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Abstract: Alphaviruses are important pathogens that continue to cause outbreaks of disease in
humans and animals worldwide. Diseases caused by alphavirus infections include acute symptoms of
fever, rash, and nausea as well as chronic arthritis and severe-to-fatal conditions including myocarditis
and encephalitis. Despite their prevalence and the significant public health threat they pose, there
are currently no effective antiviral treatments or vaccines against alphaviruses. Various genetic
determinants of alphavirus virulence, including genomic RNA elements and specific protein residues
and domains, have been described by researchers to play key roles in the development of disease, the
immune response to infection, and virus transmissibility. Here, we focus on the determinants that
are currently described in the literature. Understanding how these molecular determinants shape
viral infections can lead to new strategies for the development of therapies and vaccines to combat
these viruses.
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1. Introduction

Alphaviruses are enveloped single-stranded positive-sense RNA viruses that belong
to the family Togaviridae. Many members of the alphavirus genus cause disease in humans
and animals and are transmitted by several widespread mosquito species [1–3]. The
wide distribution of competent vectors, increasing global transportation, disturbance of
landscapes, and climate change, among other factors, continue to cause mosquito-borne
diseases to emerge and re-emerge [4–6]. This is demonstrated by chikungunya virus
(CHIKV), a prevalent alphavirus, that for decades following its initial detection, did not
cause large outbreaks and was limited to parts of Africa and Asia. It was not until the
early 2000s that explosive outbreaks occurred and led to spread of CHIKV to new regions
in Europe and the Americas [7,8]. The Old World alphaviruses, which include CHIKV,
Semliki Forest virus (SFV), Sindbis virus (SINV), O’nyong-nyong virus (ONNV), and Ross
River virus (RRV), cause mostly arthritic disease while the New World alphaviruses, which
include Mayaro virus, Eastern, Western, and Venezuelan equine encephalitis virus (EEEV,
WEEV, and VEEV), are mostly encephalitogenic [9,10]. The alphaviruses can each be further
divided into distinct phylogenetically divergent lineages and sublineages. Importantly,
lineage-dependent differences in virulence have been observed, indicating virulence is
modulated by specific genome-encoded determinants [11].

Alphaviruses are structurally similar and share a common lifecycle. Mature particles
consist of a nucleocapsid core surrounded by a host-derived lipid bilayer studded with
transmembrane glycoproteins, E1 and E2, which are arranged in trimeric spikes of het-
erodimers on the surface of the particle [12]. Alphaviruses have been shown to engage
various cell surface attachment factors and putative receptors that facilitate the early stage
of cell entry, followed by clatherin-mediated endocytosis and membrane fusion within
the early endosome [13–15]. Following the delivery of the genome into the cell, viral
replication occurs in membrane-associated spherules on the plasma membrane [16–18].
The genome is about 12 kb in length, encodes 2 open reading frames (ORFs) flanked
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by 5′ and 3′ untranslated regions (UTRs) and contains a 5′ methylguanylate cap and 3′

polyadenylated tail (Figure 1). The first ORF encodes a polyprotein that is cleaved into
four non-structural proteins (nsP1–4), with cleavage intermediates that function in RNA
replication (Figure 2). The second ORF is translated from a subgenomic RNA and encodes
the structural polyprotein that is cleaved into 5 structural proteins (capsid, E3, E2, 6K,
and E1) or alternatively, a frameshifting event leads to a truncated polyprotein to produce
capsid, E3, E2, 6K, and TF. During replication, the non-structural polyprotein P1234 is
initially cleaved in cis into P123 and nsP4, which together form an unstable early replication
complex to synthesize negative-strand RNA. P123 is then cleaved in trans to produce nsP1,
P23, and nsP4 that form a replication complex for genomic RNA synthesis. Cleavage into all
four non-structural monomers then shifts replication activity to genomic and sub-genomic
RNA synthesis [19,20]. Importantly, while the non-structural polyprotein and the cleavage
intermediates function in genome replication, the individual proteins are widely multifunc-
tional in subsequent steps of alphavirus infection and contribute largely to virulence in
the host. Following translation of the subgenome, the structural polyprotein undergoes
processing required for assembly and budding. Viral encapsidation and budding involve
nucleocapsid formation in the cytoplasm, processing, and transport of the glycoproteins to
the cell membrane, and egress at the cell membrane where the nucleocapsid is enveloped
in the membrane-deposited glycoproteins [21–23] (Figure 2).
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Each component of the genome and the encoded proteins plays a multifunctional role
in the alphavirus lifecycle. Through mutational studies and genome mapping, researchers
have begun to expand our understanding of these functions to how viral components are
able to not only contribute to establishing infection, but also modulate virulence [24,25].
Understanding these determinants and identifying the common mechanisms of virulence
can be instrumental in developing tools to prevent the spread of alphaviruses, such as atten-
uated strains in the development of vaccines. Therefore, we will review here the reported
genetic determinants of alphavirus virulence, with a focus on non-synonymous changes,
organized by region of the genome that have been shown to impact the development of
disease, the immune response to infection, or virus transmissibility as supported by in vivo
and/or in vitro experiments. A summary of determinants can be found in Table 1.

