INTERFACE

royalsocietypublishing.org/journal/rsif

Research)

Check for
updates

(ite this article: Clamons S, Qian L, Winfree
E. 2020 Programming and simulating chemical
reaction networks on a surface. J. R. Soc.
Interface 17: 20190790.
http://dx.doi.org/10.1098/rsif.2019.0790

Received: 23 November 2019
Accepted: 30 April 2020

Subject Category:
Life Sciences—Engineering interface

Subject Areas:
bioengineering, nanotechnology,
computational biology

Keywords:
molecular programming, surface chemistry,
nanotechnology

Author for correspondence:
Erik Winfree
e-mail: winfree@caltech.edu

THE ROYAL SOCIETY

PUBLISHING

Programming and simulating chemical
reaction networks on a surface

Samuel Clamons', Lulu Qian'2 and Erik Winfree'23

!Bioengineering, >Computer Science, and >Computation and Neural Systems, California Institute of Technology,
Pasadena, CA 91125, USA

SC, 0000-0002-7993-2278; LQ, 0000-0003-4115-2409; EW, 0000-0002-5899-7523

Models of well-mixed chemical reaction networks (CRNs) have provided a
solid foundation for the study of programmable molecular systems, but the
importance of spatial organization in such systems has increasingly been
recognized. In this paper, we explore an alternative chemical computing
model introduced by Qian & Winfree in 2014, the surface CRN, which uses
molecules attached to a surface such that each molecule only interacts with
its immediate neighbours. Expanding on the constructions in that work, we
first demonstrate that surface CRNs can emulate asynchronous and synchro-
nous deterministic cellular automata and implement continuously active
Boolean logic circuits. We introduce three new techniques for enforcing syn-
chronization within local regions, each with a different trade-off in spatial
and chemical complexity. We also demonstrate that surface CRNs can manu-
facture complex spatial patterns from simple initial conditions and implement
interesting swarm robotic behaviours using simple local rules. Throughout all
example constructions of surface CRNs, we highlight the trade-off between
the ability to precisely place molecules and the ability to precisely control mol-
ecular interactions. Finally, we provide a Python simulator for surface CRNs
with an easy-to-use web interface, so that readers may follow along with
our examples or create their own surface CRN designs.

1. Introduction

Skilled chemists can do many things. They can make a dizzying variety of
molecules—medicines, fuels, poisons, flavouring, detergents, paints, fertilizers,
explosives. They can use combinations of molecules to build materials—fabrics,
plastics, glass, concrete, metals and their alloys. They can change important
properties of liquids, like salinity or acidity, or even redox potential, which
lets them make a battery. They can make molecules change form or colour,
which gives them the ability to detect light, starch, oxygen, pH, and build air
or water quality sensors. With the right salts or other dissolved compounds,
they can grow beautiful crystal structures, which can be made into jewellery
and pottery.

But even the most skilled chemists cannot make anything as sophisticated as
life—a large collection of molecules with impressive information-processing
capabilities underlying fundamental behaviours such as development, learn-
ing, and self-repair [1]. The basic components of life—lipids, nucleic acids
and proteins—can all be chemically synthesized. Simple interactions between
chemically synthesized molecules can carry out dynamic behaviours—
oscillation or chaotic behaviour (e.g. the Bray-Liebhafsky reaction [2], the
Belousov-Zhabotinsky reaction [3-6] and the Briggs—Rauscher reaction [7]).
Systems including dozens to hundreds of chemically synthesized molecules,
nucleic acids in particular, can be built to perform information-processing
tasks including Boolean logic computation [8-10], neural network computation
[11,12] and more [13,14]. Chemically synthesized molecules can also be

© 2020 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution
License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original
author and source are credited.

http://crossmark.crossref.org/dialog/?doi=10.1098/rsif.2019.0790&domain=pdf&date_stamp=2020-05-27
mailto:winfree@caltech.edu
http://orcid.org/
http://orcid.org/0000-0002-7993-2278
http://orcid.org/0000-0003-4115-2409
http://orcid.org/0000-0002-5899-7523
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

programmed to self-assemble into structures with a variety of
shapes [15-17]. However, these systems are still far less
complex than what is seen in nature.

Is it possible to create much more complex chemical
systems than current technologies?

Theoretically, yes. Perhaps the most well-known and well-
understood formal model of chemistry is the abstract chemical
reaction network (CRN), which encodes each chemical reaction
in a system of chemical reactions as a mapping from a (multi)-
set of abstract reactant species to a (multi)set of abstract product
species, along with a rate constant. CRN models differ in how
these mappings are applied. Stochastic, discrete CRN models
give positive integer values to molecular counts and typically
treat reactions as events in a continuous-time Markov chain
[18]. For very large numbers of molecules, stochastic CRNs
can be approximated by continuous, deterministic mass-
action CRN models, in which chemicals have non-negative,
real-valued concentrations that change according to a set of
ordinary differential equations determined by the CRN for
the system. In both types of CRN models, molecules are well
mixed—every molecule can freely float around and come
into contact with every other molecule in the system.

Deterministic mass-action CRNs are Turing-universal
[19], suggesting that chemistry is, in principle, as powerful
as any programming language and can compute anything,
even when restricted to reactions that can be understood
with simplistic models. Stochastic CRNs can also compute
anything, although the computation is only correct most of
the time—occasionally it is wrong [20,21]. Alternatively,
they can compute anything with guaranteed correctness if
we could obtain the output of the computation only when
time goes to infinity—otherwise it may still be wrong [22].
Conversely, some computational schemes are possible with
stochastic CRNs but not with deterministic CRNs. For
example, stochastic CRNs can directly represent complex
probability distributions [23], perform probabilistic inference
[24], and use the CRN’s inherent stochasticity to help solve
combinatorial search problems [25].

Even though in theory well-mixed chemistry is suffi-
ciently powerful for carrying out arbitrarily complex
information-processing tasks, practically, it is hard to scale
up the complexity beyond certain limits. For example, deter-
ministic mass-action CRNs are Turing-universal only if
concentrations can be guaranteed to have arbitrarily small
relative errors, as these concentrations must encode arbitra-
rily precise analogue values used in the computation [19].
Stochastic CRNs have a different practical problem: the
number of molecules required for a task grows exponentially
with increasingly complex tasks [21].

One problem fundamental to both deterministic and sto-
chastic CRNs is that the entire ‘program’ of a CRN is encoded
in the interactions between molecules, and designing a large
collection of molecules to interact with each other with speci-
ficity is, in general, difficult. It is inevitable that when two or
more molecules come into contact with each other in a well-
mixed system, even if they are not designed to interact with
each other, unwanted side reactions will occasionally occur.
A larger collection of molecules necessarily has a higher
probability of side reactions, simply because there are more
possibilities for every molecule to interact with every other
molecule. High-order side reactions can be repressed by
using smaller concentrations of chemical species—but redu-
cing the concentrations will also slow down a CRN. Thus,

there is a trade-off between the accuracy and speed of a [2 |

CRN-based computation.

One possible solution to the problem of restraining undes-
irable interactions relies on spatial separation rather than
specificity. This strategy is familiar from the world of elec-
tronic engineering: in silicon circuits, interactions between
components are encoded by spatial position. Two AND gates,
for example, do not interact unless they are physically con-
nected by a wire, even though their design is identical and
their signal carrier (electrons) is identical. Moreover, it is rela-
tively easy to place electronic components with high accuracy,
and we can leverage this power to build enormously complex
devices from a remarkably small set of unique interacting
component types. Biology found this solution long before
engineers did. In the brain, neural circuits are largely deter-
mined by their spatial layout and connectivity; release of the
same neurotransmitter yields different results depending on
where it is released. Even at the subcellular level, biology
exploits spatial organization to control biochemical circuit
function, with scaffold proteins being a primary example
[26]. Turning back to engineering efforts to program chemical
systems, one could imagine taking similar advantage of spatial
separation by, for example, assembling molecules into poly-
mers or tethering molecules onto a surface so that geometry
will limit which molecules can reach each other (in the best
case they can only touch their immediate neighbours). This
prospect has engendered a considerable body of theoretical
and experimental work in DNA nanotechnology [27-36].

In the course of his explorations of reversible computing
and the thermodynamics of computation, Charles Bennett
exhibited a theoretical polymer CRN capable of simulating
arbitrary Turing machines, with each polymer in solution
acting independently and in parallel [37]. However, it
remains unclear how to engineer the hypothetical enzymes
needed in Bennett’s construction. Plausible implementations
of Turing-universal polymer CRNs have been proposed
using DNA nanotechnology, but the constructions only
work when there is a single copy of certain molecules
[27-29], which imposes significant technical challenges in
practice and eliminates the possibility of parallelism. It is
natural to expect that surface-based chemistry will have
greater computational capabilities than polymer chemistry.
In their 2014 paper [38], Qian and Winfree proposed a
simple but powerful surface CRN model, along with a plaus-
ible implementation using DNA nanotechnology, which now
allows us to explore (i) what chemistry on a surface, in prin-
ciple, can do, (ii) what constraints, if any, being on a surface
imposes on chemistry, and most importantly, (iii) what it is
better at doing than well-mixed CRNs and polymer CRNSs.

As it happens, chemistry on a surface can do quite a lot.
Like well-mixed chemistry, even simple natural surface chem-
istry can encode surprisingly complex behaviour. In one
striking example, administration of oxygen and carbon mon-
oxide gasses to a well-defined platinum surface can induce
bulk oscillations, spiral patterns, or turbulence, depending
on the ratios of gasses used [39]. Other, somewhat more com-
plex surface-chemistry reactions can produce Sierpinski
triangles [40-42], labyrinthine mazes [43] and other complex
(and switchable!) patterns [44]. That such simple systems can
produce rich behaviour suggests that surface chemistry in
general ought to be quite powerful.

Of course, different chemistries do different things—
alloys of metals behave differently from thin-film liquids,

06£06L0T :LL ua3ul 20S Y °f yisi/jeunol/bio-buiysijgndAiaposiesol

Box 1. Following along with our simulator.

If you would like to follow along with the examples in
this paper, you can do so online at http:/ /www.dna.cal-
tech.edu/Surface. CRN_Simulator, which presents an
interface to the surface CRN simulation Python package
we used for most of our design and visualization. The
website has all of the examples we present, plus a few
extra examples for fun. You can also define and test
your own surface CRNs through the website, with the
restriction that they must use a square or hex grid.

For users who prefer to run our code directly, or
would like to extend it, our simulator is also available
as the pip-installable Python package ‘surface crns’. You
can install it from the Python Package Index (https://
pypi.org) or from our GitHub page at https://github.
com/sclamons/surface_crns. This will let you watch
your surface CRNs run in ‘real-time’, and lets you step
through simulations one reaction at a time. If you are com-
fortable programming with Python, you can also use our
Python package to define surface CRNs with more com-
plex custom geometry or visualization.

which behave differently from proteins embedded in a mem-
brane. The surface CRN model does not attempt to give an
accounting of each and every possible kind of surface-based
chemistry, but rather explore the general class of chemical reac-
tions between spatially constrained molecules using a simple
model. Qian & Winfree used surface CRNs to generate com-
plex dynamic spatial patterns and showed them capable of
directly emulating both Boolean logic circuits and Turing
machines. We will expand on these examples and demon-
strate several other things that surface CRNs can do, some
of which are obvious and some not. You can follow along
with our examples using our surface CRN simulator, either
online or on your own computer with Python (see box 1).

Throughout this paper, many of the existing systems we
reference will use DNA nanotechnology. This is because
DNA is a readily programmed substrate, in the sense that it
is straightforward to specify binding and reactions between
arbitrary species, and so DNA nanotechnology provides,
for the moment, many of the best examples of programmable
chemistry [45-48]. We wish to emphasize that the surface
CRN framework can just as easily apply to any system of mol-
ecules with programmable interactions that live on a surface.
We hope that in the future, this will encompass a wide range
of chemistries using a wide range of substrates.

2. Review: what is a surface chemical reaction
network?

We follow the definition of a surface CRN as introduced in
Qian & Winfree [38]: informally, it is a CRN in which individ-
ual molecules are localized to sites on a surface and can only
interact with neighbouring molecules. Alternatively, a surface
CRN is an asynchronous, stochastic cellular automaton with
transition rules that resemble CRN reaction rules. The surface
CRN model is not intended to replicate or model all of the poss-
ible behaviours of chemistry that happens on or near a surface;
nor is the surface CRN model intended to accurately describe

what is known in the field of surface chemistry. Rather, the sur- n

face CRN is a simple model of CRN-like chemistry in which
molecular interactions are restricted geometrically, which we
hope will clarify understanding and inspire construction of
computational chemical systems on surfaces.

More formally, a surface CRN is a continuous-time Markov
chain specified by a lattice L of connected sites i € L with a
state s; at each site i, along with a set of transition rules r € R
of either the form A — B or A + B— C + D, each with a reaction
rate A,. The surface CRN model is defined for arbitrary graphs
of sites, but for simplicity, we will consider only square-grid
lattices in this paper (though our simulator can handle arbi-
trary graphs). The state at each site is always a single
species, so we will often use ‘state” and ‘species’ interchange-
ably. A species represents some smallest physical unit of the
system (e.g. proteins covalently bonded to a glass slide, mono-
mers in a plastic polymer, DNA complexes attached to a DNA
origami sheet, or local lattice configurations in a crystal) such
that local interactions can be represented as reactions. The con-
nections between sites in the graph define which pairs of
species are physically close enough to interact. Where appli-
cable, an ‘empty’ state (e.g. E) may be defined for sites
which do not hold anything. Note that the state of the
Markov chain under this definition encompasses the entire
surface, and thus the states of all sites together.

As in traditional CRNs, we refer to the species on the left-
hand side of the “ -’ in a reaction as reactants and the species
on the right-hand side of the -’ as products.

Unimolecular reactions (those of the form A — B) can
occur at any site with a state matching the reactant. For
example, the rule ON — OFF would cause any ON species
to spontaneously and instantly flip to an OFF species when
the reaction (stochastically) occurs. Again, a reaction rate
associated with the rule determines the average frequency
at which the reaction will occur.

Bimolecular reactions (those of the form A + B — C + D) can
occur anywhere that the two reactant species are present and
next to each other according to the connectivity of the surface
on which they sit. At the moment when it occurs, a bimolecular
reaction simultaneously and instantaneously transforms both
reactants into products. Note that surface CRNs do not have
any absolute orientation, so the absolute order of the reactants
does not matter; however, the orientation of the products will
match the orientation of the reactants in the lattice. Thus, the
rule A+B— X +Y can occur anywhere that an A is next to a
B, no matter their orientations, and will always convert A into
X and B into Y (but never A into Y or B into X).

