome
region of interest [10].

To provide molecular geneticists more convenience in
analyzing haplotype block structures and in selecting
htSNPs, we develop a computational tool, htSNPer1.0,
with a graphical user interface (GUI) implementing the
above algorithms for block structure partition and htSNPs
selection.

Implementation
htSNPer1.0 is a computer program with a GUI for charac-
terizing the haplotype block structure and selecting
htSNPs. The core algorithm is implemented in C++ lan-
guage, and the graphic interface is coded in Java. The soft-
ware is platform-independent.

Here, we will be concerned with haplotype block partition
and htSNPs selection of unphased autosomal SNPs geno-
type data. For the block definitions that can directly han-
dle unphased genotype data such as Gabriel et al. [2] and
those based on pairwise LD [11], the unphased data are
first partitioned into blocks over which there is sufficient
restriction of haplotype diversity. Then, haplotypes are
estimated approximately within each block (by EM algo-
rithm). Finally, based on these estimated haplotypes,
htSNPs are selected according to certain htSNPs perform-
ance criterion [10]. For those block definitions that can
only handle phased haplotype data [1,6], haplotypes are
estimated first (by EM algorithm) from unphased geno-

type data. Then block partition and htSNPs selection are
both based on these estimated haplotypes.

Haplotype estimation – EM algorithm
We apply the EM algorithm used by SNPHAP to estimate
haplotypes from genotype data [18]. When the data con-
sist of a large number of SNPs, the number of possible
haplotype instances may become extremely large. In order
to avoid this problem, the program starts from the first
two SNPs and extends the solution by sequentially adding
the rest SNPs. As each new SNP is added, the number of
possible haplotypes is expanded considering all possible
larger haplotypes. After EM algorithm estimating the pos-
terior probabilities, the program deletes genotype assign-
ments with posterior probability lower than 0.001. Then
the posterior probabilities of the rest genotype assign-
ments are recomputed.

We use the EM algorithm in SNPHAP because it is simple
and fast, and can be easily integrated in our C++ code.
There are other algorithms like HAPLOTYPER [15],
PHASE [16] and PLEM [17] that are better studied and
more widely used. However, one distinctive feature of
htSNPer1.0 is to estimate haplotypes within each haplo-
type block. Within the blocks there is very limited haplo-
type diversity, so in such cases the algorithm in SNPHAP
performs reasonably well. If one likes to do the haplotype
phasing before block partition, he/she can use HAPLOTY-
PER [15], PHASE [16] or PLEM [17] to get more accurate
estimation, and then input the estimated haplotypes to
htSNPer1.0 to do the block partition and htSNP selection.

Definitions for haplotype blocks
htSNPer has integrated four haplotype block definitions:
chromosome coverage [1], average pairwise LD |D'| [11],
estimated pairwise LD confidence limits [2] with minor
modifications by Wall and Prichard [14], and no histori-
cal recombination [6].

1. Chromosome coverage [1]. A block is defined as a
region in which the sum frequencies of common haplo-
types (whose frequency is over a threshold, e.g. 0.05) is no
less than a threshold. For this definition of blocks we
apply a dynamic programming for haplotype partitioning
[7]. We define a Boolean function block (i, j) = 1 if the con-
secutive SNPs from SNPi to SNPj can be defined as a block
according to the above definition, and block (i, j) = 0 oth-
erwise. Let f (i, j) be the size of the minimal htSNP set
found by GBB algorithm (see below) for α-percent cover-
age within the block from SNPi to SNPj. Given a block par-
tition (1, i1), (i1 + 1, i2),..., (in-1 + 1, in), the total number of
htSNPs for these n blocks is f (1, i1) + f (i1 + 1, i2) +...+ f (in-

1 + 1, in). The optimal block partition is defined to be the
one that minimizes the total number of htSNPs.
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Denote Sj to be the total number of htSNPs for the opti-
mal block partition of the first j SNPs, and set S0 = 0.
According to dynamic programming theory, we have

. Through this

recursion the dynamic programming partitions the haplo-
types for the optimal block partition.

2. Average pairwise LD |D'| [11]. Within a block the aver-
age pairwise |D'| is no less than a threshold.

3. Estimated pairwise LD confidence limits [2] with minor
modifications by Wall and Prichard [14]. For details see
Additional file 1.

4. No historical recombination [6]. A block is defined as a
region without any historical recombination, which is
examined by Four Gamete Test.

The above definitions of 2, 3 and 4 do not guarantee a
unique solution for partition. In htSNPer1.0, blocks are
searched from the start of the input data and expanded as
long as possible by sequentially adding the next SNPs.

htSNPs selection criteria
htSNPer1.0 can find the minimal htSNP set of global opti-
mum. Different definitions of optimum can be derived
according to different htSNP performance criteria [10]. A
generalized definition of "optimum" can be described as
the minimal set of htSNPs that satisfies a given htSNP per-
formance criterion. For example, weighted-average haplo-
type r2 is regarded as one of the most informative
association-based htSNP performance measure by Weale
et al. [10], which is defined as following:

Weighted-average haplotype

where

and we denote  as the the frequency of
haplotypes with allele 1 at SNP i,

 as the frequency of haplo-

types in the gth htSNP-defined group (haplotypes within
each group are identical at htSNP loci), and

 as the frequency of hap-

lotypes both in the gth htSNP-defined group and with
allele 1 at SNP i.