Table 1. Summary of alphavirus virulence determinants.

Gene/Region Mutation/Element Description Reference

nsP1 I538T Neurovirulence (SINV); IFN-I modulation (SINV, RRV) [26,27]
nsP1 S79C, L224I Musculoskeletal inflammation (RRV) [28]

nsP2 SINV P726G,
CHIKV P718S IFN-I modulation; JAK-STAT inhibition [29–31]

nsP2 A31T, N219T, S580L, Q619R RRV IFN-I modulation; RIG-I, IRF3 expression [32]
nsP2 674ATLG677 Transcription inhibition (CHIKV) [33]
nsP2 KR649AA, P718S UPR inhibition (SINV) [34]
nsP3 T344, T345 Neurovirulence (SFV) [35]

nsP3 SINV Opal-537, SFV Opal-469, CHIKV
Opal-524 Pathogenesis in mice [36–38]

nsP3 Residues 386–403 Neurovirulence (SINV) [36]
nsP3 G32S/A and Y114A Macrodomain activity, pathogenesis in mice (SINV) [39]

nsP3 G3BP-binding motif 471–483; FXR-biding
motif 531–547 Neurovirulence (EEEV) [40]

nsP4 C483Y Fidelity, fitness in mice/mosquitoes (CHIKV) [41]
nsP4 G7R, E31G, S90T, and C482Y Fidelity, fitness in mice/mosquitoes (VEEV) [42]
nsP4 Undefined EIF2α phosphorylation, UPR blocking (CHIKV, SINV) [43]

Capsid N-terminal NLS Nuclearcytoplasmic transport blocking (VEEV) [44]
Capsid L48A, F50A Nuclear import inhibition (VEEV) [45]

Capsid Residues 55–75 Host gene expression inhibition, IFN sensitivity, fitness
in mice (EEEV) [46]

Capsid Undefined PRR pathway inhibition (WEEV) [47,48]

Capsid K124A/K128A;
K139A/K142A RNAi blocking (SFV) [49]

E1 V72A, G313D Neurovirulence (SINV) [50]
E1 V80I:A129V Fitness in mice, stability (CHIKV) [51]

E1 V80L Infectivity, dissemination in mice/mosquitoes,
cholesterol dependence (CHIKV) [52]

E1 A226V Vector tropism (CHIKV), cholesterol dependence
(CHIKV, SFV, SINV) [53–56]

E1 N141Q E1 glycosylation, clearance and IFN-γ levels in mice
(RRV) [57]

E2 G55H, L209G, E70K Neurovirulence, HS binding (SINV) [50,58,59]
E2 R82G, E166K GAG binding, disease severity, host response (CHIKV) [58–60]
E2 K71A, K74A, K77A Neurovirulence, GAG binding (EEEV) [61]
E2 K200R (CHIKV, ONNV), K251R (RRV) Fitness and cell-mediated clearance in mice [62,63]
E2 N200Q E2 glycosylation, mosquito infectivity (RRV) [57]
E2 N196Q, N318Q Fitness in mice, HS binding (SINV) [64]
E3 C25R PE2 processing (SINV) [65]
6K Undefined Fitness in mice (CHIKV, RRV, VEEV) [66–68]
TF Undefined IFN-I antagonism [69]
TF C35, C36, C38, C39 TF palmitoylation [70]

5′UTR Position 5 and 8 (SINV), 21, 35, and 42 (SFV) Fitness in mice [71–73]
5′UTR G3A IFN sensitivity, Ifit1 evasion (VEEV) [74,75]
3′UTR Position 11,337–11,596 miR-142-3p binding, immune detection (EEEV) [76]
3′UTR Position 31–293 Host adaptation, fitness in mosquitoes (SINV) [77]
3′UTR Position 11,921–11,964 Fitness in mice [62]
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2. Determinants of Virulence
2.1. Non-Structural Proteins
2.1.1. nsP1

