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Abstract
Background: Epilepsy is a chronic neurological disorder characterized by recurrent seizures 
that significantly impact patients’ quality of life. Identifying predictors is crucial for early 
intervention.
Objective: Electroencephalography (EEG) microstates effectively describe the resting 
state activity of the human brain using multichannel EEG. This study aims to develop a 
comprehensive prediction model that integrates clinical features with EEG microstates to 
predict drug-refractory epilepsy (DRE).
Design: Retrospective study.
Methods: This study encompassed 226 patients with epilepsy treated at the epilepsy center 
of a tertiary hospital between October 2020 and May 2023. Patients were categorized into 
DRE and non-DRE groups. All patients were randomly divided into training and testing sets. 
Lasso regression combined with Stepglm [both] algorithms was used to screen independent 
risk factors for DRE. These risk factors were used to construct models to predict the DRE. 
Three models were constructed: a clinical feature model, an EEG microstate model, and a 
comprehensive prediction model (combining clinical-EEG microstates). A series of evaluation 
methods was used to validate the accuracy and reliability of the prediction models. Finally, 
these models were visualized for display.
Results: In the training and testing sets, the comprehensive prediction model achieved 
the highest area under the curve values, registering 0.99 and 0.969, respectively. It was 
significantly superior to other models in terms of the C-index, with scores of 0.990 and 
0.969, respectively. Additionally, the model recorded the lowest Brier scores of 0.034 and 
0.071, respectively, and the calibration curve demonstrated good consistency between the 
predicted probabilities and observed outcomes. Decision curve analysis revealed that the 
model provided significant clinical net benefit across the threshold range, underscoring its 
strong clinical applicability. We visualized the comprehensive prediction model by developing 
a nomogram and established a user-friendly website to enable easy application of this model 
(https://fydxh.shinyapps.io/CE_model_of_DRE/).
Conclusion: A comprehensive prediction model for DRE was developed, showing excellent 
discrimination and calibration in both the training and testing sets. This model provided an 
intuitive approach for assessing the risk of developing DRE in patients with epilepsy.
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Introduction
Epilepsy is a chronic neurological disorder char-
acterized by recurrent episodes of abnormal and 
excessive electrical discharge in the brain, leading 
to transient central nervous system dysfunction.1 
Unfortunately, around 30% of these patients do 
not respond to conventional antiseizure medica-
tion (ASM) and develop drug-refractory epilepsy 
(DRE).1 Prolonged or frequent seizures, as well 
as status epilepticus, can severely impact patients’ 
cognition, memory, quality of life, and psycho-
logical well-being.1 The International League 
Against Epilepsy (ILAE) defines DRE as the fail-
ure of two well-tolerated and appropriately 
selected antiseizure medication regimens, used 
alone or in combination, to achieve sustained sei-
zure freedom.2 Consequently, early diagnosis of 
DRE is crucial to improve patient outcomes.3

The development of DRE is associated with vari-
ous factors, including specific types of epilepsy 
syndromes, age of onset, multiple seizure types, 
clear neuroimaging abnormalities such as hip-
pocampal sclerosis, cortical dysplasia, tumors, 
and traumatic lesions, widespread epileptiform 
electroencephalography (EEG) changes, and pre-
vious treatment failure with ASMs.4,5  Several 
prediction models and predictors have been pro-
posed to improve clinical outcomes for patients 
with DRE. However, the currently available indi-
cators for guiding clinical practice are still limited 
due to their lack of specificity and sensitivity, lim-
ited generalizability, and high cost.

EEG is the most important tool for diagnosing 
and distinguishing epilepsy. Research has shown 
that spontaneous brain activity during resting 
state accounts for 80% of total brain energy.6 
Resting-state EEG analysis involves various 
methods such as power spectrum analysis,7 
whole-brain domain synchronization,8 functional 
network connectivity,9 and EEG microstates.10 
EEG microstates are an effective method for 
describing the resting state activity of the human 
brain using multichannel EEG.10 The concept of 
EEG microstates originated from the observation 
that broad-band spontaneous EEG activity dur-
ing rest can be characterized by a finite set of 
scalp potential topographies.10 These configura-
tions remain quasi-stable for a distinct duration 
before swiftly transitioning into a new topograph-
ical arrangement.11 These periods of quasi-stabil-
ity, reflecting the pace at which humans process 
information, are known as microstates.12 These 