If the htSNP performance criterion is defined as the
weighted-average haplotype r2 of the selected set of
htSNPs should be at least 90% of the maximum possible
value (which is the weighted-average haplotype r2 when
all SNPs are selected as htSNPs), then the "optimum"
according to this criterion can be described as the minimal
set of htSNPs whose weighted-average haplotype r2 is at
least 90% of the maximum possible value.

We have integrated the three htSNP performance criteria
into our htSNPer software: α-percent coverage [1],
explained proportion of Clayton's haplotype diversity [9],
and weighted-average haplotype r2 [10].

α-percent coverage: the total frequencies of all haplotypes
that are not completely distinguished by the htSNP set is
less than 1 - α.

Explained proportion of Clayton's haplotype diversity:

, where fi, fhaplo = g and fi,g are

defined in the same way as above.

Weighted-average haplotype r2 : see above.

htSNPer1.0 takes advantages of a novel heuristic algo-
rithm – Generalized Branch-and-Bound (GBB) algorithm,
which is applicable for all kinds of htSNPs performance
criteria, to search the minimal htSNPs set with both effi-
ciency and global optimum, comparing to the exhaustive
searching [7] which guarantees global optimum but runs
very slowly, and to the greedy algorithm [1,13] which is
faster but doesn't guarantee global optimum.

The GBB algorithm
Consider a block B containing N haplotypes and each
haplotype has M bi-allelic SNPs markers. Each SNP
marker can divide N haplotypes into two groups: one con-
sists of all the haplotypes with its major allele, and the
other with its minor allele. GBB algorithm is based on the
following branching rule and Generalized Prune-rule,
using the depth-first searching strategy (Figure 1).

1) Each node {T, R} in the searching tree consists of two
parts: the test-set T and the discard-set R where T is the set
of SNPs that have been selected, and R is the set of SNPs
that should not be selected for the future. If the set of all
SNPs is denoted as S, then the set of SNPs that can be used
at the node is S\(T ∪  R). The search tree starts from the
root node for which T = Φ and R = Φ.
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An example for generialized branch-and-bounnd algorithm with 4 SNPs and 4 haplotypesFigure 1
An example for generialized branch-and-bounnd algorithm with 4 SNPs and 4 haplotypes. The htSNPs perform-
ance criterion is to distinguish all the different haplotypes. The depth-first searching starts from root, exploring nodes in the 
order N1, N2,..., N7. N2 is the globally optimal solution. N3,..., N7 are all pruned from further consideration.
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2) A child node is generated by adding a SNP to T accord-
ing to the branching rule. The node is pruned if it meets
the Generalized Prune-rule.

Importance calculation
Given a certain node {T, R}, SNPs in T divide all the hap-

lotypes into t non-overlapping groups 
called equivalence classes. Any haplotypes that belong to
the same group are identical at all SNP sites in T. A bial-
lelic SNP divides all the haplotypes into two groups: Gmajor

and Gminor. To evaluate the competence of the SNP, the
importance of a SNP is defined by

Branching rule
Given a node {T, R}, sort the SNPs in S\(T ∪  R) according
to the importance calculation non-increasingly: I(SNP1

|T) ≥ I(SNP2 |T) ≥ … ≥ I(SNP|S|-|T|-|R| |T), create the chil-
dren {T ∪  SNP1, R}, {T ∪  SNP2, R ∪  SNP1}, {T ∪  SNP3,
R ∪  SNP1 ∪  SNP2}, ..., {T ∪  SNP|S|-|T|-|R|,

SNPh}, and explore the children in this order.

Generalized prune-rule
Check whether the SNP subset T meets the htSNP per-
formance criterion. If it does, prune the node when |T| ≥
U, or update U when |T| <U ; otherwise, prune the node
when |T| ≥ U or |S| - |T| - |R| < 1 where U is the size of the
best solution found so far.

The Importance Calculation in Branching rule is origi-
nally devised for the α-percent coverage criterion [1,7].
But it is also applicable for other criteria, although it may
not be the best one. Actually, one can devise specific
Branching-rule and Prune-rule according to specific
htSNPs selection criterion in the GBB framework to
achieve super efficiency and global optimization. The
GBB framework and algorithm we proposed are applica-
ble to all htSNP criteria, and are at least more efficient
than enumeration.