Alphavirus nsP1 primarily functions in genome replication in complex with the other
non-structural proteins. In particular, the alphavirus capping mechanism requires nsP1,
which possesses methyltransferase and guanylylation activities that catalyze steps preced-
ing in the eventual addition of m7GMP onto the 5′end of viral RNA [78]. In addition to
these roles in replication, nsP1 has also be found to contribute to virulence. A comparison of
non-neurovirulent versus neurovirulent SINV strains revealed one single non-synonymous
change in nsP1, I538T, which when introduced to a non-neurovirulent strain enhanced
neurovirulence in mice, without having a significant impact on replication [26]. Residue
538, located at the conserved nsP1/2 cleavage site, was found to be involved in regulating
type I IFN (IFN-I), in a manner independent of host shut off (transcription/translation) and
this was observed in both SINV and RRV [27]. nsP1 was also found to be critical in muscu-
loskeletal inflammation during RRV infection independent of viral load, as demonstrated
by genome mapping using chimeric viruses [79]. A subsequent study confirmed six amino
acids (S79C, A112S, L224I, C416F, S424N, and L463I) that differed between RRV strains
used in constructing the chimeric viruses to confer the observed phenotype and attributed
the mutations to tissue type-specific IFN-I sensitivity [28]. While single mutants were
not sufficient for the phenotype, a double mutant sustaining S79C and L224I sufficiently
exhibited an attenuated phenotype in vivo [28]. A recent study further demonstrated a role
for nsP1 in regulating the IFN-I response by identifying the CHIKV-mediated degradation
of the cytosolic DNA sensor cyclic GMP-AMP synthase (cGAS) and a direct interaction
of nsP1 with stimulator of interferon genes (STING) that stabilizes nsP1 and increases
palmitoylated nsP1 in vitro, a post-translational modification previously implicated as
important in replication and pathogenesis in vivo [80–82]. Finally, key residues located
at the SFV nsP1 P1/2 cleavage site have been shown to function together with residue
515 of nsP2 and drive neurovirulence in mice [83]. In addition to its functions in viral
genome replication, nsP1 is multifunctional with a significant role in controlling the host
IFN-I response. Further studies of nsP1-host protein interactions and the function of post-
translationally modified nsP1 will provide a better understanding of how nsP1 functions
as a virulence determinant to drive alphavirus infections.

2.1.2. nsP2

During the alphavirus lifecycle, nsP2 functions as a protease in the processing of the
non-structural polyprotein, as a helicase during replication, and exhibits 5′ triphosphatase
activity during capping of viral RNAs [84–86]. Structurally, nsP2 consists of an N-terminal
domain (NTD), a helicase domain containing 5′ triphosphatase activity, a papain-like cys-
teine protease subdomain, and a C-terminal S-adenosyl-L-methionine (SAM)-dependent
RNA methyltransferase-like (SAM MTase-like) subdomain, connected by a ~30 amino acid
random coiled linker (Figure 3A) [87–89]. As a determinant of virulence, nsP2 can translo-
cate to the nucleus and cause the degradation of a catalytic subunit of DNA-dependent
RNA polymerase II (RPB1), resulting in host transcription shut off and inhibiting the
activation of anti-viral responses [29,90,91]. This is unique to Old World alphaviruses
while similar functions are carried out by the capsid protein of New World alphaviruses
(discussed below) [88]. The single point mutation P726G in SINV nsP2 leads to decreased
replication and cytopathogenicity in mammalian cells, increased levels of IFN in vitro
and in vivo, and an attenuation of the virus in mice [29]. Further mutational analysis of
residue 726 demonstrated its modulation of SINV pathogenicity in mice and JAK-STAT
inhibition [30,31]. A similar reduction in JAK-STAT inhibition, independent of host shut off,
was seen in CHIKV with an nsP2 mutation from a conserved proline to serine at position
718 and the authors propose a decrease in blocking of STAT1 nuclear localization may
explain increased IFN levels in nsP2 mutants [31]. In a comparison of field strains of RRV
that differ in disease severity in mice, naturally occurring determinants of IFN-I modula-
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tion were identified in nsP2 [32]. nsP2 mutations A31T, N219T, S580L, and Q619R each
led to higher induction of IFN-I, along with increased RIG-I and/or IRF3 expression [32].
Notably, residue 619 is near a recently identified highly variable loop (VLoop) on the
surface of nsP2 SAM MTase-like domain found to be critical for the transcription inhibitory
effects in SINV without altering replication [89]. Mutations introduced to nsP2 residues
between positions 674 and 688 prevented RPB1 degradation and transcription shutoff and
increased IFN induction [89]. A similar peptide was identified in CHIKV (674ATLG677) that
when mutated decreased the transcription inhibitory function of nsP2 without altering
replication in murine cells [33]. nsP2 is also able to inhibit the unfolded protein response
(UPR) of host cells as a result of transcriptional shutoff and mutations KR649AA and P718S
in SINV disrupts this function [34]. Together, these studies demonstrate that nsP2 is a
critical, multifunctional determinant of alphavirus virulence with functions including the
degradation of RBP1, leading to host transcriptional shutoff and suppression of the UPR,
and JAK-STAT inhibition that limits ISG expression (Figure 3B). While the activities of
both nsP1 and nsP2 result in modulation of the IFN-I response, it is remarkable to note the
evolution of differing mechanisms that provide a multi-pronged strategy of controlling the
host. Blocking of the UPR as a result of host transcriptional shutoff by nsP2, for instance,
suggests the potential for anti-alphavirus activity by an activated UPR during infection,
emphasizing a possible therapeutic target.
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MTase subdomain (red), and subdomain linker (orange) indicated (B) Schematic representation of
nsP2-mediated antagonism of host cell processes.

