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A growing number of investigations report the association between gut permeability and
intestinal or extra-intestinal disorders under the basis that translocation of gut luminal
contents could affect tissue function, either directly or indirectly. Still, in many cases it is
unknown whether disruption of the gut barrier is a causative agent or a consequence
of these conditions. Adequate experimental models are therefore required to further
understand the pathophysiology of health disorders associated to gut barrier disruption
and to develop and test pharmacological treatments. Here, we review the current animal
models that display enhanced intestinal permeability, and discuss (1) their suitability to
address mechanistic questions, such as the association between gut barrier alterations
and disease and (2) their validity to test potential treatments for pathologies that are
characterized by enhanced intestinal permeability.
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INTRODUCTION

Many clinical disorders are characterized or accompanied by GI alterations, including symptoms
such as discomfort or pain, bloating and altered motility which can negatively impact a patient’s
quality of life. For example, irritable bowel syndrome, a chronic, relapsing GI problem (Spiller
et al., 2007) with a high overall prevalence ranging from 10 to 20% of the population (Guarner
et al., 2008), is also highly comorbid with other pathologies including depression and anxiety,
cardiovascular disease and fibromyalgia (Cole et al., 2006; Mussell et al., 2008; Gros et al., 2009;
Faresjo et al., 2013). In the past decade, this intricate connection between the GI and other systems
has received deep attention allowing for the coining of terms such as gut-brain axis (Gonzalez-
Arancibia et al., 2016), gut-liver axis (Federico et al., 2016), or gut-kidney axis (Khoury et al., 2016).
Likewise, the number of papers addressing the contribution of intestinal microbiota (which may be
considered “an organ within an organ”) aspects to the above axes has increased exponentially in the
last few years.

The adequate relationship between GI physiology and overall homeostasis involves a variety
of delicate functions; among these, the participation of gut motility, intestinal epithelial secretion
and visceral perception mechanisms in association to systemic alterations have been somewhat
explored (Duclos et al., 1991; Lackner et al., 2004; Zheyu et al., 2007; Yamamoto et al., 2008;

Abbreviations: CLP, cecal ligation and puncture; DSS, dextran sulfate sodium; ENS, enteric nervous system; FD4, fluorescein
isothiocyanate-dextran 4,000 Da; FITC, fluorescein isothiocyanate; GI, gastrointestinal; HRP, horseradish peroxidase;
IBD, inflammatory bowel disease; IL, interleukin; JAM, junctional adhesion molecule; PEG, polyethylene glycol; TEER,
transepithelial electrical resistance; TNBS, trinitrobenzene sulfonic acid; ZO, zonula occludens.
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Diebel et al., 2015; Yamamoto-Furusho et al., 2015). However, the
contribution of other complex responses such as those regulated
by the ENS or the intestinal epithelial barrier to the development
of GI and extraintestinal disorders are still largely unknown.
Regarding the association between gut barrier modifications and
disease, abundant but mostly observational data is available (see
Table 1). These evidences strongly suggest the involvement of
an altered barrier in either the origin or the manifestations of
these diseases, although the exact mechanisms are yet to be
investigated. A few recent temporal, genetic and twin studies
have looked into the potential role of a dysfunctional gut
barrier in the onset of disease (Uhlig et al., 2014; Tornai et al.,
2017; Keita et al., 2018). Still, the pathogenesis of inflammatory
gut diseases is unclear, and although the previous reports
somewhat point to barrier-associated factors (including genetic
predisposition and unfavorable luminal environment conditions)
further exploration of this hypothesis is still needed. Appropriate
animal models may allow addressing such mechanistic questions,
while also allowing to test potential treatments for pathologies
that are characterized by enhanced intestinal permeability.

FACTORS INFLUENCING THE GUT
BARRIER FUNCTION

The GI tract has an estimated surface area of 32 m2 (Helander
and Fandriks, 2014). Being constantly exposed to microbes and
potentially damaging or immunogenic substances (i.e., bacterial,
dietary and xenobiotic components and their metabolites) it
requires a selective and efficient barrier function. This is

TABLE 1 | Disorders associated with increased gut permeability.