Jumps in the surface CRN process correspond to reaction
events. An event is defined as a tuple (I, v, t + At), where I is a
set of one or two sites, r is a transition rule with the same
number of sites as I, t is the time of the last event (or 0 if it
is the first event), and At is the time between the event and
the previous event. At the beginning of the process and
immediately after each jump event, the possible events are
all (I, r, t+ At) for which {s;}, i €I are exactly the reactants of
r, with At drawn from an exponential distribution with
mean 1/A,. The event with the minimum At then occurs at
time t+ Atf, at which time the reactant states at sites I are
replaced by the products of r. At this point, the list of possible
events is recalculated, and the process is repeated. Simulation
of surface CRNs can, therefore, be considered a variant of the
Gillespie algorithm [18] for stochastic chemical kinetics, and
thus is susceptible to similar optimizations [49] (see box 2).

06£06L0T :LL ua3ul 20S Y °f yisi/jeunol/bio-buiysijgndAiaposiesol

http://www.dna.caltech.edu/Surface_CRN_Simulator
http://www.dna.caltech.edu/Surface_CRN_Simulator
https://pypi.org
https://pypi.org
https://github.com/sclamons/surface_crns
https://github.com/sclamons/surface_crns

Box 2. Efficient surface CRN simulation.

Surface CRNs can be simulated using a variation of the
Gillespie algorithm for simulating stochastic chemical
reaction networks. Briefly, using variables from the text:

1. Initialize with a global state at time t =0.

2. For each reaction r that can occur at a site or pair of
sites, draw a time-to-event At for that reaction from
an exponential distribution with mean 1/4,. Schedule
this reaction to occur at time t + Af.

3. For the reaction with the smallest scheduled time,
change the reactants of that reaction to its products
and set t =1+ At.

4. Repeat from step 2 until a stop condition.

The naive method redundantly recalculates time-to-
events for every site and pair of neighbouring sites
after every reaction, with total time complexity roughly
O(N x R), where N is the number of sites in the surface
CRN and R is the total number of reaction events
simulated. We instead leverage previously calculated
next-reaction times by storing all possible reactions
in a priority queue, sorted by the time at which each
reaction will occur:

1. Initialize with a global state at time t =0.

2. For each reaction that can occur, draw a time-to-event
as described and add that reaction to a priority queue
sorted by t + At.

3. Pop the first reaction from the queue. Change reac-
tants to products. Set t =t + At.

4. Remove from the queue all reactions involving any of
the same sites as the current reaction.

5. If any new reactions can occur that involve any of the
same sites as the current reaction, add them to the
queue as per step 2.

6. Repeat from step 3 until a stop condition.

Popping a reaction from the queue is an O(log Q) oper-
ation (where Q is the maximum number of reactions in
the queue at any given time) and checking for new reac-
tions is constant in N, R and Q, giving total time
complexity O(N +Rlog Q) ignoring step 4. However,
step 4 (removing outdated reactions) is linear with Q.
Our simulation avoids the need for step 4 by storing
the times when each reaction is issued and the times
when each site was last changed. When an event is
popped off the queue, if any of its reactants were
updated between the reaction’s issue time and the cur-
rent time, the reaction is scrapped and another one
popped off the queue. This optimization comes at the
cost of bloating the queue with outdated reactions,
which can slow dequeueing somewhat.

It is worth acknowledging again that the surface CRN
model is not general enough to accommodate all the com-
plexities that may arise in real surface chemistry, such as
reaction rates depending on distance in an irregular graph,
or depending on higher-order neighbourhood contexts. This
simplification may make it less useful as a modelling
language, but at the same time it makes it more appropriate

as a molecular programming language, since the require-
ments for a systematic general-purpose implementation will
be more easily met.

Note that the surface CRN is a discrete, stochastic model,
related to stochastic reaction—diffusion systems [50,51] but
with several key differences. First, whereas both surface
CRNs and stochastic reaction-diffusion networks consider a
similarly discrete number of molecules, in reaction—diffusion
systems the positions of those molecules are within a continu-
ous space while the surface CRN model considers discrete
molecules at discrete positions on the surface. Therefore,
surface CRNs naturally capture exclusion effects related to
macromolecular crowding, which require the introduction
of extra terms in the reaction-diffusion framework [52].
Furthermore, reactions in reaction—diffusion formalisms typi-
cally have no local geometry (the relative positions of
reactants and products are not specified, as if the solution
is locally well mixed), whereas surface CRN reactions expli-
citly track which reactant becomes which product and
positions are preserved. Finally, while having a diffusion con-
stant of zero would be an anomaly in a reaction—diffusion
system, in a surface CRN, molecules will by default not
diffuse—diffusion must be explicitly added with a reaction
such as X + E&E + X, where X is the diffusing molecule, E
represents an empty site and the rate constant k determines
the rate of diffusion.

The move from bulk (deterministic) to low-count (sto-
chastic) has a practical upside: real-world realizations of
surface CRNs can be very, very small. Where a whole test
tube’s worth of chemicals might be required to accurately
run a bulk-reaction chemical computer, one test tube could
easily hold billions or trillions of tiny surfaces, each with
its own surface CRN. In short, surface CRNs ought to be
aggressively parallelizable.

Importantly, as we will see in several examples, putting
chemical reactions on a surface opens up an interesting
trade-off between the difficulty of controlling specific molecu-
lar interactions and the difficulty of laying out components in
a specific spatial arrangement. If one has the technology to
position many molecules precisely on a surface, surface
CRN designs with few species and reactions can accomplish
complex tasks yet it will be relatively easy to design the few
desired molecular interactions; conversely, if one has the tech-
nology to implement many desired molecular interactions
precisely, there are other surface CRN designs that can lever-
age that ability to create precise, complex spatial patterns
from a simple initial spatial arrangement.

Now, what exactly can a surface CRN do?

3. Dynamic spatial patterns
3.1. The chaos of asynchronicity

To begin with, surface CRNs can model many familiar chemi-
cal processes. Consider diffusion of gas particles in a two-
dimensional (lattice) space. We define states G and S, for gas
and space, respectively, along with the reaction G+ S — S+ G.
When a few G species are speckled on a field of S, the
gas species will diffuse about at random on the lattice,
gas-like, with a diffusion rate set by the rate of the reaction
G+5—-S5+G. With the addition of reactions that change
the species identities, we have a form of stochastic
reaction—diffusion system, as mentioned earlier.

06£06L0T :LL ua3ul 20S Y °f yisi/jeunol/bio-buiysijgndAiaposiesol H

(a) b) well-mixed GH CRN
1s7! 1.0
+A s A4A g —Q
¢ e Sgo8 —a
0.657! % £ 06 —R
A——>R W 5204
2
~ 0.2
0.0357! B = 8 O
R ——
0 50 100 150 200
time (s)
nitial stat synchronous GH surface CRN spinning-arrow surface
) titial state cellular automata emulation CRN emulation
single
wave
(d)
spiral
wave
(e)
random
start
fH i S S
V7 4.9 47 ¥ 7
0%’ o™ 0" 7 %8 b7 o7 ot o*?
V3 41| 42| 43] 41 4.3 N2 INEIE | 1 3 2l 2 431 4,1
4.4 5,46 4 5 6 4 5 6
PR L T e e X P Y RY Y FEE
R AN (S 7 (O) O 3 A 1) 7/ ,8 | N/ o7 (| A4S g 7
g 07 |0 o o |0 | T g 0¥ ot lg¥8 g2 dloh
UL 4.3 g +3 41 43
ot oM 0" \ /Q’Q’SQ’ \ /Q’QT’SQ’

update between
2 and 5 and
between 6 and 9

update between
5and 6

Figure 1. Comparison of a Greenberg—Hastings three-state excitable media cellular automaton with two surface CRN implementations. (a) The transition rules for
the surface CRN, with colour legend for snapshots. (b) Behaviour of the Greenberg—Hastings system implemented as a well-mixed CRN. In bulk, this CRN displays no
oscillations or other notable features. (c—e) Initial state (left column) and snapshots for the GH automaton (middle-left column) or the direct surface CRN implemen-
tation (middle-right column) or the spinning-arrow surface CRN implementation (right column). Examples are shown for a single pulse wave (c), a spiral wave (d)
and a random initialization (e). (f) The spinning-arrow construction for a (locally) synchronous Greenberg—Hastings automaton using a surface CRN. Each box is a
single site in the surface (RN, which emulates the function of a single cell in a synchronous automaton. At left, arrows are shown in initial positions, arranged to
avoid deadlock. The middle shows the surface CRN after two updates—one between sites 2 and 5, and another between sites 6 and 9. Sites 5 and 6 are now ready

to react together. At right, we see the result of the 5—6 reaction.

Surface CRNs can also model chemistry at a more
coarse-grained scale. Consider the patterns generated by the
Greenberg-Hastings (GH) cellular automaton [53], which is
a discrete version of the beautiful and dynamic Belousov—
Zhabotinsky reaction [3,6,54]. The GH cellular automaton is
a discrete, synchronous, deterministic automaton where
each cell has one of three states: Q (quiescent), A (active) or
R (refractory). At each step of the automaton: any quiescent
cell next to an active cell becomes active; any active cell

becomes refractory; and any refractory cell becomes quies-
cent. Depending on the automaton’s initial configuration, it
can produce single waves, infinite spirals, or complex spiral
patterns (figure 1c-e, middle-left column).

The GH automaton can be modelled by a three-reaction
surface CRN (figure 1a). This CRN has the property that if
all possible reactions were examined simultaneously, and all
species changes were applied simultaneously, then the behav-
iour of the synchronous GH cellular automaton would be

06£06L0T :LL ua3ul 20S Y °f yisi/jeunol/bio-buiysijgndAiaposiesol H

reproduced exactly. However, as surface CRNs have asyn-
chronous local updates, the GH surface CRN is stochastic
and its qualitative behaviour depends on each reaction’s
exact rate constant. With the rates shown in figure 14, the sur-
face CRN approximates some features of the behaviour of the
GH automaton, but the waves and spirals produced in the
surface CRN version of the GH system are thick and
uneven, with ragged edges.

The GH surface CRN lacks the strict synchronicity of the
GH automaton, which is what allows the original GH auto-
maton to produce fine-grained, structured patterns like the
spiral wave (figure 1d). Structures in the CRN are brittle—a
clean wavefront will quickly break apart as some parts of
the wave spread more rapidly than others. This causes the
wavefront to break up, peter out, or double back on itself,
so that a spiral that lasts forever in the synchronous GH auto-
maton will be a temporary storm in the surface CRN. In this
case, at least, asynchronicity in reactions washes out fine
structure in the surface CRN.

The GH cellular automaton can be thought of not just as a
specific model of the Belousov-Zhabotinsky reaction, but
rather as a generic model of excitable media that support
propagation of temporary activity through an otherwise
quiescent space. Systems as diverse as metal surface oxi-
dation, protein signalling on oocyte membranes, neural
action potentials, heart muscle contractions, slime mould
aggregation, lichen growth, forest fires, infectious disease
outbreaks and star formation, all can exhibit spiral waves
and have been studied as excitable media [55-58]. Interest-
ingly, well-known stochastic spatial models of forest fire
and infectious disease propagation correspond closely to
the GH surface CRN, with the Q, A and R states correspond-
ing to green, burning and burnt trees, or to susceptible,
infected and resistant hosts, respectively [57,58].

Going back to the example of the GH model, we saw that
an inherently asynchronous surface CRN implementation of
the same local logic (and with well-tuned rate constants)
can generate some similar kinds of behaviours as the original
synchronous cellular automata (e.g. wave propagation),
while other important features (e.g. wavefronts remaining
unbroken) fail in the asynchronous surface CRN implemen-
tation. These differences can be understood in terms of
conserved quantities that the synchronous updates preserve
[59], but which are not preserved by the asynchronous
updates (see box 3).

More generally, it has long been known in the cellular
automaton literature that asynchronous updates often
destroy behaviours that were of great interest in the synchro-
nous case [60,61]. To produce, say, the dazzlingly complex
and specific phenomena of Conway’s Game of Life [62] (an
example to which we will return shortly), some kind of syn-
chronization between reactions seems necessary. Can a
surface CRN, which is intrinsically asynchronous, emulate
the function of a truly synchronous cellular automaton?

3.2. One-to-one ‘spinning-arrow” construction of locally
synchronous automata

Yes, it can, at least in the most important senses. Again, the cel-
lular automata literature provides some guidance: many
techniques have been invented whereby an asynchronous cel-
lular automaton can, by incorporating extra states and extra
rules, enforce that the information flow of the synchronous

Box 3. Conserved quantities of surface CRNSs.

The GH cellular automaton has a conserved property
called the ‘winding number’ that is important for several
proofs of its behaviour. Pick any directed, closed path
through lattice sites in a GH automaton. That path will
cross through zero or more ‘cycles’” of Q—-A—=R (in
either direction). The net number of such cycles the
path crosses (forward minus reverse) is its winding
number. A simple way to compute the winding
number is to traverse the path, tallying +1 for each for-
ward step, —1 for each backward step, and then
dividing the total by 3. As an example, we write down
the states along a possible path, and below them, the
tallies for going from the given cell to the next cell:

AQQQAARRARRQAR
-00+0+0—+0+++—

The tallies sum to 3 so the winding number is 1.

Interestingly, the winding number of any particular
spatial path in a GH automaton with a fixed initial
condition will remain the same as the automaton
progresses, regardless of the initial configuration of
the automaton or the topology of the lattice (e.g.
square, hexagonal, triangular, irregular, etc.). This con-
served quantity can be used to prove, for example,
conditions under which a particular GH automaton
will continue indefinitely or peter out to a uniform
quiescent state.

— Does the surface CRN version of the GH automaton
preserve winding number? Why or why not?

— Can you identify any other conserved quantities in
the surface CRN GH automaton, or modify the reac-
tions such that analogous quantities are conserved?

You may wish to revisit these exercises for the other
surface CRN implementations of the GH automaton
given in later sections.

system remains intact within the asynchronous system [63-
65]. However, although the surface CRN model can be seen
as a subclass of asynchronous cellular automata, the fact that
surface CRN updates involve just two sites at a time, and
are orientation-invariant, poses significant constraints that
make direct application of prior techniques impossible—but
as we will show, mechanisms with a similar spirit do work.
One way for a surface CRN to emulate the function of a
synchronous automaton is for each site to (a) accumulate infor-
mation about all of its neighbours and (b) update itself based
on that information in a way that (c) guarantees that it will
not update itself before all of its neighbours have learned its
state (so that its neighbours will not get stuck, unable to
update, or update based on the wrong information about the
cell). In general, this requires careful set-up of both the tran-
sition rules and initial conditions of the surface CRN,
particularly to avoid deadlocking. Here, we will describe
such a scheme for emulating any cellular automaton with a
square-grid geometry and Von Neumann neighbourhood
(i.e. one where each cell only considers the states of the four

06£06L0T :LL ua3ul 20S Y °f yisi/jeunol/bio-buiysijgndAiaposiesol H

Box 4. Spinning-arrow deadlocks.