2.1.3. nsP3

Alphavirus nsP3 functions as part of the replication complex, induces plasma mem-
brane remodeling in the formation of spherules where replication takes place, and is the
only non-structural protein that is phosphorylated, which is important for efficient RNA
synthesis [35,92,93]. nsP3 exhibits multiple functions through the alphavirus lifecycle
with significant roles in virulence in addition to replication. The protein consists of a
conserved N-terminal macrodomain and a C-terminal intrinsically disordered hypervari-
able domain (HVD), joined by a central zinc-binding domain (ZBD) (Figure 4A) [90,91].
The nsP3 macrodomain possesses ADP-ribosyl-binding and hydrolase activity that mod-
ulates neurovirulence, as demonstrated by mutations of SINV nsP3 residues 32 and 114
altering pathogenesis in mice and macrodomain activity in vitro [39]. Importantly, the
macrodomain ADP-ribosylhydrolase is crucial for the suppression of stress granule forma-
tion late in viral infection by targeting Ras GTP-activating protein-binding protein G3BP1,
that functions in stress granule assembly (Figure 4B) [94]. The C-terminal HVD harbors
multiple host protein interacting sites, including binding motifs for G3BPs. The function of
nsP3 in controlling the cellular stress response by causing a disassembly of stress granules
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demonstrates the elaborate multifunctionality of the tripartite protein. Following binding
of G3BP1 and/or FXR by the HVD, the macrodomain ADP-hydrolase activity removes
ADP-ribose from the stress granule associated proteins, leading to granule disassembly
(Figure 4B). The HVD of the highly pathogenic New World alphavirus EEEV nsP3 was
shown to be critical for neurovirulence as deletion of G3BP-binding motif (nsP3 471–483)
and/or its FXR-binding motif (nsP3 531–547) decreased neurovirulence in mice [40]. The
HVD of EEEV nsP3 possessing both FXR and G3BP binding motifs is unique as other
New World alphaviruses interact with members of the FXR family, but not G3BPs, and
Old World alphavirus HVDs interact with G3BPs, but not FXR family members. This
observation is monumental in understanding how EEEV is able to, in part, achieve its
extremely high virulence by exhibiting a wider range of host protein binding partners.
Importantly, while these HVD-host protein interactions are critical for virulence, they also
drive efficient viral replication, presumably making the redundancy of binding both G3BPs
and FXR family members beneficial to viral fitness. Additional interactions between nsP3
HVDs of both Old and New world alphaviruses and cytoskeletal proteins, have been
identified and demonstrated to be important for infectivity [95].
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Additionally, the nsP3 HVD also contains multiple phosphorylation sites critical for
replication and virulence. Phosphorylation sites, T344 and T345, modulate SFV neuroviru-
lence in mice [35] and SINV neurovirulence was attributed to an 18-amino acid deletion
from nsP3 residue 386 to 403, without impacting replication in cell culture, that resulted in
the removal of seven serine residues, suggested to effect the overall phosphorylation of
nsP3 [36]. Further, multiple alphavirus genomes contain an opal termination codon at the
end of the nsP3 gene, which is read through for the translation of nsP4 and therefore mod-
ulates the production of the alphavirus RNA-dependent RNA polymerase. Importantly,
altering of this codon modulates neurovirulence in SINV (Opal-537) and SFV (Opal-469)
and arthritis induced by CHIKV (Opal-524) [36–38]. These findings indicate that in addition
to roles in achieving optimal viral replication, the diverse and multifunctional domains of
nsP3 carry out a wide range of activities that drive alphavirus virulence.
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2.1.4. nsP4