Gastrointestinal disorders associated with gut barrier alterations

Inflammatory bowel disorders Soderholm et al., 1999;
Vivinus-Nebot et al., 2014

Celiac disease Heyman et al., 2012

Food allergies Perrier and Corthesy, 2011

Infectious diarrhea Sharpstone et al., 1999; Hoque
et al., 2012

Irritable bowel syndrome Camilleri et al., 2012

Extraintestinal disorders and conditions associated with gut
barrier alterations

Critical illness and multiple
organ dysfunction syndrome

Zhang et al., 2010

Burn injury Ziegler et al., 1988; Earley
et al., 2015

Heart failure Sandek et al., 2007

Renal failure Magnusson et al., 1991; Vaziri
et al., 2013

Liver disease Schnabl, 2013

Rheumatologic disorders Ciccia et al., 2010

Dermatologic disorders Humbert et al., 1991; Majamaa
and Isolauri, 1996

Diabetes Bosi et al., 2006; Sapone et al.,
2006

Depression Maes et al., 2008

Schizophrenia Severance et al., 2013

composed of several main layers: more externally, the gut
microbiota; a mucus gel coat acting as a physical diffusion
layer; and the epithelium, responsible for secretion, absorption,
endocrine and immune functions, to name a few.

Regarding the gut microbiota, it has been well shown that
the absence of luminal bacteria at key developmental stages
drastically affects the maturation of the gut barrier (Wagner et al.,
2008; Sommer and Backhed, 2013). Animals reared in germ-
free conditions display striking alterations in the morphology
as well as in several immune, biochemical and biophysical
parameters of the intestinal barrier. Also these germ free animals
have alterations in the ENS, such as reduced neuron excitability
(McVey Neufeld et al., 2013). Likewise, reduced intestinal virome
diversity and altered intestinal barrier function are associated not
only with infectious and autoimmune diseases but also metabolic
disorders and cardiovascular disease (Carding et al., 2017).

Most bacteria and viruses do not contact the gut epithelium
directly due to the presence of mucus. The intestinal mucus
gel coat is produced by a subset of epithelial cells known as
goblet cells and contains mucins, highly glycosylated proteins
that form a viscoelastic network. Important defense functions are
exerted by the intestinal mucus: it acts as a physical diffusion
barrier to pathogens and contains antimicrobial peptides and
immunoglobulins, produced by mucosal Paneth cells and plasma
B cells, respectively (Johansson et al., 2013).

The intestinal epithelium also restricts the passage of
microbes and substances from the luminal space to the systemic
compartment. Its main cell type are enterocytes which absorb
nutrients, water and electrolytes and can also secrete water
and electrolytes. Enterocytes connect to each other through
protein structures, namely desmosomes and adherens junctions,
integrins and tight junctions (Daneman and Rescigno, 2009).
These protein complexes are key to modulate the paracellular
transport of substances across the epithelium, which represents
the predominant means of gut epithelial permeability (Suzuki,
2013). Tight junctions (TJ) allow the movement of water, small
solutes and electrolytes between epithelial cells, but restrict the
translocation of larger molecules. TJ function is dynamic and
can be regulated by factors associated to cellular stress, gut
microbes and dietary compounds (Galipeau and Verdu, 2016).
The transepithelial transport of compounds with high molecular
weight is achieved via the transcellular pathway, which includes
the processes of carrier-dependent transport and endocytosis,
important for nutrient absorption. Increased permeability via the
transcellular but especially the paracellular pathway can allow for
excessive translocation of microbial and diet-derived molecules,
potentially contributing to inflammatory conditions (Galipeau
and Verdu, 2016).

Another gut epithelial cell type are enteroendocrine cells,
capable of releasing endocrine mediators. They have been
called “sentinels of the intestinal environment” (Worthington
et al., 2018) and are able to regulate intestinal inflammation
by enhancing secretion of the anti-inflammatory mediator
GLP-1 (Lebrun et al., 2017). According to the authors, gut
injury-associated increase in permeability is believed to
allow LPS access to stimulate a subtype of enteroendocrine
cells, resulting in GLP-1 secretion. This peptide would
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favor mucosal integrity by attenuating local and systemic
inflammation.