The spinning-arrow emulation scheme shown in this
section requires careful arrangement of initial con-
ditions—with the wrong starting arrangement, arrows
can easily become deadlocked, unable to update.

— Can you prove that the initial configuration shown in
figure 1f will not deadlock?

— How many initial configurations are there, in terms
of initial arrow direction, that avoid deadlock?

— If the surface is not infinite, then extra species and
reactions are needed to mark the boundary and per-
form updates there that will not induce deadlock.
Can you design them?

— Can you adapt the spinning-arrow emulation for sur-
face CRNs with a hex grid graph (instead of a square
grid)?

neighbouring cells with which it shares an edge, but not the
ones that border on only a corner). The basic principle is that
the identity of the state at each site, in addition to specifying
the current state of the cell that it is emulating, also has a direc-
tional arrow pointing to the next site it needs information from.
When two sites” arrows point toward each other, both sites
spin their arrows in opposite directions (e.g. both clockwise)
and update an internal label that tracks what information
that site has gathered from its neighbours. Once a site’s
arrow has spun once all the way around, a set of unimolecular
rules changes that site’s state according to the information it
has gathered from its neighbours, resetting the arrow and pre-
paring it for the next update. Note that care must be taken in
the initial set-up of the CRN so that every site’s arrows do
spin completely without deadlocking (see box 4).

Critically, each emulated cell cannot update its state until it
has received state information from all of its neighbours, and it
cannot receive information from its neighbours without simul-
taneously sending its own state information. The result is that
a cell can never be more than one “clock tick” ahead of any of its
neighbours, and will only send its state information when it is
at the same ‘clock tick” as its neighbour—it is locally synchro-
nous. Note that there is no guarantee of exact synchronicity
between distant cells in a locally synchronous automaton
(although cells distance d from each other can be at most d
‘clock ticks” apart). Nevertheless, because each cell only com-
municates with other cells at the same ‘clock tick’, the state
history of each cell is guaranteed to match that of an equivalent
cell in a globally synchronous cellular automaton. In other
words, the system will behave as though it were a synchronous
automaton, but with some variation in the speed at which each
cell updates.

One immediate problem with the spinning-arrow scheme
is that species in a surface CRN do not perceive local orien-
tation. Sites can be next to each other or not next to each
other, but reactions cannot be restricted based on reactants
being ‘to the left of or ‘to the right of each other, so two
arrows ‘pointing toward each other’ could just as easily be
‘pointing away from each other’ and the same reactions will
apply. To introduce a notion of directionality to the scheme,
we initialize the surface in a pattern with location labels
at each site, dividing the grid into a repeating 3 x3 grid
(figure 1f). Adding site labels allows reactions to distinguish

arrows pointing together from arrows pointing apart— -

for example, < at a 2 site and — at a 1 site point toward
each other, while « at site 2 and — at a site 3 point away
from each other.

So, each site in the spinning-arrow emulation has a state
that encodes:

— The current state of the emulated cell in the synchronous
automaton.

— Local positional information within a 3 x 3 repeating grid.

— The direction of an ‘arrow’ pointing toward the next site to
update from.

— A memory recording information that the site has received
from neighbours during this update cycle.

More formally, consider any synchronous cellular
automaton with Von Neumann neighbourhood, k states
{s1,82, ..., sk} =S, and an update rule f(self, N, E, W, S)
where self € S is the state of a cell and N, E, W,S € S are
the states of the cell’s northern, eastern, western and southern
neighbours, respectively. Each site in the emulating surface
CRN has a state of the form Xiﬁo, where X € S is the state
of the emulated automaton at that site, de{«<,1,],—1} is
the direction of the site’s arrow, pe{l,..., 9} is the local
position of the site, and info € S* is a list of collected
information about the states of the northern, eastern, western
and/or southern neighbours of the site that have exchanged
information with the site, in an order based on the order of
exchange.

State exchange is mediated by bimolecular reactions of
the following form, where X € S is an emulated state at
some position pe{l,..., 9}, N, E, S, W are the emulated
states to the north, east, south and west of p at positions n,
e, s, well,..., 9}, respectively:

XP L N X;:P + N;’"

—,p —e Lp T.e
XN" +Eg” — Xyg + Egx
Lp 1.8 —p —5
XNE + S W — NES + SS’W’X
—p —,w 1p 1w
Xnis + Wown — Xnesw + Wewnrx-

While these reactions at first appear to treat only a subset of
possible local configurations, these are the only cases that
arise if the surface CRN starts with arrows and position
labels organized as shown at the left of figure 1f .

Finally, states are updated using unimolecular rules of the
form:

Xsw — fX, N, E, W, §)'7

Xete — fX, N, E, W, 9.

The above reactions of all forms should be defined for all
appropriate pairings of pe{1,..., 9} and n, e, w, se(l, ..., 9}
and X, N,E,W,S,N,E, W,S €S.

By construction, only one reaction is ever possible at a
time at each site, and this reaction choice is unchanged by
updates elsewhere. Consequently, the rate of each chemical
reaction can only affect the timing of the surface CRN's evol-
ution, not its ultimate results. Thus, for this and other similar
examples, we will ignore reaction rates (or, equivalently,
assume that each reaction has rate 1).

As a specific case, consider a spiral wave in a (truly) syn-
chronous GH cellular automaton (figure 1c, middle-left) and

~

06£06L0T :LL ua3ul 20S Y °f yisi/jeunol/bio-buiysijgndAiaposiesol

in an equivalent locally synchronous surface CRN
implemented as above (figure 1c, right). Under the right initial
conditions, the spiral patterns characteristic of the fully syn-
chronous automaton are clearly visible, but they are ‘fuzzy’
because the molecules implementing the synchronous auto-
maton are updated inherently randomly. No site will ever
get ‘too far’ ahead of its neighbours, or cause them to update
in an order different from that of the synchronous version,
but there is no guarantee of global synchronicity.

Although this example shows that (local) synchronicity is
possible in a surface CRN, it is not a very satisfying construction.
All of the logic handling memory storage, state updating, and
arrow-spinning has to be hard-coded by ‘brute force’ into the
species and reactions defining the surface CRN. Generally
speaking, a locally synchronous spinning-arrow surface CRN
representing a cellular automaton with k possible states requires
a number of species that scales as k° and a number of reactions
that scales as k®. For example, the emulation of the synchronous
GH automata uses 70794 reaction rules, not including the
boundary reactions required for finite grids. With further optim-
ization that uses species subscripts to store only the information
needed by frather than the full neighbourhood state, GH can be
implemented with a little over 3000 reactions. Still, this is not a
user-friendly set of reaction rules.

3.3. Several-to-one ‘broadcast-swap-sum’ construction
of locally synchronous automata

Another way to emulate a synchronous automaton with a
locally synchronous surface CRN is to emulate each synchro-
nous automaton cell with an array of multiple sites in the
surface CRN. A several-to-one scheme also allows simulating
cellular automata with Moore neighbourhoods (i.e. cellular
automata whose cells communicate along corners as well as
edges) without requiring direct communication across corners.
We will also see that splitting a single cell into multiple sites
allows us to separate the logic of site-to-site communication
from the logic of site updating, which allows us to emulate
the same automaton using dramatically fewer transition rules.

For example, consider a surface CRN implementation of
Conway’s Game of Life, an automaton that uses information
with a more complex update rule than the GH automaton
[62]. In the Game of Life, each cell represents the state of a
population in some small area. The population can take one
of two values—alive’ (1) or ‘dead’ (0). The Game of Life
automaton executes synchronously, with the new state at
each position determined by its previous state and number
of ‘alive’ cells among its neighbours (including cells touching
by a corner) in the following way:

—Any live cell with zero or one live neighbours dies
(underpopulation).

— Any live cell with two or three live neighbours remains
alive (survival).

—Any live cell with four or more live neighbours dies
(overpopulation).

— Any dead cell with exactly three neighbours becomes alive
(colonization).

— Any other dead cell remains dead.

In a broadcast-swap-sum emulation, each cell in the
Game of Life is represented by a 3 x 3 grid of sites in the surface
CRN, labelled A through I from top to bottom, left to right

(figure 2a). The centre molecule (position E) stores the current [8 |

state of the Game of Life cell (0 or 1). The eight-molecule ring
around E handles signal communication and processing.

We will write states in this scheme in the form X?.
X €{A, B, ..., I} indicates the position within each 3 x3
block that the site occupies. S € {0, b, f, h, d, w, n, s} is a flag
indicating what step of update computation the site has
reached. i €10, 1, 2, 3, 4} is a number representing either the
state of the emulated cell or the current count in a running
sum of the cell’s neighbours’ states.

Update of an emulated cell begins with site E ‘transmit-
ting’ its state to positions B, D, F and H (figure 2b) using
the following transition rules:

Ei+B— El +BY
E +F— E[+F°
El+H—E +HY
E!l + D — E} + DY.

Here, the flags b, f, h and d in the species’ names indicate
the last position that was updated; w indicates a state that has
received information from site E but that has not yet trans-
mitted that information to the corner sites; and i€ {0, 1} is
the current state of the emulated cell.

Next, similar rules transmit the emulated cell’s state from
positions B, D, E and H to positions A, G, C, and I, respect-
ively, and set positions B, D, F and H to states B;, D;, F; and H;,
indicating that those sites are ready to transmit their current
state information to neighbouring 3 x 3 blocks:

B,W+A~>Bi+Ai
DY +G — D+ G;
F'+C—Fi+C;
HY +1— H; + 1.

Now emulated cells can ‘talk’ horizontally by swapping
the states in positions F and D, and vertically by swapping
the states in positions B and H (figure 2c), using the reactions

Fi+D]‘—>F}1+D?

Bi+H; — B/ + H},
wherei, j € {0, 1} are the states of each emulated cell and the 7 flag
indicates that the site has received information from the neigh-
bouring emulated cell. Concurrently, corners communicate in a
similar fashion. However, since corners cannot directly commu-

nicate with one another, corner sites swap states in a two-step
fashion (figure 2d), first swapping horizontally

Ii+Gj— I]'t +G!

Ai+Cj— Al +C
and then vertically

L[+C —1I'+C!

Gi+ A — G/ +A].

After swapping along sides and corners, each of the eight
border sites will have an # flag and will contain the state of
one of the emulated cell’s eight neighbours. At this point,
the total number of active neighbours is summed in a circular

06£06L0T :LL ua3ul 20S Y °f yisi/jeunol/bio-buiysijgndAiaposiesol

(a) site layout to b) step 1: () step 2:
emulate a single cell broadcast state swap information along edges
A B c I G z I G
A2 e N2 Al
D E F J
€ | Fep> o
G H 1
Vi] 2 1
N4
C A B | C A

(d) step 3: swap information
along corners

(e) step 4: sum information
from neighbours’ states and

update appropriately
L MRS
collec
69 69 statest
update
|
state

9

ATA
AT

(f) broadcast-swap-sum
Game of Life

" @ B B N R N NN RN EREEESWN
" ® " F " " B R R RN EBEGB®
" E E B E R E N NN EEEH®
" ® B N R N " E N EE RN EBN
" m B " N BN B RN EEENEBEB®
" @ B B B N R "R RN N EEEBN
" @ E B R E R BE R NN EEERGBN
" ® E " B R N N N RN RN BEG®
" E B E B R R E R NN EEBERGB
" B B E HE BN " B RN B R E BERBN
" B B "N EEEEEEREENEEEDN
" ® B N M B B B R NN EEEBN

(g) broadcast-swap-sum
Greenberg—Hastings

Figure 2. A ‘broadcast-swap-sum’ construction of locally synchronous automata. (a) Nine molecules emulating a single cell in a synchronous cellular automaton. The
current state is held in position E, while the other molecules handle communication with neighbouring cell blocks. (b—e) A general scheme for updating such an
automaton. Arrows represent information flow at different stages of the update. (f) Simulation of a glider from Conway’s Game of Life, implemented with a 3 x 3
broadcast-swap-sum surface CRN emulation. Dark red sites represent ‘dead’ cells; dark green sites are ‘alive” cells; light red and green sites are ‘wire’ sites carrying
information from ‘dead’ and ‘alive’ cells, respectively; grey sites are ‘wire’ sites in the process of counting neighbouring live cells; white sites are ‘wire” sites waiting
for information from their corresponding sites; and purple sites represent an edge condition. (g) Simulation of a locally synchronous spiral wave using a broadcast-
swap-sum emulation of a Greenberg—Hastings automaton, with simplified colours to make the spiral easier to visualize.

fashion (figure 2¢) using reactions of the form

Al +B! - A+B;

min (x+i,4)

B +Cl—B+C

min (x+i,4)

C.+F —C+F

min (x+i,4)

s
I min (x+i,4)

F4+I' ~F+
I +H —1+H,

min (x+i,4)

HS+G' - H+G:

min (x+i,4)

G,+ D} = G+D;

min (x+i,4)*

Here, x is a running sum of the number of neighbouring
emulated cells with state 1, which is capped at 4 for com-
pression since the behaviour of a cell of the Game of Life
does not change past four neighbouring ‘alive’ cells. The s

flag indicates that the site currently holds the running sum
for the emulated cell. This set of reactions also resets the
ring and prepares it for the next round.

Finally, the sum in position D is combined with the current
state, setting the new state and resetting D, by a set of rules of
the form D;, + E;-” — D + Eg,), where G(x, i) is the update rule
for the Game of Life—thatis, 1if x =3 orifi = 1 and x = 2, other-
wise 0. An example of a glider from the Game of Life is shown
in figure 2f (dark green centre squares).

A similar construction can be used to make a locally syn-
chronous GH automaton with a broadcast-swap-sum
emulation (figure 2g). This same strategy can be used to emu-
late any Moore-neighbourhood totalistic synchronous cellular
automaton (i.e. those automatons for which the update rule
depends only on the current state of a cell and the total
number of neighbours with some state), or, with a more

06£06L0T :LL ua3ul 20S Y °f yisi/jeunol/bio-buiysijgndAiaposiesol H

complex neighbour-summarization procedure (which would
require more reactions and chemical species, but not more
physical space), any Moore-neighbourhood non-totalistic cel-
lular automaton.

Altogether, including reactions to handle boundary con-
ditions, the broadcast-swap-sum Game of Life automaton
requires 132 rules, and nine sites for each Game of Life cell,
and the broadcast-swap-sum GH automaton requires only
102 reactions and 104 states—a considerable improvement
over the spinning-arrow emulation technique, at least in terms
of number of transition rules required to implement the behav-
iour. This efficiency of transition rules (which we might expect
to be of prime importance in any laboratory implementation of
a surface CRN) comes at two costs—larger surface CRN area
per area of emulated cellular automaton, and more reaction
steps per cellular automaton update.