Alphavirus nsp4 is the core RNA-dependent RNA polymerase (RdRp), which together
with polyprotein nsP123 synthesizes minus strand RNA and then forms the late replication
complex with fully processed nsP1–3 to produce genomic and subgenomic plus strand
RNA [19]. Additionally, nsP4 possesses adenylyltransferase activity that may function
in the addition of the 3′ poly(A) tail [19,92]. RdRp fidelity in many viruses, including
alphaviruses, has been recognized as a contributor to viral fitness and pathogenicity in
animals [41,93]. The high fidelity CHIKV nsP4 mutant C483Y yielded lower infection and
dissemination in mosquitoes and lower titers in mice, which, as discussed by the authors,
is likely attributed to decreased population diversity [41,96]. This was also observed in
VEEV, as RdRp mutations G7R, E31G, S90T, and C482Y led to an increased sensitivity
to bottlenecks in mice and mosquitoes and an altered viral diversity [42]. Alphavirus
fidelity variants are now being used as candidate vaccine platforms for CHIKV and other
alphaviruses [97–99]. Finally, although specific functional residues have not been identified,
subcloned nsP4 of CHIKV and SINV transfected into human cells blocks the phosphory-
lation of eIF2α, a key player in the UPR of host cells, indicating the nsP4 gene encodes a
determinant able to counteract this measure of host defense [43]. This demonstrates yet
another complementary virus-induced blocking of the UPR, indicating a potentially potent
antiviral activity that could be harnessed by a UPR-focused therapeutic approach. Further
studies of nsP4 will be incredibly insightful into alphavirus replication and antagonism of
host processes.

2.2. Structural Proteins
2.2.1. Capsid

The alphavirus capsid protein functions in genome encapsulation, particle assembly,
and budding [100]. To achieve these functions, it contains regions that interact with viral
genomic RNA and the viral glycoproteins [100–102]. In New World alphaviruses, capsid
is an important virulence determinant involved in innate immune response suppression
through host transcriptional shut off, while in Old World alphaviruses similar processes are
mediated by nsP2 [88]. An N-terminal peptide of VEEV capsid was found to accumulate
at the nuclear membrane and cause cytopathogenicity to the extent of full-length capsid
and it was suggested that this region of the protein contains a nuclear localization signal
(NLS) enabling it to block nuclearcytoplasmic transport in infected cells [44]. Further, a
nuclear export signal (NES) was identified in VEEV capsid and mutations L48A and F50A
abolished inhibition of nuclear import by the N-terminal peptide [45]. In EEEV, a 20-amino
acid region of capsid (55–75) was also linked to inhibition of host gene expression and
sensitivity to interferon and within this region residues 65–69 were identified as putative
NLS [46]. Both ∆55–75 and ∆65–69 EEEV mutants exhibit decreased virulence in mice [46].
While the capsid of WEEV, which has a nucleocapsid arrangement more similar to Old
World alphaviruses, has not been linked to transcriptional shut off, it has been shown
to antagonize pattern recognition receptor (PRR) pathways downstream of interferon
regulatory factor 3 (IRF-3) [47,48]. CHIKV capsid was also found to contain an NES and
interact with nuclear export protein CRM-1, but blocking of this interaction was not as
detrimental as seen in the New World alphaviruses [103]. Additional roles of capsid in
virulence have been characterized in the Old World alphaviruses. In a study that sought to
identify interactions between SINV capsid and viral cytoplasmic RNA identified discrete
interacting regions of the genome, using CLIP-seq analysis, that when mutated resulted
in greater interferon production in cell culture and attenuation in mice [104]. The authors
propose that following entry into host cells and nucleocapsid assembly, continued capsid-
genome interactions enable efficient genomic RNA function, contributing to the efficient
establishment of infection and modulation of the innate immune response and consequent
pathogenesis [104]. Recently, SFV capsid was found to interfere with RNAi in mammalian
cells through sequestration of double-stranded RNA and small interfering RNA and
this activity was abrogated in K124A/K128A and K139A/K142A capsid mutants [49].
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Such findings demonstrate the wide variety of intracellular interactions mediated by the
alphavirus capsid protein. Harboring diverse interactions with other structural proteins
and genomic RNA and contributing to host shutoff and antagonism of the host immune
response, the capsid protein further emphasizes the multifaceted strategy employed by
alphaviruses in determining virulence throughout the viral lifecycle that incorporates both
non-structural and structural proteins.