The gut mucosa is not only composed of epithelial cells.
Immersed in the intestinal epithelium are immune cells which
upon contact with luminal material are able to coordinate
adequate responses either to prevent microbial invasion (Li
et al., 2012) or to dampen down exaggerated immune reactions
(Turner, 2009). Additionally, these mucosal immune cells exert
modulatory functions over the intestinal barrier; for example,
T helper cell-derived cytokines can help modify the flux of
molecules across tight junctions or cation pores (Turner, 2009). If
microbes surpass the intestinal epithelium, they are eliminated by
macrophages from the lamina propria (Kelsall, 2008) in a process
characterized by the lack of a strong proinflammatory tone
(Smythies et al., 2005). In addition, upon damage macrophages
migrate to the injured area and promote epithelial tissue repair
(Pull et al., 2005).

In addition to immune cells, the gut wall contains neurons
which are another important aspect in the modulation of
intestinal barrier permeability. Mediators released by the ENS,
which is organized in submucosal and myenteric plexi, can
modulate not only paracellular permeability, water/electrolyte
transport and nutrient absorption but also wound healing, in
particular the process of epithelial proliferation/differentiation
(Neunlist et al., 2013).

Intestinal barrier function is critical for gut homeostasis.
A breach in this barrier can be originated by improper function
of one or more of its cell types, including inadequate interaction
between epithelial cells associated not only to alterations of
the tight junctions but also weakened intercellular adherent
connections (Viggiano et al., 2015). As such, abnormal intestinal
permeability is an important component in dysfunctional gut
barrier-associated disorders such as IBD and celiac disease
(Groschwitz and Hogan, 2009). Altered permeability has been
associated to several human diseases (see Table 1) in the GI
and other systems. The traditional view that defines increased
permeability as a mere consequence of disease processes is now
outdated; alterations in the translocation of luminal substances
are currently being considered as part of disease etiopathogenesis
(Keita et al., 2018). Therefore, there is increasing need for animal
models of gut permeability not only to test palliative therapies but
to further investigate disease etiology and subsequently propose
novel pharmacological targets. Fortunately, many functional,
cellular and biochemical features of the intestinal barrier are
conserved among species; for example, a high degree of similarity
is observed between tight junction proteins across vertebrates
(Robinson et al., 2015; Brugman, 2016).

METHODS FOR TESTING GUT
PERMEABILITY AND OTHER MARKERS
OF BARRIER DISRUPTION

When testing for intestinal permeability, a variety of parameters
can be evaluated. Moreover, the fact that permeability varies
along the GI tract must be taken into account, being the small
intestine more permeable than the large intestine (Mateer et al.,

2016). Excellent reviews are available (Wang et al., 2015; Fukui,
2016; Galipeau and Verdu, 2016) which summarize the most
commonly used permeability tests for both basic and clinical
research, in order to evaluate the status of epithelial barrier
integrity, the pathophysiology of leaky gut alterations or to prove
the effectiveness of treatment.

Briefly, methods for testing gut permeability in vivo involve
the administration of a tracer molecule by oral gavage or
intestinal instillation. Tracers commonly used are non-digestible
sugars such as lactulose or mannitol, PEG, fluorescently labeled
dextrans and 51Cr-EDTA (see Galipeau and Verdu, 2016 for
applications, advantages and limitations of these and other
tracers), which can be later quantified in urine or blood. The size
of a tracer can indicate the probable route of permeability: for
example, 4 kDa dextrans are able to pass through the paracellular
route. This is also the case for mannitol and 51Cr-EDTA. On the
other hand, larger molecules like 40 kDa HRP are commonly
associated to the transcellular pathway (Galipeau and Verdu,
2016). The output in most of these techniques is a single value
of permeability, which does not allow to discern which region
of the GI is being affected, and therefore must be used in
combination with other methods (Galipeau and Verdu, 2016).
Also, factors affecting the distribution and excretion of orally
administered probes, such as gastric emptying, intestinal transit,
bacterial degradation, intestinal blood flow, as well as the timing
of blood or urinary collection should be taken into consideration
(Bjarnason et al., 1995).