4. Continuously active logic circuits

A properly constructed Game of Life of sufficient size can
either simulate a Turing machine [66] or a Boolean circuit
using streams of gliders to represent data lines [67]. Since
the surface CRN formalism can emulate the Game of Life,
it is therefore Turing-complete, which means that, in prin-
ciple, surface chemistry ought to be capable of performing
any computation accessible to a digital computer.

If desired, one could program a Turing machine directly
as a surface CRN, as shown by Qian & Winfree [38]. In the
same paper, those authors also provide a scheme for imple-
menting arbitrary feed-forward Boolean logic circuits. These
circuits function similarly to electronic logic circuits, with a
few notable differences, as you will see below. A strength
of Boolean logic circuits is that they can compute in parallel,
allowing them to make decisions faster than equivalent
Turing machines. We will show some interesting examples
of circuits made using the strategy described in [38], updated
slightly to accommodate feedback circuits in cases where the
original strategy could produce permanent ‘traffic jams’ at
(Also cf. [65,68] for
implemented as cellular automata.)

To review, our Boolean logic circuits are based around
signal states 0 and 1, which diffuse along linear paths of
wire sites B (blank wire) that are embedded in a field of
inert states I (figure 3a). Information thus flows as discrete
packets that perform a random walk along wires using two
diffusion reactions 0+B—B+0 and 1+B—B+1. For
the sake of brevity, we will write this pair of reactions as
0/1+B—B+0/1. We will continue to use this notational
convention—any rule written with a ‘/’ represents two
logically related reactions, compressed for space.

To compute, we use logic gates constructed from several

wire crosses. Boolean circuits

adjacent sites representing input and output positions. The
simplest gate we construct is the NOT gate, shown in figure
3b. The NOT gate is constructed from several states of the
form SNL, where Se{B, 0, 1} represents the data currently
held at this position (either blank, 0, or 1), N designates the
state as belonging to a NOT gate and L € {x, y} distinguishes
the input and output locations. This gate uses three sets of
reactions—one to load incoming data packets (either ‘0" or
‘1") from a wire onto the front half of the gate, one to invert
those packets and move them to the back half of the gate,
and one to unload the inverted packet from the back half of

the gate to another wire. For example, when the front half of
a NOT gate is in a waiting state BNx and is next to an incoming
0 packet, the rule 0 + BNx — B + ONx loads the zero signal onto
the front of the NOT gate and removes it from the wire. Simi-
larly, a 1 can be loaded using the reaction 1+ BNx — B + 1Nx.
Note that unlike wires, which allow bidirectional information
flow, NOT gates only allow signals to pass in one direction,
causing computation to ratchet forward.

A two-input logic gate can be built with an architecture
similar to that of the NOT gate. A 14-reaction AND gate is
shown in figure 3c. Four rules load incoming signals onto
the Ax and Ay positions. Two more rules move the Ax
signal onto the Az position, putting the Ax position into a
holding state (HAx). By combining the signals from the Ax
and Ay lines, four more rules calculate the correct output
signal (now on the Az position). The output is then unloaded
onto a wire, leaving the Az position in a reset state RRAz,
which triggers two reactions that reset the gate and prepare
it for new incoming signals. The output signal can now diffuse
away, but cannot be re-loaded into the gate. Note that the
AND logic occurs entirely in the four rules that combine the
Ax and Ay signals—the gate can be changed to implement
other logic simply by changing these four reactions. We will
use OR and XOR gates in later examples built in this way.

So far, a single wire in this implementation cannot feed a
signal to more than one gate (in parallel), as each data packet
(0 or 1) is consumed when it is detected by a gate. To make
circuits where one line can feed to multiple gate inputs, we
will need an explicit fan-out mechanism. A gate implement-
ing a two-output fan-out is shown in figure 3d. It uses
reactions similar to those of the AND gate but with opposite
flow—two rules read a signal into the centre of the gate, four
rules ‘split” the signal into the two output positions, and four
more rules unload each output position’s signal onto its
respective wire. A three-output fan-out can be built in a
similar fashion using 14 reactions.

Finally, in order to build circuits of any reasonable com-
plexity on a two-dimensional grid, we will need a
mechanism that allows wires to cross without mixing up
their signals. Figure 3¢ shows an example wire cross ‘gate’.
For each axis (horizontal or vertical), the wire cross requires
two rules to load a signal on the front end, two rules to
push the signal to the centre (labelled so the gate ‘knows’
whether the signal is coming from Cx or Cy), two rules to
push the signal to an output gate, two rules to unload the
signal onto a wire, and two rules to send a reset signal to
the front of the gate to prepare it for the next input.

Note that here (unlike in the logic gates shown earlier),
holding and resetting the input lines is important for guaran-
teed wire cross function, at least for use in recurrent circuits.
A circuit can be laid out such that both of the wires of the
wire cross feed the same two-input gate. In such a case, a
wire cross (such as the one presented in [38]) without gate-
locking or similar precautions can become permanently
jammed if enough inputs arrive from one line to fill up the
wire cross, blocking the inputs required to allow the
backed-up line to proceed.

Finally, a gate that is not strictly necessary, but that will be
helpful for a later construction, is what we term a ‘synchroni-
zation gate’ (or ‘sync gate’). This gate is essentially two linked
repeater gates (NOT gates with the inversion logic removed)
that wait until both inputs are present before sending them
on their respective journeys, which can be used to ensure

06£06L0T :LL ua3ul 20S Y °f yisi/jeunol/bio-buiysijgndAiaposiesol E

(a) wires and signals

B |B|01|B|B

B+0/1 -0/1+B

(b) NOT gate

B |BNx|BNy| B

load: 0/1 + BNx — B + 0/1Nx
logic: O/1Nx + BNy — BNx + 1/0Ny
unload: 0/1Ny+ B — BNy + 0/1

(¢c) AND gate

0/1 + BAx » B + 0/1Ax
load: 0/1 + BAy — B + 0/1Ay
0/1Ax + BAz > HAx + 0/1Az
0Ay + 0Az — HAy + 0Ak
1Ay + 0Az — HAy + 0Ak
0Ay + 1Az — HAy +0Ak
1Ay + 1Az —> HAy + 1Ak
unload: { 0/1Ak + B — RRAz + 0/1
RRAz + HAx — RAz + BAx
RAz + HAy — BAz + BAy

logic:

reset:

(d) fan-out (e) wire cross (f) synchronization gate
5 5
BFx BSy|BSx| B
;3 BF BFy
B llag el ‘ B |BSx|BSy
B

load: { 0/1 + BF —» B +0/1F
split: { O/1F + BFx — 0/1f + 0/1 Fx
0/1f + BFy — BF + 0/1Fy load:

nload: 0/1Fx + B — BFx + 0/1
UMOAE 1 0/1Fy + B — BFy + 0/1
logic:
push/unload:
reset:

0/1 + BCx — B+ 0/1Cx

0/1 + BCy — B + 0/1Cy
0/1Cx + BC — HCx + 0/1Cx

0/1Cy + BC — HCy + 0/1Cy
0/1Cx + BCw — BC + 0/1Cw
0/1Cy + BCz - BC + 0/1Cz
0/1Cw + B— RCw + 0/1
0/1Cz + B— RCz + 0/1
RCw + BC — BCw + RCcw
RCcew + HCx — BC + BCx
RCz + BC — BCz + RCcz
RCcz + HCy — BC + BCy

0/1 + BSx — B + 0/15x
0/18x + BSy — BSx + 0/1Sy
0/1Sy + 0/1Sy — 0/15z + 0/15z
0/1Sy + 1/0Sy — 0/15z + 1/0Sz
unload: { 0/15z + B — BSy + 0/1

load: [

synchronize: [

Figure 3. Continuously active logic circuits. B represents a blank wire, and 0 and 1 are states representing data packets. Gate locations use states with a three-
symbol name, where the first symbol denotes the data at that position (either blank, 0, or 1), the second symbol distinguishes different gates and the third symbol
distinguishes different parts of the gate. (a) Wires, signals and signal diffusion, (b) NOT gate, (c) AND gate, (d) wire fan-out, (e) crossing wires and (f) synchro-

nization gate implemented with surface CRNs.

synchronization between different parts of a circuit. This gate
could instead be built purely using the other logic gates
already shown above, at the cost of clarity.

Given these reactions and gate layouts, we can compose
circuit elements and scale up to larger circuits by simply
laying out signals in different initial conditions on the
surface. An example surface CRN circuit that adds two
2-bit numbers is shown in figure 4a. Input signals (0 or 1)
are initiated at xy, ..., x4. These signals could be set manually
during construction of the circuit, or they could be fed
from an upstream source (perhaps another circuit). Signals
asynchronously propagate through the circuit, with compu-
tations analogous to those in electronic circuits performed
at each gate. The speed and exact timing of each reaction is
random, but the eventual output of the circuit is guaranteed
to be correct.

Another example that takes advantage of the continuous
and reusable nature of logic circuits on a surface CRN is a

6-bit binary counter shown in its initial condition, after
several rounds of output, and in its final state (figure 4b).
At the top of this circuit, a signal diffuses around a ring
with a NOT gate (which latches diffusion to one direction),
switching back and forth between 0 and 1. This signal is
duplicated and passed through a series of sequential half-
adder circuits, where each half-adder’s inputs are its last
computed value and the value computed by the previous
half-adder. To make the counter’s function clearer, a wire at
the output of each half-adder stores the output history of
that adder, with positions farther down the wire holding
older values than positions closer to the half-adder. The
output can be read as a series of binary numbers, where
the nth packet (starting from the end) of the mth output
line is the mth bit of the nth number. These outputs could
be hooked to the input of another circuit to ‘clock’ that circuit,
or the counter could be used to create repeating spatial
patterns.

06£06L0T :LL ua3ul 20S Y °f yisi/jeunol/bio-buiysijgndAiaposiesol E

(@) 2-bit adder) 6-bit binary counter
TR & &Sy
X X X X
1 |2 ’ ! D blank wire
. 0 signal
W
D 1 signal
initialized
. XOR gate
Y hh . OR gate
+ | o ‘ € Y, . AND gate | g run
X, = | + + D NOT gate
X + I = . fan-out
e ' + l Y, . . completed
X, wepm 3 wire cross
(© Game of Life cell (d) general synchronous
D blank wire automata layout
et [l 0signal %Q T
L£=+ + T + |:| 1 signal ™
l"; .!:I:r‘larr + D sync gate
u—] -
r - o= . XOR gate e
g ! It . OR gate L state -
o - o
+ Ir‘ h . AND gate
y Fd r'l r—L D NOT gate ¥ L
1 . fan-out .)
S B e o U
& + + . wire cross N

Figure 4. Example logic circuits and a logic circuit emulation for locally synchronous cellular automata. (a—c) Example circuits built using the rules and gates from
figure 3, plus a synchronization gate. Inset in (c) highlights the use of ‘sequential gates’ whose two inputs are sequential signals on the same input line, which are
useful for efficiently computing certain Boolean statements with repeated structure. Arrows show the direction of logic flow through this motif, which outputs ‘1" if
and only if exactly three out of four sequential inputs are “1"s. (d) General scheme for building locally synchronous cellular automata using CRNs on a surface. Blue
arrows represent outgoing state information, red arrows represent incoming state information, and pink arrows represent information flow through a ‘logic ring’ that
computes the next cell state. Pink rectangles are synchronization gates, which allow signals to pass only when both inputs are present.

Just as we can emulate logic circuits in a Game of Life, we
can emulate the Game of Life using feedback logic circuits.
Figure 4c shows a single cell from a Game of Life,
implemented with a roughly 40x40 surface CRN. For
scale, if such a cell were implemented on the surface of a
metal crystal, with a single site at each atom, it would be
order of magnitude 10nm square; if instead it were
implemented using the existing DNA origami-based
scheme in [38], with origami tiles similar to those in [69], it
would be approximately 200 nm across, or between 1/10 to
1/5 the length of E. coli, with each cell’s circuit layout cover-
ing a 3 x 3 array of origami tiles.

Each cell consists of: a core loop in the centre of the
device that holds the cell’s current state (0 or 1); an outer
loop that transmits a copy of the cell’s current state to
each of its neighbours; and a ring-shaped block of logic
that decides what the core loop’s next state should be

based on the values of the cell’s neighbours. This basic struc-
ture, outlined in figure 4d, is general for simulating any
synchronous cellular automata with local update rules com-
putable by a logic circuit, with different circuits in the logic
ring yielding different automata.

At the beginning of each generation update, the state in the
core loop is duplicated and sent (a) to the outer loop for trans-
mission, and (b) back to the core loop for storage and
computation of the next cycle state. The split signal runs clock-
wise around the outer ring starting from the top. At each
border with another cell, a copy of the state signal is created
and waits until a matching signal is received from the neigh-
bour. Synchronization gates (see figure 3f) at these junctions
ensure that no cell can update more than one step ahead of
its neighbours. Once the neighbour’s signal is received, it is
fed into the logic ring, where a circuit in the logic ring deter-
mines what the cell’s next state should be. Finally, the result

06£06L0T :LL ua3ul 20S Y °f yisi/jeunol/bio-buiysijgndAiaposiesol E

of that computation is fed into the core loop, replacing the
previous value, and the cycle begins again.

The Game of Life update calculation involves detecting
whether or not exactly three or four out of nine neighbours
are ‘alive’ (pass a ‘1’ signal), which is somewhat cumber-
some to check using a Boolean logic circuit. To keep this
circuit to a reasonable size, we take advantage of the digital,
sequential nature of surface CRN logic circuits to make
‘sequential” logic gates that act on two sequential signals
from the same input line, rather than two parallel inputs
on separate input lines. For example, the inset shown in
figure 4c shows a five-gate motif that produces output
with every four consecutive signals it receives, yielding ‘1’
if exactly three of those signals are ‘1’s and ‘0" otherwise.
An equivalent standard Boolean logic circuit would require
two additional logic gates and approximately five wire
crosses and four fan-outs. Note that sequential logic gates
use exactly the same states and transition rules as a standard
surface CRN logic gate, only arranged differently on the
surface.

At first glance, this implementation of the Game of Life
seems cumbersome compared to the much more compact
emulation method described in §3. Using logic circuits cer-
tainly requires more surface area and more running time
than directly emulating the same Game of Life. However,
the circuit-based implementation uses 110 reactions as writ-
ten (including synchronization gates and ‘repeater gates’
that serve only to speed computation; see the Game of Life
examples on our website for details). This number can be
reduced to 46 by removing redundant gates and re-using
rules for data-loading using a common input state, bringing
the total reaction rule set down to less than a third the
number required for the broadcast-swap-sum Game of Life
emulation (see box 5).