2.2.2. E1 and E2 Glycoproteins

The surface of alphavirus particles contains 240 copies of each transmembrane glyco-
protein, E1 and E2, which are about 50 kDa in size and primarily composed of beta-sheets
(Figure 5A) [105]. E2 is recognized as the attachment protein, which binds host cell recep-
tors and entry factors, and E1 as a class II fusion protein that mediates membrane fusion.
They exhibit dimeric interactions that are important in protein processing, trafficking to
the membrane, and particle assembly, in addition to their primary roles in attachment
and fusion. Early studies utilizing chimeric viruses with swapped domains of virulent
and avirulent strains of alphaviruses began to highlight discrete regions of E1 and E2 as
important for virulence. In one such study, chimeric viruses were constructed to dissect
the varying neurovirulence between different strains of neuro-adapted SINV in adult and
infant wild-type mice [50]. The mutations V72A and G313D in E1 and G55H and L209G in
E2 were linked to increased neurovirulence [50]. G55H and L209G in E2 were attributed to
increased neurovirulence in both adult and infant mice [50]. Subsequent mechanistic stud-
ies demonstrated G55H to increase infectivity in neural cells and to also require a second
mutation, E70K, to confer full virulence that the researchers attributed to increased binding
to the glycosaminoglycan (GAG) heparan sulfate (HS), a ubiquitously expressed host factor
used by viruses and other pathogens for cell attachment [106,107]. Similarly, other groups
used this domain-switching approach in SFV to identify E2 as containing determinants of
virulence [108]. Increased GAG dependence of neuroinvasive SFV was correlated to more
efficient crossing of the blood–brain barrier [109]. There has been continued evidence that
GAG usage contributes to alphavirus virulence and that binding is mediated by specific
regions of E2, such as residues 70, 82, and 166 of CHIKV E2 that were identified using the
attenuated strain 181/25 and were shown to modulate disease severity and host response
(Figure 5B) [58–60]. Enhanced neurovirulence in EEEV is also mediated by HS binding,
demonstrated by ablating a positively-charged GAG binding region of E2 (K71A, K74A,
K77A) [61]. More recent mechanistic analyses using CHIKV have shown GAG-dependent
binding to be mostly mediated through E2 domain B while GAG-independent binding is
mediated through domain A and that the extent of GAG dependence varies across CHIKV
strains [110,111]. Discrete regions of E2 have also been implicated in viral persistence. Viral
escape from phagocytic cell-mediated clearance and enhanced viremia and dissemination
were found to be mediated by E2 K200R in CHIKV (Figure 5B) and ONNV and K251R
in RRV, following the initial identification of K200R in a persistently circulating strain of
CHIKV in immuno-compromised mice [62,63]. Mutational analysis revealed a lysine at
these positions to be necessary for clearance [63].

While the mechanisms of E1 V72A and G313D were not elucidated, it is notable
that residue 72 resides at the tip of domain II, which was later shown in SINV and other
alphaviruses to function in the modulation of virulence. In a study of the evolution of
CHIKV during natural transmission between Aedes aegypti mosquitoes and infant mice,
the E1 variant V80I:A129V was identified in mosquito saliva and bodies and in mouse
serum following transmission (Figure 5B) [51]. A recombinant virus with these mutations
was generated and found to increase viral loads and lethality in mice. Mechanistic analyses
revealed the mutations to increase fusion and particle stability in vitro. A subsequent
study examined the mutational tolerance of E1 position 80, which is fully conserved among
alphaviruses, and demonstrated that the amino acid at this position can modulate infectivity
and dissemination [52]. While E1 variant V80L was attenuated in mice, double mutant
V80L:V226A restored viral titers to wild-type levels, further demonstrating that discrete
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residues of E1 contribute to virulence. Additionally, SINV E1 V80L replication was shown to
be attenuated in vitro, demonstrating the conserved functionality of this residue in another
alphavirus. As discussed by Noval et al., residues 80 and 226 are both located at the tip of
domain II of E1, and near a conserved glycerophospholipid binding pocket [52,112]. Their
additional mechanistic analyses showing the role of residue 80 in cholesterol dependence
together with previous reports that residue 226 is involved in cholesterol dependence in
CHIKV, SFV, and SINV [54–56], support the functional importance of this region of E1 and
possible implications in alphavirus virulence.

The significance of CHIKV E1 residue 226 (Figure 5B) was previously recognized
following a 2005 outbreak when the virus’s increased ability to infect Aedes albopictus
mosquitoes as compared to the primary vector Aedes aegypti was retrospectively attributed
to the E1 mutation A226V, which gave rise to the Indian Ocean Lineage [53]. Following
the emergence of the E1 A226V variant, a second-step adaptive mutation, E2 L210Q, was
shown to also increase viral fitness in ae. Albopictus mosquitoes, although not to the extent
of A226V, demonstrating the consequence in expanded circulation and epidemics brought
on by the increased spread by ae. Albopictus. Interestingly, despite the high abundance
of ae. Albopictus mosquitoes in South East Asia, the E1 A226V variant was not observed
on the Asian lineage background, which was found to be due to an epistatic interaction
between E1 residues 226A and 98T [113]. Further, two novel mutations E1 K211E and E2
V264A, found circulating in India and France, were shown to enhance infectivity in ae.
Aegypti mosquitoes [114,115].
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Also found to play a role in both vertebrate and mosquito infections is the glycosy-
lation of the alphavirus glycoproteins (Figure 5B). RRV lacking N-linked glycosylation at
E1 residue 141 (N141Q) led to increased clearance of the virus in mice and an associated
increase in IFN-γ [57]. Loss of E2 glycan at residue 200 (N200Q) reduced infectivity in
mosquitoes while altering the E2 262 glycosylated site (N262Q) had little effect [57]. Loss of
SINV E1 glycosylation (N139Q or N245Q) also decreased virulence in mice, in addition to
replication in mosquitoes [64]. The loss of SINV E2 glycosylation (N196Q or N318Q) actu-
ally increased virulence in mice and it was suggested to be due to increased heparan sulfate
binding on mammalian cells [64]. The alphavirus glycoproteins have been implicated in
critical roles throughout the viral lifecycle and as discussed here, evidence exists for various
interactions with host components that contribute to virulence, but much of the underlying
mechanism is not understood. Future studies will be valuable in further understanding
how discrete residues, for example, are able to modulate alphavirus infection.
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2.2.3. E3