Results and discussion
htSNPer1.0 takes advantages of a novel heuristic algo-
rithm, Generalized Branch-and-Bound algorithm. It is
applicable for all kinds of htSNPs performance criteria.
The algorithm is of high computational efficiency and it
can reach the global optimum.

htSNPer1.0 has integrated three htSNPs performance cri-
teria and four haplotype block definitions. Besides geno-
type data, htSNPer1.0 can also handle haplotype data
directly. It takes a simple flat-file as input. A dialogue box

is used to set up parameters and for htSNPs selection algo-
rithm (GBB algorithm and greedy algorithm). In the
tabbed-output panel, htSNPer1.0 demonstrates the
results both in the form of graphics and plain-texts. A
graphical representation of haplotype block partition and
htSNPs selection is provided in the graphic panel (Figure
2). In this example, there are 51 SNPs and 50 haplotypes
in its input. The LD-based definition was used for haplo-
type partition, weighted-average haplotype r2 for htSNPs
performance criteria, and branch-and-bound algorithm in
htSNPs selection. In the text-output panel, there is more
information about the analysis and results, such as the
methods/criterion used on haplotype block definition
and htSNPs selection. Users can also select different hap-
lotype definitions and htSNPs performance criteria to
compare the results from the result tree in the left panel.

Application example
Study sample
In order to compare the time used and the htSNPs num-
bers chosen with different softwares, we used the human
chromosome 21 haplotype [1] as the test data. This data-
set consists of 20 haplotype samples, and 24,047 com-
mon SNPs (minor allele frequency no less than 0.10).
About 21% of the chromosome 21 data are missing data.

Results based on various haplotype block definitions and htSNP 
Selection Criteria
Results of the three different htSNPs performance criteria
by htSNPer1.0:

Alpha-percent coverage: 3,953 blocks and 5,082 htSNPs.

Haplotype Diversity: 3,055 blocks and 4,619 htSNPs.

Weighted-average haplotype r2 : with this criterion and
GBB algorithm, htSNPer can not run on our computer
because of the large amount of required memory. Using
greedy algorithm instead of GBB (see Additional file 1),
we get 3,098 blocks and 6,962 htSNPs.

Using the same data set, the same htSNPs performance cri-
terion of α-percent coverage but the different block
searching algorithm, Patil et al. [1] reported 4,135 blocks
and 4,563 htSNPs. Zhang et al. [7] reported 2,515 blocks
and 3,582 htSNPs. About 21% of the chromosome 21
data are missing data and different programs use different
strategy to handle missing data. All these contribute to the
differences between the results of the above programs.

We also ran the different programs to compare the com-
putational efficiency. The algorithms used for comparison
were the GBB algorithm in htSNPer1.0, the greedy algo-
rithm by Zhang et al. [13] and the enumeration algorithm
in Zhang et al. [7]. For comparison, we used the diversity-
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based haplotype block definition and α-percent coverage
criterion in htSNPs selection (α = 0.8). Running on our
computer with 2.4 GHz AMD Athlon processor (1GB
memory), with the block definition of Patil et al. [1], α-
percent coverage htSNPs performance criterion and a
dynamic programming for haplotype partition,
htSNPer1.0 requires 3 hours 23 minutes to identify 3,953
blocks and 5,082 htSNPs. For comparison, the greedy
algorithm in Zhang et al. [13] requires 20.74 seconds,
identifying 3,766 blocks and 8,733 htSNPs, and the enu-
meration method in Zhang et al. [7] was too slow to apply
on our computer on this human chromosome 21 dataset.
The difference in efficiency may be partially due to the dif-
ferent block partition searching strategies applied by these
three programs. Zhang et al. [13] uses greedy algorithm

for block partition, while htSNPer1.0 and Zhang et al. [7]
use dynamic programming algorithm.

Conclusion
In conclusion, htSNPer1.0 is a java-based program with
Graphic User Interface. It allows molecular geneticists to
perform haplotype block analysis and htSNPs selection
using different definitions, different performance criteria,
as well as different algorithms. The software is a powerful
tool for those focusing on association mapping based on
haplotype block and htSNPs strategy.

Availability and requirements
htSNPer1.0 is a graphic user interface and a platform-
independent software. The software is available at http://

Sample output from htSNPer1.0Figure 2
Sample output from htSNPer1.0. The first line showed the SNPs index, and could be replaced by the SNPs coordinate in 
its input. The brown color blocks represent the haplotype block structure in this region. Three classes of dots represent the 
input SNPs, the SNPs over a threshold (e.g., 0.10; defined in the optional dialogue), and the htSNPs, respectively.
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www.chgb.org.cn/htSNPer/htSNPer.html. The source
code is available on request to the authors.

htSNPer1.0 takes a plain text file as input, either unphased
autosomal SNPs genotype data or phased haplotype data.
It requires the Java Running Environment (Jre1.4 or later
version) to run the program properly. Detailed tutorials,
htSNPer1.0 help system and examples are distributed
within htSNPer1.0 software. Please inform the corre-
sponding author if you are a non-academic user.
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