Short term culture of tissue explants for ex vivo permeability
tests has the advantage of allowing for the evaluation of very
specific regions of the GI tract and also maximizes data output
in expensive or lengthy treatments. However, tissue viability
is a major concern and therefore incubation times no longer
than 3 h are recommended (Clarke, 2009). The use of everted
gut sacs to measure the transit of fluorescent probes has
the advantage of not demanding specialized equipment, but
larger amounts of tissue are required (3–4 cm2) (Moyano-
Porcile et al., 2015; Eyzaguirre-Velasquez et al., 2017). In
the Ussing chamber, ion transport across the intestinal wall
can be measured in very small segments of tissue (1 cm2)
but a more expensive setup is necessary. Here, the degree
of TEER is considered an inverse correlate to the extent of
paracellular permeability (Clarke, 2009). Although there has
been some debate around whether TEER represents trans-
or paracellular permeability, its close association to the tight
junction protein dynamics (Srinivasan et al., 2015) makes us
agree to the latter. Since the apical and basolateral sides are
kept in isolated chambers, the passage of tracers can also
be evaluated. FITC-dextrans, 51Cr-EDTA and HRP have been
used to evaluate paracellular and transcellular permeability,
respectively (Galipeau and Verdu, 2016). The Ussing chamber
can also be used to evaluate permeability across monolayers of
cultured epithelial cells (Brown and O’Grady, 2008), such as
the Caco-2 cell line, which polarize under appropriate growth
conditions. In cell monolayers, TEER measurements can also be
performed in an ohm-volt meter (Zhao et al., 2016), a simpler
device when compared to the Ussing chamber + voltage clamp
apparatus.
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In order to obtain comprehensive information regarding
epithelial leakiness it is recommended that in vivo and
ex vivo/in vitro tests of permeability are used in combination with
the detection of permeability-associated biomarkers (Galipeau
and Verdu, 2016). For example, the presence of microbial
products or the corresponding antibodies in the blood is
an indirect evidence of barrier breach (Tian et al., 2009;
Vancamelbeke and Vermeire, 2017). These strategies allow for
testing in a less invasive, non-terminal fashion but again, do not
allow discerning which region of the GI is being affected. On
the other hand, evaluating (a) mucosal morphology (including
villus and/or crypt length, inflammatory cell infiltration, etc.)
(Li et al., 2015), (b) the presence of tracer particles in pinocytic
vesicles within gut absorptive cells (Worthington and Syrotuck,
1976), together with (c) tight junction/inflammatory protein
and/or mRNA expression are more invasive, usually terminal
strategies that provide information regarding the site and
potential mechanism of damage (Steegenga et al., 2012; Hwang
et al., 2013).

STUDYING GUT BARRIER ALTERATIONS
IN ANIMAL MODELS

The gut barrier is structurally and biochemically conserved
across species, as mentioned before. Both in humans and
rodents the intestinal barrier function is highly sensitive to
stress, dietary and microbiota changes. Therefore, we must
consider that most animal models involving a modification
in the environment could display changes in gut permeability
to some extent. However, to the purpose of investigating
mechanisms of disease and suitable treatments, a model should
follow at least some of the following criteria (Vervliet and
Raes, 2013): (1) face validity, meaning that the modifications
observed in animal biochemistry, physiology and/or behavior
should resemble those observed in human patients; (2) construct
validity, which implies that the etiology of human disease was
considered when establishing the model (i.e., alcohol is given
to rats to model alcoholic liver disease) and (3) predictive
validity, which means that the animal model should respond
to interventions (such as pharmacological treatments) in the
same way a human patient would. Vervliet and Raes (2013)
propose that the relevance of a model relies on its external
validity, which according to the authors depends largely on using
combined evaluations of predictive, diagnostic and construct
validity. In our opinion, depending on the particular use of a
model (mechanistic studies, screening of therapeutic compounds,
etc.) we could choose two or even one criteria of validity;
however reaching all three would provide a more robust
model.

With regards to gut barrier alterations, most animal models
share a common feature: they display enhanced epithelial
permeability. Rodents are typically used, although other animals,
such as porcine (Lalles et al., 2007), equine (Marshall and
Blikslager, 2011) and avian models (Jeurissen et al., 2002;
Baxter et al., 2017), have also been described, to name a few.
The last three are particularly useful to investigate veterinary

conditions including early weaning, anti-inflammatory drug, feed
contamination or restriction, respectively. However there are also
reports indicating the suitability of these species to model human
diseases that are associated with disrupted gut permeability, as we
will mention later.

Intestinal barrier disruption can be achieved by directly
intervening on the intestinal environment, or indirectly by
targeting another system that communicates to the gut. The latter
is the basis for stress- or lesion-induced models that display
altered gut permeability. In some cases, however, it is difficult
to discern whether a combined effect has been achieved: for
example, DSS (an agent that can be added to the animal’s drinking
water) is commonly used to chemically damage the mouse or
rat intestinal epithelium inducing epithelial leakiness and an
inflammatory colitis that resembles IBD in humans (Randhawa
et al., 2014), however, it could also indirectly affect the brain-gut
axis by causing discomfort and stress to the rodent (Jain et al.,
2015), which are known to also enhance intestinal permeability
(Meddings and Swain, 2000). Taking this in consideration, the
following classification of models refers only to the initial stimuli
or intervention applied to the experimental animal (see Table 2
for a further description).