The E1-E2 heterodimer first exists as a p62-E1 intermediate before the cleavage of
E3 from p62 (also known as pE2) to generate E2-E1. E3 is a small (~65 amino-acid)
protein that functions in translocation of the structural polyprotein to the ER and in virus
maturation via the cleavage of E3 from E2 [118,119]. During assembly, E3 associates
with the glycoprotein spike complex to protect the fusion loop from low pH and prevent
premature triggering [120]. While a direct role for E3 in virulence in animals has not
been described, studies have described discrete residues of E3 involved in controlling
the production of infectious particles in vitro. It was demonstrated that incorporation
of uncleaved p62 can yield non-infectious particles and a single site mutation in SINV
E3, C25R, restores infectivity [65]. Further mutational analysis of the conserved cysteine
residues of alphavirus E3 proteins confirmed cysteine 25 and 19 of SINV E3 as critical
for the production of infectious particles and provided a functional link for disulfide
bond formation [121]. While additional studies are necessary to investigate other possible
roles for E3, its function in regulating the processing and maturation of the glycoproteins
implicates the small structural protein as potentially useful in the design of unique antiviral
strategies.

2.2.4. 6K and TF

Small accessory protein 6K and its minority frameshift product counterpart, TF, func-
tion in assembly and budding, and their specific roles in these processes have recently
begun to come more to light, along with evidence for roles in virulence [20]. Mutations in
6K have been identified in epidemic strains of CHIKV, including the mutation L20M, which
was detected during outbreaks in Mexico and Colombia [122,123]. Additional mutations
of interest in the Colombian strains include 6K A47T/S, F48L, and A56V [123]. Although
these mutations were sustained by epidemic variants, further study is required to address
whether these mutations contribute to virulence. While 6K and TF are not required for the
production of infectious particles, CHIKV, RRV, and VEEV mutants lacking the 6K gene
and SINV mutants lacking TF or encoding altered versions of the protein are attenuated
in mice [66–68,124]. It was suggested that decreased titers in the brain of VEEV ∆6K may
indicate a role for the protein in neuroinvasiveness and/or crossing of the blood brain
barrier [68]. Naturally arising deletions clustered near or spanning the 6K/E1 cleavage site
and ribosomal frameshift site for TF translation in VEEV have also been described, further
suggesting a significant role during infection [125]. A recent mechanistic study revealed
SINV TF acts as an IFN-I antagonist in mice and primary macrophages and that palmi-
toylation of TF controls the capacity to antagonize IFN-I, establishing a novel mechanism
responsible for TF-induced virulence that had not previously been identified [69]. Rogers
et al. suggest palmitoylation may be necessary for TF interactions with host proteins or
for proper localization to sites necessary for evading vRNA sensing, as they previously
showed palmitoylation to be important in TF localization to the plasma membrane in
addition to incorporation into particles, and particle morphology [69,126]. This group also
used a domain-based mutational approach to characterize which regions of the protein
control palmitoylation [70]. Cysteine residues of TF domain III (C35, C36, C38, and/or
C39) were determined as the location of all palmitoylation, which occurs at a basal and
maximal extent. Domain IV is crucial for the regulation of the ratio of basal and maximal
palmitoylation and mutating cysteine residues there (C59, C62, and C65) results in only
maximally palmitoylated TF [70]. Together with the activity of other viral proteins, TF-
mediated antagonism of IFN-I production provides a multi-layered control over the host
innate immune response, demonstrating the expansive multifunctionality of alphavirus
proteins as determinants of virulence.

2.3. 5′ and 3′ Untranslated Regions

The alphavirus 5′UTR ranges in length from 27 to 85 nucleotides and contains func-
tional sequence and structural elements important for replication, translation, and evasion
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of innate immune responses [127]. Early studies demonstrated that single point mutations
in the 5′UTR cause attenuation in vivo, including at nucleotide 3 in VEEV, nucleotides 5
and 8 in SINV, and nucleotides 21, 35, and 42 in SFV [71–73,128]. In VEEV, the attenuation
of G3A was attributed to increased IFN sensitivity [74]. Alphaviruses lack 2′-O methyla-
tion of the 5′ end of genomic RNA and have been shown to evade restriction by Ifit1, an
IFN-stimulated gene with high affinity for unmethylated RNA [75,129]. Evasion of Ifit1
was shown to be dependent on nucleotide G3, which is able to alter Ifit1-RNA binding [75].