Moreover, the same strategy can be used to construct
any synchronous cellular automata using exactly the same
rule set, varying only the initial layout of species on the sur-
face. This is a considerable advantage in an experimental
setting, as only one set of on-surface reactions need be
designed and validated, along with the ability to lay
down arbitrary initial surface layouts, in order to build
any molecularly implemented (synchronous or asynchro-
nous!) cellular automata, recurrent digital circuit, or
Turing machine. In principle, even a fully functional
microprocessor [70] could be implemented using exactly
the same surface CRN reactions shown here. (Implementing
universal circuit constructions with reversible surface CRN
reactions also establishes connections to the physics of
computation [71].)

This ease of scaling contrasts with existing programmable
molecular implementations of logic using, for example, DNA
complexes in a well-mixed test tube or protein in a cell. In
those schemes, each wire is encoded with a different species,
and each new gate requires the design of a set of chemical
reactions with new molecular species.

Of course, the benefits of surface CRNs are not free, and
this example is the first that clearly illustrates the design
trade-off alluded to at the end of §2—in this case, surface
CRN-based logic circuits trade difficulty in molecular inter-
action design for difficulty of molecular placement. If you
want to build a large logic circuit by implementing a surface
CRN, you must be able to precisely position a large number
of molecules into the correct initial state; in return, you can

Box 5. Efficient logic circuits.

Wires, signal diffusion, two- and three-output fan-out,
wire-crossing, synchronization and repeater gates,
NOT, OR, XOR and NOT gates—as we have done
here—requires a total of 110 transition rules. That is a
lot of molecular interactions, from the point of view of
an experimenter trying to physically build such a circuit.
We can shrink this rule set considerably, sacrificing only
spatial compactness and readability of the final circuit
design, by removing repeater, sync, AND, OR, XOR
and NOT gates (as these can be emulated with only
NOR gates), and by eliminating the three-output fan-
out gate. This brings the total number of reactions
required for logic down to 46 transition rules and
about as many unique species. Can you do better?

— What is the smallest rule set you can come up with
that still allows you to build continuously active
recurrent logic circuits?

— What is the smallest number of distinct species for
which it is still possible to create a rule set that
allows you to build continuously active recurrent
logic circuits?

— Consider a surface CRN with a limited number of
states available at each site. One might, for example,
build a surface CRN with many different species at
different sites, but in which each single site may
only flip between N different species. Our logic cir-
cuit implementation requires up to seven species at
any single site. What is the minimum number of
species per site you need for logic? Can you do it
with three? With two?

— Can you build Boolean logic circuits using only
reversible reactions? (Hint: you can.) What would
drive these gates forward?

build circuits of arbitrary size with a relatively small, fixed
number of molecular interaction designs.

5. Manufacturing

We have now seen that a major advantage of performing
chemistry on a surface is that you can exploit power in the
form of spatial arrangement and placement of molecules in
order to reduce the complexity of desired molecular inter-
actions for accomplishing the same task. We can also invert
this paradigm to do the opposite—harness the ability to
specify and implement precise and diverse molecular inter-
actions in order to achieve complex spatial arrangement and
placement from simple initial conditions.

Readers of a certain bent may have noticed that the 6-bit
binary counter presented in §4 generated highly specific
spatial patterns—in this case, alternating stripes of various
lengths. The binary counter circuit can generate an arbitrarily
long stream of patterned bits, which, given empty space to
diffuse into, will create arbitrarily large striped patterns.
What other patterns can we spontaneously generate using
surface CRNs? Can surface CRNs be used to manufacture

06£06L0T :LL ua3ul 20S Y °f yisi/jeunol/bio-buiysijgndAiaposiesol E

(a) rule 110
[unassigned
O boundary
[] obit

B it

B computing

(c¢) random-walking line

(b) 32-molecule blossoms

D background (O) #

. blossom (F)

o iilh 4

(d) straight line

O background (O)
I right body (RB)

B 1eft body (LB)
[l right probe (RP)
M et probe (LP)

ol

time O time 1
[] background (0)
= . B head (S)
B line (1)
time 2 final
configuration

(e) arbitrary bitmap pattern

final

| 4

4

Figure 5. Several examples of pattern manufacturing. (a) Stephen Wolfram’s rule 110 elementary cellular automata, in mid-construction. In each row, emulated
cells use transition rules to exchange state information, then update the state of the cell below them according to rule 110. See the ‘Elementary Cellular Automata
Rule 110" example on our online simulator for details. (b) Six final configurations of an irregular blossom of fixed size, each produced from an identical single-
molecule seed on a uniform background. The exact pattern of the blossom is stochastic, but it will always have exactly 32 area. (c) Construction of a random-walking
line with the rule S+ 0 — L + S at four times. At the final configuration, this surface CRN is stuck. (d) Construction of a straight line. Note that in this global state,
there are no sites in an RH or LH state. (e) Construction of an arbitrary bitmap pattern from a single starting seed against a uniform background.

complex patterns from simpler initial conditions? The
answers to these questions have clear relevance to molecular
manufacturing.

We have already shown that the space of surface CRNs
effectively contains all cellular automata, so patterns produci-
ble by a cellular automata ought to be producible by a surface
CRN as well. For example, we can make spirals with a surface
CRN GH excitable media. Any of Stephen Wolfram’s one-
dimensional elementary cellular automata, along with their
time histories [72], can be generated using a rule set similar
to, but much more compact than, the spinning-arrow class
of synchronous cellular automata (figure 5a). This immedi-
ately allows the construction of striping, aperiodic chaos,
tree structures and Sierpinski triangles, and much more (see
rules 184, 30, 90 and 110, respectively). There is a rich history
of using cellular automata to model biological pattern for-
mation and morphogenesis [73,74] so in that sense it is
natural to expect that complex and useful structures can be
built by surface CRNs as well.

What about specific shapes that do not correspond easily
to known automata, or that might be generated more easily
with a direct surface CRN implementation? We can start
with a very simple manufacturing example—construction of
an irregular ‘blossom’ of fixed, arbitrary size. We begin
with a field of blank species (O), on which we add a single

seed state (S). Here is a set of rules that converts the initial
seed into an irregular blossom with area exactly 32 (figure 5b)

S+0—4+4
44+40—-3+3
340—2+2
2+40—-1+1
1+O0—F+F
44+F—>F+4
3+F—F+3
24+F—F+2
1+F—F+1.

The seed generates two ‘4" states, which each decay into two
‘3’ states, which continue to decay in a similar fashion until a
final state (F). Five rules are required to encode the splitting
behaviour, and four diffusion rules prevent intermediate
numbered states from becoming stuck in a sea of Fs. From
a single seed state (say, a detection event by some molecular
sensor), we obtain a large irregular shape with a defined size
(say, a large fluorescent dot visible under a microscope or by
eye). With two more rules, we can double the area of the blos-
som; in general, the number of rules required scales with the
log of the size of the blossom.

06£06L0T :LL ua3ul 20S Y °f yisi/jeunol/bio-buiysijgndAiaposiesol E

This example has the general quality of creating some-
thing large from something small and easy to initialize, but
the blossoms are not particularly complex, nor particularly
specific. What about a more structured structure?

One such example is an infinite straight line, again start-
ing from a single seed S against a field of open space states
O. This exercise is worth trying before you read our solution!
It can be done, and relatively simply. As a warm-up exercise,
note that drawing a random one-dimensional curve is almost
trivial—we can do it with a single reaction S+ O — L + S. This
curve will random-walk around the surface until it loops on
itself and gets stuck (figure 5c).

It is less obvious, however, how to build a straight line on
a surface CRN. As with the spinning-arrow construction
of synchronous cellular automata, here we must contend
with the fact that the surface has no built-in orientation, no
structure that distinguishes left from right, top from
bottom, straight from sideways. Our line will have to create
such a structure. One way to do this is to make the line
two molecules thick, with different states on the left and
right sides. A reaction, S + O — RH + LH breaks the symmetry
of the background and sets the line in motion. The two
head states (reversibly) extrude probes, which look for the
forward direction:

RH+ O — RB+RP
RB+RP —RH+O
LH+O — LB+LP
LB+LP —-LH+O

The only places where the probes can be extended such
that they touch is in front of the growing line; when they
are next to each other, the two probes can convert themselves
into a new head with the reaction RP + LP — RH + LH, which
can then extrude its own probes and continue extending the
line indefinitely. Note that the initial direction in which the
line grows is random, determined stochastically by the first
reaction and the first probe-connecting growth move, but
once growth begins, it will continue indefinitely in a straight
line (figure 5d).

A single line extending infinitely in a random direction is
admittedly not, in itself, a particularly compelling shape.
However, a line can be used as a manufacturing primitive
in the construction of larger, more complex shapes, like a
square or triangle, which could themselves be combined
into yet-more-complex shapes, perhaps eventually forming
a house, or a factory. The reader might enjoy trying these
and other more complex manufacturing challenges and
exploring their connection to computability via the Busy
Beaver problem [75] (see box 6).

As an extreme example of construction-by-reaction, it is
possible to extend the line-creation example to create a sur-
face CRN that builds an arbitrary bitmap pattern around a
single-site seed against an otherwise-uniform background
(figure 5e). In our implementation, a seed picks a random
direction in which to extend a two-pixel-wide line in which
each pixel has a unique address (i.e. there are unique species
for each position), forming one edge of the image. A second,
orthogonal two-pixel-wide line with unique addressing
forms a second edge of the image. Then a series of reactions
fill in the image starting from the corners, again with unique
addressing. Finally, one reaction for each pixel converts the
addressed site to a coloured final state. This algorithm

Box 6. Manufacturing challenges.

It is safe to say that the field of surface CRN manufac-
turing is a young one, and many challenges remain.
Here are three for you to tackle:

— Our line-growing construction relies very much on
an underlying square-grid geometry. It will not, for
example, work as-written on a hexagonal grid. Can
you design a version that does?

— Can you build a CRN that constructs, from an initial
seed, a straight line of a specific length, rather than
an infinite line? Can you do it in a way such that
the number of rules required scales less than linearly
with the length of the line? What about a square?

— Consider the Busy Beaver problem in computer
science: what is the largest finite number of 1s that
can be generated using a Turing machine with a
given number of states and symbols, starting with
a blank tape? Similarly, we can consider the surface
CRN Busy Beaver problem: given integers R and K,
define BBZR\(R, K) to be the largest finite, fixed
number of 1s that can be reliably produced by
every execution of some surface CRN with R reac-
tions and K species, starting from a single S in a
sea of O on a 2D square grid. Here, ‘reliably pro-
duced” means that there are a finite number of
reachable states, one or more of which are terminal
in the sense that no further reactions are possible,
every reachable state can reach a terminal state,
and every terminal state has the same number of
1s (in any arrangement, and with any other species
also present). The ‘blossom’ construction, for
example, already provides a set of lower bounds
BBZR\(2n —1,n+2) >2". Can you do better? You
might want to start with the similarly defined
BBRA(R, K) that is confined to a 1D line of states.
Or, to illuminate the influence of geometry, you
might want to compare and contrast to the ‘zero-
dimensional’” well-mixed case, where BBcrn(R, K)
concerns a stochastic CRN starting with a single S.

requires a fairly large number of reactions, which scale linearly
with the number of painted pixels. Our construction could
be easily modified to simulate tile self-assembly models
[76], in which case more efficient encoding could be used for
some patterns that are algorithmically compressible [77]. The
ability of surface CRNSs to iteratively rewrite information in
place, which is not possible in tile self-assembly, ought to
allow more advanced constructions that provide more
effective compression as well as self-healing capabilities—
as has been seen in other cellular automaton models for
morphogenesis [74].

Again, we wish to highlight the nature of the trade-off in
surface CRN design between the required number of molecu-
lar interactions and the required number of precisely placed
molecules. If you can already place molecules on a surface
with high precision, then you do not need complex manufac-
turing algorithms of the kind shown in this section, and you
will probably want to leverage surface CRNs in other ways

06£06L0T :LL ua3ul 20S Y °f yisi/jeunol/bio-buiysijgndAiaposiesol H

(a) mound-building ants
As+ 00— 0+ As T'= 10000
movement: Ad+ 0 — 0 +Ad - T'=50000
| T 2] [] background (O)
Al+0— 0 + Al = = =
. . r R ‘ ﬁ#. | dirt (D)
pickupdirt: { As+D—>Ad+ O i L
& " [l dirt pile (DD)
Ad + D — Al + DD i g - 5]
put down dirt: [o -] * [C] ant, searching (As)
Al As s ¥ -7 | W ant, with dirt (Ad)
DD + D — D + DD s k [ant, leaving (Al)
dirt physics: ol
DD+0—->D+D
(b) food-scouting ants
searching ant stuck ant
searching: { A+ O —>P+A o = [] background (O)
finding food: { A+ F>P+H [ant(A)
returing: { H+ P (35 O+H M ant with food (H)
. [A+PS0+A W food (F)
escaping traps: 01
H+O->P+H W path (P)

(0)

cargo-sorting robots

T=0

R+0O—->0O+R
R12+0 -0 +RI12
R+Cl2 5 RI2+0

R1/2 + GC1/2 = R1/2g + GC1/2
R12g+ 023 GC12 + R

movement: {
grab cargo: {

drop cargo: {

T = 5000 T =10 000
© e w e [background (0)
::“ : '.:‘: [robot (R)
) [] cargo 1 (C1, GC1)
[cargo 2 (C2, GC2)
B robot with C1 (R1, R1g)

B robot with €2 (R2, R2g)

Figure 6. Surface CRNs with ant-like behaviour. (@) A swarm of ants (lavender, blue, red) collecting dirt (brown) into small piles. Unlabelled reactions have rates of 1 s7(b)
An ant (lavender) scouting for food (brown), leaving a trail (red) to lead itself back home when it finds the food. This ant is capable of finding food and returning to its starting
position, but it is not particularly robust—it will sometimes hem itself in with its own trail, trapping itself in a ring that can be difficult to escape. (c) A swarm of cargo-
sorting robots (green) sorting two different molecular cargoes (blue and orange) into separate piles. In the initial state, there is exactly one G(1 site and one G(2 site.

(perhaps the ones outlined in earlier sections). If you cannot
place molecules on a surface with high precision, but you
can implement many desired reactions between molecules,
then you can use a surface CRN to build complex designs
from simple initial conditions—even, given enough reactions,
arbitrarily complex patterns from a single randomly placed
seed (figure 5e¢). Either way, surface CRNs can be a helpful
abstraction, but they perform different work depending on
what technology you already have available.

6. Robots and swarms

If we wish to construct complex patterns from stochastic reac-
tions, we would do well to take inspiration from nature. For
natural examples of complex construction, we need only look
to ant and termite colonies. Termites, for example, begin to
construct their nests using a simple set of stochastic beha-
viours: walk about at random; eventually pick up a
mudball; wander with the mudball and eventually put it
down, preferentially dropping it where there are other mud-
balls. A simple set of rules of this sort (usually supplemented
by pheromone-laying behaviour) is sufficient for a colony of
termites to collectively build piles, then towers, and
eventually complex nest structures [78].