Models in Which Barrier Dysfunction Is
Established on the Gut
Here, the initial intervention is either applied or originated
at the GI lumen. Dietary and microbiota changes can protect
the intestinal barrier function, which is the case for glutamine
(Li et al., 1994), bacteria-derived lactic acid (Ren et al., 2018)
and butyrate (Kelly et al., 2015). Other interventions disrupt
the gut barrier, as in the case of DSS (Poritz et al., 2007),
TNBS (Bregeon et al., 2016; Xu et al., 2018) or heavy metal
supplementation (Zhai et al., 2016), low protein (Eyzaguirre-
Velasquez et al., 2017) or high fat diet (Hamilton et al., 2015),
infection (Guttman et al., 2006; Goossens et al., 2018) or
CLP (Parida et al., 2015). These models can be considered to
have good construct validity for organic diseases (i.e., those
where morphological and/or biochemical features are altered)
where barrier function is compromised. For example, DSS or
TNBS supplementation in rodents and IL-10 knockout mice
are well known models of colitis (Shi et al., 2014; Li et al.,
2018; Xu et al., 2018), which is achieved through different
mechanisms: DSS induces epithelial injury with exposure of the
lamina propria and submucosa to luminal antigens, resulting
in inflammation which ultimately alters the gut barrier; TNBS
acts as a hapten and also induces inflammation but through
Th1-mediated immune responses, which has been shown both
in murine (Low et al., 2013) and swine models (Bregeon
et al., 2016). IL-10 knockout mice spontaneously develop bowel
inflammation, which is associated to colon dysbiosis (Shi et al.,
2014). On the other hand, CLP is used to simulate sepsis
(Yoseph et al., 2016).

Human gut biochemical features that are commonly
associated with perpetuation of intestinal barrier loss (i.e.,
local proinflammatory cytokines, proteases, neurotransmitters,
pathogen-derived products) have been functionally evaluated by
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TABLE 2 | Examples of experimental approaches to model increased gut permeability.

Species and type of model Observations Mechanism proposed by author Reference

Intestinal models

Mice, oral cadmium exposure
(100 mg/L CdCl2 for 8 week)

Increased gut permeability and
proinflammatory cytokine expression.
Decreased tight junction protein
expression. Reversed by oral probiotic
administration

Genotoxicity, death of epithelial cells, damage
to tight junctions, gut dysbiosis

Zhai et al., 2016

Mice, sepsis induced by CLP Enhanced permeability to FD4 and
increased expression of Claudin 2 and
JAM-A. Decreased expression of
Claudin 5 and Occludin

NA Yoseph et al., 2016

Rats, allergy induced by oral
administration of ovoalbumin

Erosive damage in small intestine.
Increased lactulose/mannitol ratio.
Altered morphology of tight junctions
and decreased expression of tight
junction proteins

Inflammation in intestinal tract during allergy
induction by OVA

Chen et al., 2014

Mice, colitis induced by oral
administration of DSS (3% for
up to 7 days)

Loss of ZO-1 and increased
permeability to Evan’s Blue dye

Toxic effect on the colonic epithelial cells and
crypts leading to changes in the TJ complex
and in mucosal permeability prior to the
inflammatory infiltrate

Poritz et al., 2007

Rats, colitis induced by anal
infusion of TNBS (20 mg)

Decreased expression of ZO-1 and
Occludin in colon. Increased levels of
endotoxin in serum and colon

Hapten-induced chronic inflammation Xu et al., 2018

Swine, rectal mucosal lesions
induced by TNBS enema
(15 mg/ml, 15 min)

Acute increase in paracellular and
transcellular permeability. Disrupted
localization of ZO-1 in rectal mucosa

Inflammation associated to overexpression of
IL−1β, IL−4, IL−10, IFNα and IFNγ

Bregeon et al., 2016

Mice, infection with Citrobacter
rodentium

Tight junction disruption associated to
attachment of the pathogenic bacteria
to the cells