The alphavirus 3′UTR ranges from 87 to 723 nucleotides in length, contains the poly(A)
tail, sequence and structural elements for replication, and binding sites of miRNAs and
host proteins [127]. The 3′UTR of EEEV was predicted to contain four miR-142-3p, a
hematopoietic cell-specific miRNA, binding sites spanning 260 nucleotides from position
11337 to 11596 responsible for restriction in murine myeloid cells [76]. Deletion of this
region alleviated restriction of viral replication in these cells and altered infection in mice.
Introducing three-point mutations to each of the miR-142-3p binding sites was sufficient
to increase EEEV translation in murine myeloid cells in vitro. The authors suggest that
3′UTR-miRNA binding strategically limits viral replication in a cell-type specific manner,
decreasing detection and ultimately leading to exacerbated disease [76]. The 3′UTR has
also been implicated in host tropism and adaptation, as demonstrated by the deletion of
nucleotides 31–293 in SINV that reduces replication in mosquito cells, but not in chicken
cells [77]. This region contains a 19-nucleotide conserved element in which a single point
mutation at position 7 renders the virus temperature sensitive in chicken cells while
more dramatically attenuated in mosquito cells [77]. Deletion of this region in EEEV
was observed following passaging in hamster cells further indicating that regions of the
3′UTR function in adaptation more in invertebrates more than vertebrates [130]. Naturally
occurring lineage-specific patterns in the 3′UTR can be observed in alphaviruses, such as
a 177-nucleotide duplication unique to CHIKV strains detected in the Caribbean islands
and Mexico during a 2013/2014 outbreak [131,132]. As discussed extensively by Chen
et al., such patterns that arise in the 3′UTR are likely due to a combination of adaptation
to host and restriction in vectors [132]. Experimental passaging of a CHIKV mutant with
a 258 nucleotide deletion in the 3′UTR demonstrated that passaging on a single host cell
line increased viral fitness of the original deletion mutant and alternately passaged virus
resulted in increased fitness on both hosts, with most changes occurring in the coding
regions and demonstrating the impact of 3′UTR mutations on subsequent evolution and
adaptation [133]. In a study that utilized immuno-deficient mice to assess the acquisition
of adaptive mutations that facilitate persistent CHIKV infection in specific tissues, a 44-
nucleotide deletion was detected in the 3′UTR from nucleotide position 11921 to 11964,
along with a point mutation in E2 [62]. Mutational analysis showed that while the 3′UTR
deletion alone was not sufficient to alter disease in mice, it contributed to enhanced effects
in combination with the E2 mutation that enabled more rapid dissemination, further
demonstrating the diverse functions of alphavirus UTRs [62]. With evidence for various
roles in immune evasion, host tropism, dissemination, and persistence, the alphavirus
UTRs are key contributors to the virulence of alphaviruses and further research is necessary
to fully understand how these non-coding regions function in these processes.

3. Conclusions

Alphaviruses continue to pose an increasing threat to human health, creating the need
for new preventative and therapeutic approaches. This review focuses on a number of
discrete genomic regions and protein residues of multiple alphaviruses that have been
shown to function in modulating virulence in vitro and in vivo. These molecular determi-
nants of virulence represent subtle interactions between virus and host that are critical for
understanding viral pathogenesis. Elucidating the mechanisms underlying these factors
and the stability of mutations in the encoding genomic regions can greatly inform the
development of new tools to combat these viruses. A rationally designed combination of
stable targeted attenuating mutations based on these studies, for instance, can enhance the
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safety and success of live-attenuated vaccines, which are favorable in their ability to mimic
natural infection and induce a robust immune response. Further, identifying conserved
molecular determinants of virulence across alphaviruses is crucial for the development of
pan-alphavirus antivirals and vaccine platforms. Pinpointing genomic regions important
for virulence is also useful in the efficient characterization of new emerging viruses and
viral variants. Paired with phylogenetics, epidemiological studies and clinical data, such
functional information can be used to study of the evolution of virulence. The identification
of additional determinants of altered immunogenicity, receptor binding, or vector tropism
may be of key future interest to evaluate epidemic potential. Taken together, the virulence
determinants reviewed here are only the tip of the iceberg of how alphaviruses cause
disease. Future studies addressing how the alphavirus RNA genome and its encoded
proteins contribute to virulence in vivo will be critical for our better understanding of the
fundamental mechanisms of alphavirus biology.
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