While recognizing that ants are not termites, out of defer-
ence to Langton’s ant [79] and the overall superior charisma
of ants over termites, we shall use a simple set of rules
inspired by the nest-building behaviour of termites to build
rudimentary piles using a molecular ‘ant swarm’, as shown
in figure 6a. We begin with dirt species scattered randomly
and uniformly on a field of open spaces. We place ants on
this resource-rich field, and allow the ants to diffuse at
random using rules similar to those used at the beginning
of §3—Ilet us call this ‘searching’. The ants can pick up dirt,
transforming into an ‘ant-with-dirt’ species. Dirt-laden ants
diffuse about randomly as well until they hit another dirt,
at which point they deposit the dirt on the pile, forming a
stacked-dirt species. A simple two-rule dirt physics allows
any stacked dirt to diffuse around the dirt pile until it ‘falls
off’ onto an empty space (not unlike simple sandpile physics
[80]). This dirt physics helps the mounds develop a more
round shape. Ants that have just put down dirt enter a tem-
porary ‘leaving’ state in which they cannot pick-up dirt, so
that they diffuse slightly away from the pile they just
added to before they can pick up additional dirt.

While an observer could hardly mistake the products of
this series of reactions for the complex nests of real ants,
our surface CRN mound-builders are at least capable of clus-
tering scattered dirt particles into rudimentary piles.

06£06L0T :LL ua3ul 20S Y °f yisi/jeunol/bio-buiysijgndAiaposiesol E

Furthermore, they do so with considerably less underlying
complexity than a real ant, and are far smaller: using molecu-
lar implementations of surface CRNs along the same lines as
those in [38], our surface CRN ants act on a roughly 10°-fold
smaller length scale, with about 10"8-fold less mass.

Ants, of course, do much more than build small piles of dirt.
Collective behaviours in animals and insects—ants included—
have inspired a remarkable variety of algorithms for swarm
robotics and distributed computation [81-83]. So what other
ant-like behaviours might we mimic with a surface CRN?

What about scouting for food and bringing it back to the
nest? We can make an extremely simple (and extremely unin-
telligent) food-scouting ant (A) that diffuses about randomly,
converting open spaces (O) in its wake to pheromone species
P, with the reaction A + O — P + A. When the ant finds food, it
picks up the food and converts to a ‘food-bearing ant’ state H
with the reaction A+F—P+H. A food-bearing ant
walks back down its pheromone trail with the reaction
H+P— O+H, converting it back into open space, until it
reaches its home (figure 6b). This simple ant works ... so long
as it does not loop back on itself and become stuck. Adding
two probabilistic reactions can occasionally help the ant
escape such traps. To be more effective, we can improve the
ant scout’s performance by adding ‘rails’ to the side of its trail
to prevent the trail from overlapping with itself, and by
adding a very slow reaction that causes the ant to spontaneously
run back to the nest, destroying its trail along the way, so that it
can unstick itself from loops (see the ‘Smarter Scouting Ant’
example on our simulator webpage for implementation
details). The problem of defining and implementing a better
search algorithm for molecules on a surface is an open one.

The food-finding ant example bears some resemblance to
an existing class of programmable surface chemistry—
surface-based molecular robotics. Currently,
robots can traverse pre-laid tracks or open landscapes
[84-87]. Surface-based DNA robots can also sort initially dis-
persed cargo into separate homogeneous piles [88]. Simple
molecular robots that do little more than walk on a DNA ori-
gami surface can take steps as often as once per second [89],
raising the hope that more complex molecular robots need
not be slow. Surface CRNs are a natural model for DNA
walkers and similar molecular robots, and provide a natural
format for designing and testing molecular robot algorithms.

Figure 6¢ shows an algorithm for a molecular robot (R)
that diffuses around a field of open sites (O) searching for
two types of cargo (C1 and C2), which it carries back to
two goal sites (GC1 and GC2, respectively). This algorithm
bears close resemblance to the ant mound-building algorithm
at the beginning of this section. The primary difference
between the two is that the cargo-sorting robot distinguishes
between a cargo and its goal, and can mark dropped cargo as
belonging to the goal. Because these robots drop the cargo as
soon as they encounter a goal, the resulting piles develop
shapes similar to diffusion-limited aggregation [90]. Whether
this is realistic for a molecular robot will depend on the
implementation of that robot and the nature of its cargo.
An alternative formulation, closer to [88], could use specially
marked ‘destination” sites that are replaced by the cargo.

We may note at this point that a common pattern with
surface CRN swarm robots is that they all must contend
with the extremely limited local information available to
each species. A molecule on a surface can tell if it is next
to, for example, a ‘dirt’ molecule, but it has no way to directly

molecular

molecular rugby

game end
game start (teal team scores)

n L]

n o | J

| |] | |

| - u - [] -

n n
= u [] [H]

Figure 7. Molecular rugby. Each player submits rules defining how their
team interacts with the field. Can you come up with a strategy that beats
blind diffusion?

Box 7. Molecular rugby.

Molecular rugby is played on a fixed initial field, with a
ball, seven X players and seven Y players, and a goal for
each made of GX and GY states, respectively. The back-
ground of the playing field is made up of states n € {0,
1,..., 9}, initialized to 0. A set of fixed rules governs
the interactions between ball, players, and goals, allow-
ing each team to pick up the ball, tackle other players to
steal the ball, and score by bringing the ball to the
appropriate goal:
take ball: { X/Y +B — X/YB+0
tackle: { X/YB+Y/X — X/Y +Y/XB

score: { X/YB + GY/X — WX/Y 4+ GY/X
GX/Y + WY/X — WY/X + WY/X
X/Y+WX/Y — WX/Y+ WX/Y
X/Y+WY/X — LX/Y + WY/X

win/lose:

Your challenge as a molecular rugby coach is to
program interactions between your players (either X
or Y) and the background, i.e. reactions of the form
X+n—-X+n" or X+n—n'+X, so that your team has
a better chance of winning. No other reactions are
allowed. The fixed reactions each have rate 10, and
you have a total rate budget of 200 to distribute
among your team’s reactions.

— We provide two team implementations (a straight-
forward random-walk implementation and an
implementation that changes the field) on our simu-
lator website, in the ‘Molecular Rugby” example. Can
you build a ruleset that beats ours more than half the
time?

— Inacompetition between K teams, each team plays each
other team N times. If one team makes at least /N goals
more than the other, it is declared the victor; otherwise
the team with the fewer reaction rules is the victor. Host
a competition among your friends!

— Invent your own variant of molecular rugby. Perhaps
start with different background patterns, such as ver-
tical stripes as yard lines. Perhaps let the background
decay like pheromones using reactions 9 -8, 8 - 7,
.... Perhaps have more or less background states. Per-
haps allow team players to have more internal states,
eg. X1, X2, Perhaps....

06£06L0T :LL ua3ul 20S Y °f yisi/jeunol/bio-buiysijgndAiaposiesol H

measure whether that dirt is part of a larger pile, or how big
that pile is—information which an ant brain can, presumably,
compute from a number of non-local sensory cues from its
eyes, limbs, olfactory system, and antennae.

Difficulties of extreme information locality can be viewed
as an inherent limitation of surface CRN chemistry, which
requires extra design effort to circumvent. Viewed another
way, these difficulties are clarifying. If you are a molecule,
or even an assemblage of molecules as staggeringly complex
as, say, a bacteria, you do not necessarily have immediate
access to ‘obvious’ information like which direction is for-
ward, or how big a nearby object is. These are real
limitations on molecular systems, and molecular machines
must either work without such information, or dedicate
resources to computing it.

To explore these and other difficulties of molecular
design, we propose a new molecular sport—molecular
rugby. In molecular rugby, states representing players on
two opposing teams, X and Y, compete to pick up and
move a ball to a goal protected by the other team. Fixed tran-
sition rules govern basic mechanics (picking up the ball,
tackling other players, and scoring). The game is played
between teams with various (constrained) transition rules
controlling the movement of players on their team. See
figure 7 and box 7 for details.

7. Conclusion

What, in principle, can chemistry on a surface do?

We have addressed this question with a simple asyn-
chronous cellular-automata-like framework—the surface
CRN—that serves as a tractable and comprehensible
model of chemistry on a surface. In this model, unimole-
cular and bimolecular reactions specified in a rule set
can occur at any site and between any two neighbouring
sites on a surface, respectively. Surface CRNs may not
capture the full richness of all possible physics that can
occur on a surface surrounded by chemicals, but we
claim that they capture many of the important features of
chemistry-on-a-surface in much the same way that well-
mixed CRNs capture many of the important features of
chemistry-in-a-tube.

What can chemistry do on a surface, according to the sur-
face CRN model? The short answer is that chemistry on a
surface is Turing-universal, and so in principle can do any-
thing that a computer can do.

More concretely, there are relatively simple and compre-
hensible surface CRN designs of
behaviour, direct simulation of synchronous cellular auto-

reaction—diffusion

mata, and arbitrary Boolean logic circuits. We have also
defined surface CRNs with simple pattern formation and
simple swarm behaviours, and we believe that more complex
and diverse behaviours are possible with larger rule sets
involving more surface reactions.

What constraints, if any, does being on a surface impose
on chemistry?

According to the surface CRN model, as we have seen
from the manufacturing and swarm examples, computation
with just local information and no absolute orientation
requires different algorithms compared to that with both
local and global information. The differences often lead to
either larger numbers of reaction steps to accomplish a task

or larger rule sets to compute the information that are not [18 |

immediately available.

What is surface CRN better at doing than well-mixed
CRNs and polymer CRNs?

In well-mixed CRNSs, a larger number of specific molecu-
lar interactions is required for computing a more complex
task. In practice, any compromise in that specificity would
result in undesired side reactions that limit the scalability of
the CRNs. Surface CRNs trade off complexity of molecular
interaction for complexity of spatial placement—if you can pre-
cisely place molecules on a surface, then you can program
behaviours with fewer molecular interactions, which will
allow skilled chemists to build more complex chemical sys-
tems with dynamic and algorithmic behaviours.

As an example, let us compare the logic circuit designs
shown in §4 with the seesaw logic circuit scheme described
in [10], which is a well-mixed CRN implemented with
DNA molecules. The surface CRN implementation requires
between two and three times as many reactions for a single
logic gate as the seesaw implementation, but, critically, the
seesaw gate implementation requires new molecular inter-
actions for every gate in the circuit, while the surface CRN
implementation has a fixed set of rules for circuits of any
size. The surface CRN’s ability to reuse reactions for multiple
logic gates comes directly from its ability to spatially separate
components—it replaces chemical specification with spatial
separation, which for many systems should prove easier to
achieve. Because of the fixed set of rules for arbitrary circuits,
undesired side reactions do not scale with the complexity of
the circuit. Unlike the well-mixed CRN, in the surface CRN
it is not necessary to reduce the side reactions by reducing
concentrations of chemical species, allowing each reaction
to be as fast as possible regardless of the circuit size.

Moreover, surface CRNs can be massively parallel. Bil-
lions to trillions of tiny surfaces could float around in one
test tube, each carrying out a distinct computation. By con-
trast, a well-mixed CRN in one test tube can compute
exactly one thing at any time. In principle, polymer CRNs
can be parallel [37], but existing constructions of polymer
CRNs using DNA nanotechnology require a single copy of
certain polymers in order to be Turing-universal [27-29],
severely limiting their capability for parallel computation.

The theoretical understanding that we have explored in
this work will hopefully inspire construction of increasingly
interesting chemical systems on surfaces. There already exist
systematic methods for implementing arbitrary well-mixed
CRNs using DNA nanotechnology, both in theory [91] and
practice [13,14], as well a theoretical approach for implement-
ing arbitrary surface CRNs using DNA strand displacement
reactions attached to a DNA origami surface [38]. Thus, the
surface CRN is more than a theoretical tool for understanding
the abstract properties of surface chemistry—it can, in prin-
ciple, be physically implemented in a real-world laboratory.
These implementations will provide a starting point for the
development of complex, programmed molecular systems
that may someday be extended to other types of molecules
including RNA and proteins.

Beyond guiding efforts to engineer molecular machines,
studying the surface CRN model will also help answer a fun-
damental question: what capabilities and constraints of
molecular interactions guided the origin and evolution of
life? While surface CRNs are more scalable and parallel
than well-mixed and polymer CRNs, no single type of

06£06L0T :LL ua3ul 20S Y °f yisi/jeunol/bio-buiysijgndAiaposiesol

chemistry alone provides the sole solution for life-level com-
plexity. The receptors on cell membranes represent an
example of surface chemistry. The filaments in cytoskeletons
represent an example of polymer chemistry. The transcription
factors in genetic regulatory circuits represent an example of
well-mixed chemistry. Understanding the advantages and
trade-offs of each type of chemistry will clarify the design
principles for both engineered and natural molecular sys-
tems, for example defining what the best geometry (or
combination of geometries) is for solving a given molecular
task. Naturally, this will require investigation of more com-
plex possibilities—including three-dimensional geometry,
reconfiguration between different geometries, and integration
of different geometries—and will put us on the road toward
understanding and engineering molecular systems with
behaviours as sophisticated as those seen in biology.

Data accessibility. Simulator code, including examples used in this paper,
can be found in the ‘paper-release’ branch of the GitHub repository
at https://github.com/sclamons/surface crns, a fork of which is
also available from the DNA and Natural Algorithms Group on
GitHub (https://github.com/DNA-and-Natural-Algorithms-Group).

A browser interface to the simulator is also available, along with
examples from this paper and others, at http://www.dna.caltech.
edu/Surface. CRN_Simulator/.

Authors” contributions. S.C. wrote the simulation software and online inter-
faces used in this paper. L.Q. and E.W. conceived the study. All authors
constructed examples and wrote and revised substantial portions of
the manuscript. All authors gave final approval for publication and
agree to be held accountable for the work performed therein.
Competing interests. We declare we have no competing interests.
Funding. This work was supported in part by NSF grant nos. CCF-
1317694 to EW. and L.Q., CCF-1813550 and CCF-1351081 to L.Q.
S.C. was supported by the Human Frontiers Research Science Pro-
gram and the Institute for Collaborative Biotechnologies through
contract W9TINF-19-D-0001 from the U.S. Army Research Office to
Richard M. Murray.

Acknowledgements. The authors thank Philip F. Petersen, Matthew
M. Cook, Andras Cook, Chigozie Nri, Adam Butler, Gokul Gowri,
Wei Li, Robert F. Johnson, Stefan Badelt and Constantine G. Evans
for discussion, feedback and encouragement. P.E.P. contributed sev-
eral example surface CRN programs to the online simulator, and
helped optimize the line-building example presented here. M.M.C.
taught us about synchronization mechanisms for cellular automata.
Kudos to molecular rugby team captains P.EP., MM.C,, A.C., CN,,
AB., GG, SB, LQ.,S.C. and EW.