Alteration of claudin-3 localization dependent
on the intimate attachment of the pathogen to
the colonic enterocytes, and independent on
inflammation

Guttman et al., 2006

Chickens, infection with several
Eimeria species

Increased expression of ovotransferrin
in the colon. Increased fecal
ovotransferrin levels

Release of pro-inflammatory cytokines due to
coccidial-induced inflammatory response in the
gut

Goossens et al., 2018

Mice, CLP Increased plasma bacterial load and
TNF expression

Excessive bacterial load leading to septic
inflammatory response

Parida et al., 2015

Chickens, 24 h feed restriction Increased permeability to FD4 Increased levels of plasma corticosterone
leading to disruption of gut barrier integrity and
local inflammation

Baxter et al., 2017

Rats, low protein diet (4% for
20 days)

Decreased mucosal tight junction
protein expression and reduced TEER
in the colon.

Changes in epithelial cell differentiation Eyzaguirre-Velasquez
et al., 2017

Rats, high fat diet (45% for up
to 6 weeks)

Increased flux of HRP flux in correlation
with time on the diet

Early and region-specific changes in the gut
microbiota which correlate with alterations in
gut epithelial function

Hamilton et al., 2015

Extraintestinal models

Mice, pneumonia induced by
Pseudomonas aeruginosa.

Enhanced permeability to FD4 and
increased expression of Claudin 2 and
JAM-A. Decreased expression of
Claudin 5, ZO-1 and Occludin

NA Yoseph et al., 2016

Mice, low-dose ionizing
radiation (4 Gy)

Redistribution of tight junctions,
adherens junctions and actin
cytoskeleton in colon mucosa.
Increased permeability to FITC-inulin

Ablation of crypt cell proliferation, mitotic
catastrophe, and apoptosis leading to
gastrointestinal mucositis

Shukla et al., 2016

Mice, burn injury (85◦C, 20%
body area)

Increased permeability to FD4.
Reduced expression of Claudin 4 and 8

Rapid and systemic inflammatory response,
including mesenteric vasoconstriction leading
to gut hypoxia and cell death

Earley et al., 2015

Rats, brain injury (20 g from a
height of 30 cm)

Increased lactulose/mannitol ratio. This
is reversed by oral probiotic
administration

Intestinal ischemia and hypoxia. Enhanced cell
catabolism resulting in depletion of intestinal
mucosa main fuel.

Zhang and Jiang, 2015

(Continued)
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TABLE 2 | Continued

Species and type of model Observations Mechanism proposed by author Reference

Extraintestinal models

Rats, hyperthermia (up to
42.5◦C, 90 min)

Increased gut permeability to FD4 and
marked intestinal epithelial damage

Reduced blood flow to the GI tract resulting in
hypoxia, free radical production, ATP depletion,
acidosis, and disruption of intestinal epithelial
membranes that results in enterocyte necrosis

Lambert et al., 2002

Mice, acute cold exposure
(4◦C, 30 min)

Increased permeability to L-arabinose.
Increased Claudin 2 mRNA expression

Adjustments to the tight junction in order to
increase paracellular permeability to
nutrient-sized molecules, to meet enhanced
digestive/absorptive demand

Price et al., 2013

Rats, acute restraint stress (2 h) Transient increase in ileal epithelial
permeability to alanthanum tracer.
Irregular distribution of occludin and
ZO-1

Stress-induced contraction of the actin
cytoskeleton increasing the distance between
adjacent enterocytes

Mazzon et al., 2002

Rats, water avoidance stress
(1 h daily for 7 days)

Decreased TEER, increased flux of
HRP and altered expression of Claudin
2, JAM-A and ZO-1 in colon

Sub−inflammatory increase in proinflammatory
cytokines which mediates the alteration of TJ
protein expression

Hattay et al., 2017

Rats, maternal deprivation (one
single 4 h event)

Increased gut permeability to FD4 4
and 8 h after deprivation. Increased
bacteria translocation to liver and
spleen 10 days after deprivation. This is
reversed by RU486 (glucocorticoid
receptor antagonist)

Increased corticosterone plasma levels is
associated to MLCK-dependent cytoskeleton
contraction in epithelial cells

Moussaoui et al., 2014

Mice, intensive treadmill
exercise (80% of their VO2max
until exhaustion)