References

1. Maclennan BJ. 2015 The morphogenetic path to cascades. Nature 475, 368—372. (doi:10.1038/ 20. Cook M, Soloveichik D, Winfree E, Bruck J. 2009
programmable matter. Proc. IEEE 103, 1226-1232. nature10262) Programmability of chemical reaction networks. In
(doi:10.1109/JPROC.2015.2425394) 12. Cherry KM, Qian L. 2018 Scaling up molecular Algorithmic Bioprocesses, pp. 543—-584. Heidelberg,

2. Bray WC. 1921 A periodic reaction in homogeneous pattern recognition with DNA-based winner-take-all Germany: Springer.
solution and its relation to catalysis. J. Am. Chem. neural networks. Nature 559, 370-376. (doi:10. 21, Soloveichik D, Cook M, Winfree E, Bruck J. 2008
Soc. 43, 1262-1267. (doi:10.1021/ja01439a007) 1038/541586-018-0289-6) Computation with finite stochastic chemical reaction

3. Zhabotinskii AM. 1964 Periodic course of the 13. Chen Y-J, Dalchau N, Srinivas N, Phillips A, Cardelli networks. Nat. Comput. 7, 615-633. (doi:10.1007/
malonic acid in a solution (studies on the kinetics of L, Soloveichik D, Seelig G. 2013 Programmable $11047-008-9067-y)

Belousov's reaction). Biofizika 9, 306—311. chemical controllers made from DNA. Nat. 22. Cummings R, Doty D, Soloveichik D. 2016

4. Degn H. 1967 Evidence of a branched chain reaction Nanotechnol. 8, 755-762. (doi:10.1038/nnano.2013. Probability 1 computation with chemical reaction
in the oscillating reaction of hydrogen peroxide, 189) networks. Nat. Comput. 15, 245-261. (doi:10.1007/
jodine, and iodate. Acta Chem. Scand. 21, 14. Srinivas N, Parkin J, Seelig G, Winfree E, Soloveichik $11047-015-9501-x)

1057-1066. (doi:10.3891/acta.chem.scand.21-1057) D. 2017 Enzyme-free nucleic acid dynamical 23. (appelletti D, Ortiz-Mufioz A, Anderson DF, Winfree

5. Degn H. 1967 Effect of bromine derivatives of systems. Science 358, eaal2052. (doi:10.1126/ E. 2020 Stochastic chemical reaction networks for
malonic acid on the oscillating reaction of malonic science.aal2052) robustly approximating arbitrary probability
acid, cerium ions and bromate. Nature 213, 15. Rothemund PWK. 2006 Folding DNA to create distributions. Theor. Comput. Sci. 801, 64-95.
589-590. (doi:10.1038/213589a0) nanoscale shapes and patterns. Nature 440, (doi:10.1016/j.tcs.2019.08.013)

6. Winfree AT. 1984 The prehistory of the Belousov— 297-302. (doi:10.1038/nature04586) 24, Poole W, Ortiz-Muiioz A, Behera A, Jones NS,
Zhabotinsky oscillator. J. Chem. Educ. 61, 661—663. 16. Douglas SM, Dietz H, Liedl T, Hogberg B, Graf F, Ouldridge TE, Winfree E, Gopalkrishnan M. 2017
(doi:10.1021/ed061p661) Shih WM. 2009 Self-assembly of DNA into Chemical Boltzmann machines. In DNA Computing

7. Briggs TS, Rauscher WC. 1973 An oscillating iodine nanoscale three-dimensional shapes. Nature 459, and Molecular Programming (Lecture Notes in
clock. J. Chem. Educ. 50, 496. (doi:10.1021/ 414-418. (d0i:10.1038/nature08016) Computer Science), vol. 10467, pp. 210-231.
ed050p496) 17. Ke Y, Ong LL, Shih WM, Yin P. 2012 Three- Heidelberg, Germany: Springer. (doi:10.1007/978-3-

8. Stojanovic MN, Semova S, Kolpashchikov D, dimensional structures self-assembled from DNA 319-66799-7_14)

Macdonald J, Morgan C, Stefanovic D. 2005 bricks. Science 338, 1177-1183. (doi:10.1126/ 25. Winfree E. 2019 Chemical reaction networks and
Deoxyribozyme-hased ligase logic gates and their science.1227268) stochastic local search. In DNA Computing and
initial circuits. J. Am. Chem. Soc. 127, 6914—6915. 18. Gillespie DT. 1977 Exact stochastic simulation of Molecular Programming (Lecture Notes in Computer
(doi:10.1021/ja043003a) coupled chemical reactions. J. Phys. Chem. 81, Science), vol. 11648, pp. 1-20. Heidelberg,

9. Seelig G, Soloveichik D, Zhang DY, Winfree E. 2006 2340-2361. (doi:10.1021/j100540a008) Germany: Springer. (doi:10.1007/978-3-030-26807-
Enzyme-free nucleic acid logic circuits. Science 314, 19. Fages F, Le Guludec G, Bournez O, Pouly A. 2017 7_1)

1585-1588. (doi:10.1126/science.1132493) Strong Turing completeness of continuous chemical ~ 26. Good MG, Zalatan JG, Lim WA. 2011 Scaffold

10. Qian L, Winfree E. 2011 Scaling up digital circuit reaction networks and compilation of mixed proteins: hubs for controlling the flow of cellular
computation with DNA strand displacement analog—digital programs. In Computational Methods information. Science 332, 680—686. (doi:10.1126/
cascades. Science 332, 1196—1201. (doi:10.1126/ in Systems Biology (Lecture Notes in Computer science.1198701)
science.1200520) Science), vol. 10545 LNBI, pp. 108—127. Heidelberg, ~ 27. Qian L, Soloveichik D, Winfree E. 2011 Efficient

11. Qian L, Winfree E, Bruck J. 2011 Neural network Germany: Springer. (doi:10.1007/978-3-319- Turing-universal computation with DNA polymers.

computation with DNA strand displacement

67471-1_7)

In DNA Computing and Molecular Programming

06£06L0T :LL ua3ul 20S Y °f yisi/jeunol/bio-buiysijgndAiaposiesol E

https://github.com/sclamons/surface_crns
https://github.com/sclamons/surface_crns
https://github.com/DNA-and-Natural-Algorithms-Group
https://github.com/DNA-and-Natural-Algorithms-Group
http://www.dna.caltech.edu/Surface_CRN_Simulator/
http://www.dna.caltech.edu/Surface_CRN_Simulator/
http://www.dna.caltech.edu/Surface_CRN_Simulator/
http://dx.doi.org/10.1109/JPROC.2015.2425394
http://dx.doi.org/10.1021/ja01439a007
http://dx.doi.org/10.3891/acta.chem.scand.21-1057
http://dx.doi.org/10.1038/213589a0
http://dx.doi.org/10.1021/ed061p661
http://dx.doi.org/10.1021/ed050p496
http://dx.doi.org/10.1021/ed050p496
http://dx.doi.org/10.1021/ja043003a
http://dx.doi.org/10.1126/science.1132493
http://dx.doi.org/10.1126/science.1200520
http://dx.doi.org/10.1126/science.1200520
http://dx.doi.org/10.1038/nature10262
http://dx.doi.org/10.1038/nature10262
http://dx.doi.org/10.1038/s41586-018-0289-6
http://dx.doi.org/10.1038/s41586-018-0289-6
http://dx.doi.org/10.1038/nnano.2013.189
http://dx.doi.org/10.1038/nnano.2013.189
http://dx.doi.org/10.1126/science.aal2052
http://dx.doi.org/10.1126/science.aal2052
http://dx.doi.org/10.1038/nature04586
http://dx.doi.org/10.1038/nature08016
http://dx.doi.org/10.1126/science.1227268
http://dx.doi.org/10.1126/science.1227268
http://dx.doi.org/10.1021/j100540a008
http://dx.doi.org/10.1007/978-3-319-67471-1_7
http://dx.doi.org/10.1007/978-3-319-67471-1_7
http://dx.doi.org/10.1007/s11047-008-9067-y
http://dx.doi.org/10.1007/s11047-008-9067-y
http://dx.doi.org/10.1007/s11047-015-9501-x
http://dx.doi.org/10.1007/s11047-015-9501-x
http://dx.doi.org/10.1016/j.tcs.2019.08.013
http://dx.doi.org/10.1007/978-3-319-66799-7_14
http://dx.doi.org/10.1007/978-3-319-66799-7_14
http://dx.doi.org/10.1007/978-3-030-26807-7_1
http://dx.doi.org/10.1007/978-3-030-26807-7_1
http://dx.doi.org/10.1126/science.1198701
http://dx.doi.org/10.1126/science.1198701

28.

29.

30.

31

32.

33.

34.

35.

36.

37.

38.

39.

(Lecture Notes in Computer Science), vol. 6518,

pp. 123-140. Heidelberg, Germany: Springer.
(doi:10.1007/978-3-642-18305-8_12)

Lakin MR, Phillips A. 2011 Modelling, simulating
and verifying Turing-powerful strand displacement
systems. In DNA Computing and Molecular
Programming (Lecture Notes in Computer Science),
vol. 6937, pp. 130-144. Heidelberg, Germany:
Springer. (doi:10.1007/978-3-642-23638-9_12)

Tai A, Condon A. 2019 Error-free stable computation
with polymer-supplemented chemical reaction
networks. In DNA Computing and Molecular
Programming (Lecture Notes in Computer Science),
vol. 11648, pp. 197-218. Heidelberg, Germany:
Springer. (doi:10.1007/978-3-030-26807-7_11)
Chandran H, Gopalkrishnan N, Phillips A, Reif J.
2011 Localized hybridization circuits. In DNA
Computing and Molecular Programming (Lecture
Notes in Computer Science), vol. 6937, pp. 64-83.
Heidelberg, Germany: Springer. (doi:10.1007/978-3-
642-23638-9_8)

Muscat RA, Strauss K, Ceze L, Seelig G. 2013 DNA-
based molecular architecture with spatially localized
components. ACM SIGARCH Comput. Architecture
News 41, 177-188. (doi:10.1145/2508148.2485938)
Lakin MR, Petersen R, Gray KE, Phillips A. 2014
Abstract modelling of tethered DNA circuits. In DNA
Computing and Molecular Programming (Lecture
Notes in Computer Science), vol. 8727, pp. 132-147.
Heidelberg, Germany: Springer. (doi:10.1007/978-3-
319-11295-4_9)

Teichmann M, Kopperger E, Simmel FC. 2014
Robustness of localized DNA strand displacement
cascades. ACS Nano 8, 8487—8496. (doi:10.1021/
nn503073p)

Ruiz IM, Arbona J-M, Lad A, Mendoza 0, Aimé J-P,
Elezgaray J. 2015 Connecting localized DNA strand
displacement reactions. Nanoscale 7, 12970-12978.
(doi:10.1039/C5NR02434))

Chatterjee G, Dalchau N, Muscat RA, Phillips A,
Seelig G. 2017 A spatially localized architecture for
fast and modular DNA computing. Nat.
Nanotechnol. 12, 920-927. (doi:10.1038/nnano.
2017.127)

Bui H, Shah S, Mokhtar R, Song T, Garg S, Reif J.
2018 Localized DNA hybridization chain reactions on
DNA origami. ACS Nano 12, 1146-1155. (doi:10.
1021/acsnano.7b06699)

Bennett CH. 1982 The thermodynamics of
computation—a review. Int. J. Theor. Phys. 21,
905-940. (doi:10.1007/BF02084158)

Qian L, Winfree E. 2014 Parallel and scalable
computation and spatial dynamics with DNA-based
chemical reaction networks on a surface. In DNA
Computing and Molecular Programming (Lecture
Notes in Computer Science), vol. 8727, pp. 114-131.
(doi:10.1007/978-3-319-11295-4_8)

Jakubith S, Rotermund HH, Engel W, Von QOertzen A,
Ertl G. 1990 Spatiotemporal concentration patterns in
a surface reaction: propagating and standing waves,
rotating spirals, and turbulence. Phys. Rev. Lett. 65,
3013-3016. (doi:10.1103/PhysRevLett.65.3013)

40.

41.

42.

43.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

Shang J et al. 2015 Assembling molecular Sierpinski
triangle fractals. Nat. Chem. 7, 389—393. (doi:10.
1038/nchem.2211)

Li N, Gu G, Zhang X, Song D, Zhang Y, Teo BK, Peng
L-M, Hou S, Wang Y. 2017 Packing fractal Sierpifiski
triangles into one-dimensional crystals via a
templating method. Chem. Commun. 53,
3469-3472. (doi:10.1039/C7CC00566K)

Wang Y, Xue N, Li R, Wu T, Li N, Hou S, Wang Y.
2019 Construction and properties of Sierpinski
triangular fractals on surfaces. Chem. Phys. Chem.
20, 2262-2270. (doi:10.1002/cphc.201900258)
Setvin M, Reticcioli M, Poelzleitner F, Hulva J,
Schmid M, Boatner LA, Franchini C, Diebold U. 2018
Polarity compensation mechanisms on the
perovskite surface KTa0; (001). Science 359,
572-575. (doi:10.1126/science.aar2287)

LiG LiN, LiuL, Zhang Y, Yuan C, Peng L, Hou S, Wang Y.
2017 Kinetically controlled hierarchical self-assemblies
of all-trans-retinoic acid on Au (111). Chem. Commun.
53, 2252-2255. (doi:10.1039/C6(C08148G)

Zhang DY, Seelig G. 2011 Dynamic DNA
nanotechnology using strand-displacement reactions.
Nat. Chem. 3, 103—113. (doi:10.1038/nchem.957)
Chen Y-J, Groves B, Muscat RA, Seelig G. 2015 DNA
nanotechnology from the test tube to the cell. Nat.
Nanotechnol. 10, 748-760. (doi:10.1038/nnano.
2015.195)

Bathe M, Rothemund PWK. 2017 DNA
nanotechnology: a foundation for programmable
nanoscale materials. MRS Bull. 42, 882-888.
(doi:10.1557/mrs.2017.279)

Scalise D, Schulman R. 2019 Controlling matter at
the molecular scale with DNA circuits. Annu. Rev.
Biomed. Eng. 21, 469-493. (doi:10.1146/annurev-
bioeng-060418-052357)

Gibson MA, Bruck J. 2000 Efficient exact stochastic
simulation of chemical systems with many species
and many channels. J. Phys. Chem. A 104,
1876-1889. (doi:10.1021/jp993732q)

Hattne J, Fange D, EIf J. 2005 Stochastic reaction—
diffusion simulation with MesoRD. Bioinformatics
21, 2923-2924. (doi:10.1093/bioinformatics/bti431)
Fange D, Berg 0G, Sjoberg P, EIf J. 2010 Stochastic
reaction—diffusion kinetics in the microscopic limit.
Proc. Natl Acad. Sci. USA 107, 19 820-19 825.
(doi:10.1073/pnas.1006565107)

Schéneberg J, Noé F. 2013 ReaDDy—a software for
particle-based reaction—diffusion dynamics in
crowded cellular environments. PloS ONE 8,
€74261. (doi:10.1371/journal.pone.0074261)
Greenberg JM, Hastings SP. 1978 Spatial patterns for
discrete models of diffusion in excitable media. SIAM
J. Appl. Math. 34, 515-523. (doi:10.1137/0134040)
Field RJ, Koros E, Noyes RM. 1972 Oscillations in
chemical systems. II. Thorough analysis of temporal
oscillation in the bromate—cerium—malonic acid
system. J. Am. Chem. Soc. 94, 8649—-8664. (doi:10.
1021/ja00780a001)

Winfree AT. 2001 The geometry of biological time,
2nd edn. Heidelberg, Germany: Springer. (doi:10.
1007/978-1-4757-3484-3)

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

1.

Tan TH, Liu J, Miller PW, Tekant M, Dunkel J, Fakhri
N. 2020 Topological turbulence in the membrane of
a living cell. Nat. Phys. 16, 1-6. (doi:10.1038/
s41567-020-0841-9)

Grassherger P, Kantz H. 1991 On a forest fire model
with supposed self-organized criticality. J. Stat.
Phys. 63, 685—700. (doi:10.1007/BF01029205)

van Ballegooijen WM, Boerlijst MC. 2004
Emergent trade-offs and selection for outbreak
frequency in spatial epidemics. Proc. Natl Acad. Sci.
USA 101, 18 24618 250. (d0i:10.1073/pnas.
0405682101)

Greenberg J, Greene (, Hastings S. 1980 A
combinatorial problem arising in the study of
reaction-diffusion equations. SIAM J. Algebr. Discrete
Methods 1, 34—42. (doi:10.1137/0601006)
Ingerson TE, Buvel RL. 1984 Structure in
asynchronous cellular automata. Physica D 10,
59-68. (doi:10.1016/0167-2789(84)90249-5)
Schonfisch B, de Roos A. 1999 Synchronous and
asynchronous updating in cellular automata.
BioSystems 51, 123—143. (doi:10.1016/50303-
2647(99)00025-8)

Poundstone W. 1985 The recursive universe: cosmic
complexity and the limits of scientific knowledge.
New York, NY: McGraw-Hill.

Nakamura K. 1981 Synchronous to asynchronous
transformation of polyautomata. J. Comput.

Syst. Sci. 23, 22-37. (doi:10.1016/0022-
0000(81)90003-9)

Gécs P. 2001 Deterministic computations whose
history is independent of the order of asynchronous
updating. (http:/arxiv.org/abs/cs/0101026).

Lee J, Adachi S, Peper F, Mashiko S. 2005 Delay-
insensitive computation in asynchronous cellular
automata. J. Comput. Syst. Sci. 70, 201-220.
(d0i:10.1016/j.jcss.2004.10.009)

Rendell P. 2002 Turing universality of the Game of Life.
In Collision-Based Computing, pages 513—539.
Heidelberg, Germany: Springer. (doi:10.1007/978-1-
4471-0129-1_18)

Rennard J-P. 2002 Implementation of logical
functions in the Game of Life. In Collision-Based
Computing, pp. 491-512. Heidelberg, Germany:
Springer. (doi:10.1007/978-1-4471-0129-1_17)
Toffoli T, Margolus N. 1987 Cellular automata
machines: a new environment for modeling.
Cambridge, MA: MIT press.

Petersen P, Tikhomirov G, Qian L. 2018 Information-
based autonomous reconfiguration in systems of
interacting DNA nanostructures. Nat. Commun. 9,
5362. (doi:10.1038/s41467-018-07805-7)

Martin AJ, Burns SM, Lee T-K, Borkovic D, Hazewindus
PJ. 1989 The design of an asynchronous
microprocessor. In Decennial Caltech Conference on
VLSI, pp. 351-373. Cambridge, MA: MIT Press.
Brailovskaya T, Gowri G, Yu S, Winfree E. 2019
Reversible computation using swap reactions on a
surface. In DNA Computing and Molecular
Programming (Lecture Notes in Computer Science),
vol. 11648, pp. 174-196. Heidelberg, Germany:
Springer. (doi:10.1007/978-3-030-26807-7_10)

06£06L0T :LL ua3ul 20S Y °f yisi/jeunol/bio-buiysijgndAiaposiesol E

http://dx.doi.org/10.1007/978-3-642-18305-8_12
http://dx.doi.org/10.1007/978-3-642-23638-9_12
http://dx.doi.org/10.1007/978-3-030-26807-7_11
http://dx.doi.org/10.1007/978-3-642-23638-9_8
http://dx.doi.org/10.1007/978-3-642-23638-9_8
http://dx.doi.org/10.1145/2508148.2485938
http://dx.doi.org/10.1007/978-3-319-11295-4_9
http://dx.doi.org/10.1007/978-3-319-11295-4_9
http://dx.doi.org/10.1021/nn503073p
http://dx.doi.org/10.1021/nn503073p
http://dx.doi.org/10.1039/C5NR02434J
http://dx.doi.org/10.1038/nnano.2017.127
http://dx.doi.org/10.1038/nnano.2017.127
http://dx.doi.org/10.1021/acsnano.7b06699
http://dx.doi.org/10.1021/acsnano.7b06699
http://dx.doi.org/10.1007/BF02084158
http://dx.doi.org/10.1007/978-3-319-11295-4_8
http://dx.doi.org/10.1103/PhysRevLett.65.3013
http://dx.doi.org/10.1038/nchem.2211
http://dx.doi.org/10.1038/nchem.2211
http://dx.doi.org/10.1039/C7CC00566K
http://dx.doi.org/10.1002/cphc.201900258
http://dx.doi.org/10.1126/science.aar2287
http://dx.doi.org/10.1039/C6CC08148G
http://dx.doi.org/10.1038/nchem.957
http://dx.doi.org/10.1038/nnano.2015.195
http://dx.doi.org/10.1038/nnano.2015.195
http://dx.doi.org/10.1557/mrs.2017.279
http://dx.doi.org/10.1146/annurev-bioeng-060418-052357
http://dx.doi.org/10.1146/annurev-bioeng-060418-052357
http://dx.doi.org/10.1021/jp993732q
http://dx.doi.org/10.1093/bioinformatics/bti431
http://dx.doi.org/10.1073/pnas.1006565107
http://dx.doi.org/10.1371/journal.pone.0074261
http://dx.doi.org/10.1137/0134040
http://dx.doi.org/10.1021/ja00780a001
http://dx.doi.org/10.1021/ja00780a001
http://dx.doi.org/10.1007/978-1-4757-3484-3
http://dx.doi.org/10.1007/978-1-4757-3484-3
http://dx.doi.org/10.1038/s41567-020-0841-9
http://dx.doi.org/10.1038/s41567-020-0841-9
http://dx.doi.org/10.1007/BF01029205
http://dx.doi.org/10.1073/pnas.0405682101
http://dx.doi.org/10.1073/pnas.0405682101
http://dx.doi.org/10.1137/0601006
http://dx.doi.org/10.1016/0167-2789(84)90249-5
http://dx.doi.org/10.1016/S0303-2647(99)00025-8
http://dx.doi.org/10.1016/S0303-2647(99)00025-8
http://dx.doi.org/10.1016/0022-0000(81)90003-9
http://dx.doi.org/10.1016/0022-0000(81)90003-9
http://arxiv.org/abs/cs/0101026
http://arxiv.org/abs/cs/0101026
http://dx.doi.org/10.1016/j.jcss.2004.10.009
http://dx.doi.org/10.1007/978-1-4471-0129-1_18
http://dx.doi.org/10.1007/978-1-4471-0129-1_18
http://dx.doi.org/10.1007/978-1-4471-0129-1_17
http://dx.doi.org/10.1038/s41467-018-07805-7
http://dx.doi.org/10.1007/978-3-030-26807-7_10

72.

73.

74.

75.

76.

71.

78.

Wolfram S. 1984 Cellular automata as models of
complexity. Nature 311, 419—424. (doi:10.1038/
311419a0)

Deutsch A, Dormann S. 2018 Cellular automaton
modeling of biological pattern formation, 2nd edn.
New York, NY: Birkh&user. (doi:10.1007/978-1-4899-
7980-3)

Mordvintsev A, Randazzo E, Niklasson E, Levin M.
2020 Growing neural cellular automata. Distill 5, e23.
(doi:10.23915/distill.00023)

Rado T. 1962 On non-computable functions. Bell
Syst. Tech. J. 41, 877-884. (doi:10.1002/j.1538-
7305.1962.th00480.x)

Doty D. 2012 Theory of algorithmic self-assembly.
Commun. ACM 55, 78-88. (doi:10.1145/2380656.
2380675)

Ma X, Lombardi F. 2008 Synthesis of tile sets for DNA self-
assembly. JEEE Trans. Comput. Aided Des. Integr. Circuits
Syst. 27, 963-967. (doi:10.1109/TCAD.2008.917973)
Grassé P-P. 1959 La reconstruction du nid et les
coordinations interindividuelles chez Bellicositermes
natalensis et Cubitermes sp. la théorie de la
stigmergie: Essai d'interprétation du comportement
des termites constructeurs. Insectes Soc. 6, 41-80.
(doi:10.1007/BF02223791)

79.

80.

81.

82.

83.

84.

85.

Langton CG. 1986 Studying artificial life with
cellular automata. Physica D 22, 120-149. (doi:10.
1016/0167-2789(86)90237-X)

Wiesenfeld K, Tang C, Bak P. 1989 A physicist's
sandbox. J. Stat. Phys. 54, 1441-1458. (doi:10.
1007/BF01044728)

Resnick M. 1997 Turtles, termites, and traffic jams:
explorations in massively parallel microworlds.
Cambridge, MA: MIT Press.

Bayindir L. 2016 A review of swarm robotics tasks.
Neurocomputing 172, 292-321. (doi:10.1016/j.
neucom.2015.05.116)

Dorigo M, Stiitzle T. 2019 Ant colony optimization:
overview and recent advances. In Handbook of
metaheuristics, pp. 311-351. Heidelberg,
Germany: Springer. (doi:10.1007/978-3-319-
91086-4_10)

Lund K et al. 2010 Molecular robots guided by
prescriptive landscapes. Nature 465, 206-210.
(doi:10.1038/nature09012)

Wickham SFJ, Bath J, Katsuda Y, Endo M, Hidaka K,
Sugiyama H, Turberfield AJ. 2012 A DNA-based
molecular motor that can navigate a network of
tracks. Nat. Nanotechnol. 7, 169—173. (d0i:10.1038/
nnano.2011.253)

86.

87.

88.

89.

90.

9.

Muscat RA, Bath J, Turberfield AJ. 2011

A programmable molecular robot. Nano Lett. 11,
982-987. (doi:10.1021/nl1037165)

Kudernac T, Ruangsupapichat N, Parschau M, Macid B,
Katsonis N, Harutyunyan SR, Emst K-H, Feringa BL.
2011 Electrically driven directional motion of a four-
wheeled molecule on a metal surface. Nature 479,
208-211. (doi:10.1038/nature10587)

Thubagere AJ, Li W, Johnson RF, Chen Z, Doroudi S, Lee
YL, lzatt G, Wittman S, Srinivas N, Woods D, Winfree E,
Qian L. 2017 A cargo-sorting DNA robot. Science 357,
€aan6558. (doi:10.1126/science.aan6558)

Li J, Johnson-Buck A, Yang YR, Shih WM, Yan H,
Walter NG. 2018 Exploring the speed limit of
toehold exchange with a cartwheeling DNA acrobat.
Nat. Nanotechnol. 13, 723-729. (d0i:10.1038/
541565-018-0130-2)

Witten Jr TA, Sander LM. 1981 Diffusion-limited
aggregation, a kinetic critical phenomenon. Phys.
Rev. Lett. 47, 1400-1403. (doi:10.1103/
PhysRevLett.47.1400)

Soloveichik D, Seelig G, Winfree E. 2010 DNA as a
universal substrate for chemical kinetics. Proc. Natl
Acad. Sci. USA 107, 5393-5398. (doi:10.1073/pnas.
0909380107)

06£06L0T :LL ua3ul 20S Y °f yisi/jeunol/bio-buiysijgndAiaposiesol E

http://dx.doi.org/10.1038/311419a0
http://dx.doi.org/10.1038/311419a0
http://dx.doi.org/10.1007/978-1-4899-7980-3
http://dx.doi.org/10.1007/978-1-4899-7980-3
http://dx.doi.org/10.23915/distill.00023
http://dx.doi.org/10.1002/j.1538-7305.1962.tb00480.x
http://dx.doi.org/10.1002/j.1538-7305.1962.tb00480.x
http://dx.doi.org/10.1145/2380656.2380675
http://dx.doi.org/10.1145/2380656.2380675
http://dx.doi.org/10.1109/TCAD.2008.917973
http://dx.doi.org/10.1007/BF02223791
http://dx.doi.org/10.1016/0167-2789(86)90237-X
http://dx.doi.org/10.1016/0167-2789(86)90237-X
http://dx.doi.org/10.1007/BF01044728
http://dx.doi.org/10.1007/BF01044728
http://dx.doi.org/10.1016/j.neucom.2015.05.116
http://dx.doi.org/10.1016/j.neucom.2015.05.116
http://dx.doi.org/10.1007/978-3-319-91086-4_10
http://dx.doi.org/10.1007/978-3-319-91086-4_10
http://dx.doi.org/10.1038/nature09012
http://dx.doi.org/10.1038/nnano.2011.253
http://dx.doi.org/10.1038/nnano.2011.253
http://dx.doi.org/10.1021/nl1037165
http://dx.doi.org/10.1038/nature10587
http://dx.doi.org/10.1126/science.aan6558
http://dx.doi.org/10.1038/s41565-018-0130-2
http://dx.doi.org/10.1038/s41565-018-0130-2
http://dx.doi.org/10.1103/PhysRevLett.47.1400
http://dx.doi.org/10.1103/PhysRevLett.47.1400
http://dx.doi.org/10.1073/pnas.0909380107
http://dx.doi.org/10.1073/pnas.0909380107

	Programming and simulating chemical reaction networks on a surface
	Introduction
	Review: what is a surface chemical reaction network?
	Dynamic spatial patterns
	The chaos of asynchronicity
	One-to-one ‘spinning-arrow’ construction of locally synchronous automata
	Several-to-one ‘broadcast-swap-sum’ construction of locally synchronous automata

	Continuously active logic circuits
	Manufacturing
	Robots and swarms
	Conclusion
	Data accessibility
	Authors' contributions
	Competing interests
	Funding
	Acknowledgements
	References