Increased permeability to FD4,
electrogenic ion transport and tissue
conductance of the small intestine. Also
enhanced apoptosis of small intestinal
epithelial cells

Gastrointestinal ischemia-associated alterations
in epithelial integrity followed by fast repair
processes in the duodenum

Gutekunst et al., 2014

CLP: cecal ligation and puncture. DSS: dextran sulfate sodium. FD4: fluorescein isothiocyanate-dextran 4,000 Da. HRP: horseradish peroxidase. IFN: interferon. IL:
interleukin. JAM: junctional adhesion molecule. MLCK: myosin light chain kinase. NA: not available. TEER: transepithelial electrical resistance. TNBS: trinitrobenzene
sulfonic acid. ZO: zonula occludens.

using well described gut-derived cell lines such as Caco-2. Here,
a cell monolayer is exposed to cleared supernatants obtained
from intestinal biopsies, explants or feces. Later, intestinal barrier
markers and permeability parameters can be assessed in the cells
(Piche et al., 2009). We believe that similar experimental designs
could be used to demonstrate that soluble mediators generated
at the animal model gut, which are considered to be involved in
epithelial barrier disease mechanism, are functionally relevant.

Models in Which Gut Barrier Dysfunction
Is Established Outside the Gut
Lesion induction by skin burn, head trauma, radiation as well
as shock induced by hyper- or hypothermia are all considered
indirect interventions that increase intestinal permeability.
Similar gut alterations are observed when acute or chronic
stress is induced by brief water deprivation, motion restraint,
overcrowding or forced swim, among others. In all the above
cases, the initial disruption is believed to affect systems that
are different from the GI, and therefore gut permeability is
indirectly enhanced. From the construct validity point of view,
these strategies may be more adequate to model barrier function
alterations that are subsequent to previous stress or injury, or
functional diseases where no morphological and/or biochemical
markers are known yet.

Not every increase in gut permeability is associated to disease;
for example, exhausting exercise in athletes is followed by marked

increases in gut permeability (Lambert, 2009), without known
pathological consequences that aren’t attributable to dehydration
or heat stress (de Oliveira et al., 2014). Therefore, an effort
should be made to prove causality, especially when the injuring
stimuli is not directly related to intestinal physiology in an animal
model, but gut permeability is proposed as part of the disease
mechanism.

CONCLUDING REMARKS

Empiric evidence obtained from animal models, including not
only correlation studies but also mechanistic designs allow us
to propose (or refuse) particular aspects of barrier function as
potential pathways to disease. For example, altered intestinal
permeability is described in many chronic diseases; whether it
constitutes a risk factor or a target for developing therapies must
be established by means of a proper experimental setup.

The complexity of gut barrier function has a lot to do
with its connections to other systems. Most of these are
not fully understood and therefore, this research is still
at its early years. Concomitant alterations in the microbial
community, ENS and local immune system should be taken into
consideration when interpreting data from animal models, in
order to propose significant mechanisms or effective therapeutic
strategies for multifactorial diseases. Some future research aims
include:
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• Implementing experimental approaches that allow for
continuous monitoring of these events, taking into
consideration that gut barrier function and especially
epithelial permeability are dynamic phenomena.
• Investigating the variability of sign/symptom severity that

arises from applying single or multiple stimuli, in order to
better represent acute or chronic features of disease.
• Including more detailed characterization by reporting

several outputs that reflect different elements and
consequences of a gut barrier breach, i.e., permeability tests
+ intestinal epithelial changes + microbial products in the
blood+ inflammatory changes in the gut or other organs.
• Minimizing confounding factors such as inconsistencies at

sampling timing, unwanted stress, and all environmental
variables that can disturb barrier function.

GLOSSARY

Dysbiosis
Imbalance in the microbial communities that reside a living
organism, either by changes in quantity or quality.

ENS
Intrinsic nervous system of the GI tract. It regulates vital GI
functions, including motility, secretion, local immunity, and
tissue repair.

Microbiota/Microbiome
Microbiota is the collection of bacteria, viruses, fungi, and other
microorganisms that reside a living organism. Microbiome is the
name given to the genes contained in these microbes.

Tight Junctions
Multiprotein complexes that join two adjacent cells together to
form a barrier. The connection involves transmembrane and
scaffold proteins, as well as cytoskeleton components.

Virome
Collection of viruses and associated nucleic acids that reside a
living organism.
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