microstates signal the “near-simultaneous activity 
among nodes within large-scale networks.”12 
Each microstate typically lasting 60–120 ms.13 
About 70% of EEG signals can be adequately 
represented by four microstates, labeled as A, B, 
C, and D.8,14 Microstate A connects to brain 
activity in the temporal cortex and left insula, 
suggesting a function in language processing.15,16 
Microstate B, linked to the occipital region, is 
involved in visual processing.15,16 EEG activity in 
the cingulate gyrus, inferior frontal gyrus, insula, 
and precuneus gyrus associates with microstate 
C, which participates in subjective perception and 
autonomic processing.15 Microstate D is thought 
to be involved in attention and analytical process-
ing and has been shown to be linked to neural 
activity in the right hemispheric regions of the 
frontal and parietal cortices.15

EEG microstate measures, including average dura-
tion, coverage, frequency, and transition probabil-
ity (TP), describe changes in brain states and 
reflect abnormalities in brain network function.10,17 
EEG microstate analysis has been extensively 
applied in the field of neuropsychiatric disorders, 
including schizophrenia,18 dementia,19 and narco-
lepsy.20 These findings suggest that EEG micro-
state analysis could serve as an effective tool for 
identifying abnormalities associated with brain dis-
orders.19,20 Although EEG microstate is commonly 
employed to examine brain function, its applica-
tion in studying DRE through EEG microstate 
analysis has been relatively underexplored. 
Functional connections between subcortical and 
cortical structures undergo alterations during epi-
leptic seizures. These changes imply shifts in pat-
terns of brain activity, which may offer valuable 
insights into microstate variations after seizures.21

While various predictive models for DRE exist,22 
none currently combines clinical features with 
EEG microstates. This study aimed to develop a 
nomogram model by integrating clinical features 
with EEG microstates, and to assess the model’s 
performance in predicting DRE. This approach 
aims to offer novel reference indicators for the 
diagnosis of DRE.

Materials and methods

Participants and data acquisition
Participants.  We retrospectively investigated a 
total of 226 patients with epilepsy who were 
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treated between October 2020 and May 2023 at 
the epilepsy center of Fujian Medical University 
Union Hospital. The inclusion criteria were as 
follows: (1) Patients who met the ILAE’s defini-
tion of epilepsy2; (2) patients who underwent 
video electroencephalography (VEEG) monitor-
ing; (3) patients with a complete medical history, 
neurological examination, and magnetic reso-
nance imaging (MRI) data; and (4) patients who 
regularly took ASMs. The ASMs administered to 
patients in this study included sodium valproate, 
oxcarbazepine, carbamazepine, levetiracetam, 
lamotrigine, perampanel, topiramate, phenytoin, 
phenobarbital, and clonazepam. The exclusion 
criteria were as follows: (1) patients lacking VEEG 
monitoring; (2) patients with incomplete medical 
records; (3) patients suffering from severe liver or 
kidney disease; and (4) patient with irregular 
ASMs therapy and poor compliance.

The patients were categorized into two groups 
based on their follow-up records, as shown in 
Figure 1. Participants were enrolled in the non-
DRE (NDRE) group (n = 77) if they achieved 
freedom from all types of seizures for 12 months 
or three times the pre-intervention interseizure 
interval, whichever was longer, after receiving 
appropriate ASM therapy.2 Participants were 
enrolled in the DRE group (n = 149) after failing 
to achieve sustained seizure freedom despite  
adequate trials of two ASM regimens, which  
were both tolerated and appropriately chosen  
and used, whether as monotherapies or in 
combination.2

Clinical features
This study includes the following clinical feature 
variables: continuous variables and categorical 
variables. Continuous variables included: age, 
body mass index (BMI), educational years, age at 
onset, and duration of epilepsy. Categorical vari-
ables included: (1) gender; (2) educational level 
(primary, senior, college, or above); (3) family 
history of epilepsy; (4) type of epilepsy (focal, 
generalized, focal secondary generalized, multi-
ple, and unknown onset); and (5) initial seizure 
frequency. Initial seizure frequency is referred to 
as the frequency of patients’ experience before 
starting treatment with ASMs, categorized as fol-
lows: (1) Daily: the patient experienced seizures 
every day. (2) Weekly: the patient experienced at 
least one seizure every week. (3) Monthly: the 
patient experienced at least one seizure every 

month. (4) Yearly : the patient experienced sei-
zures at intervals longer than a month, not fitting 
into the daily, weekly, or monthly categories. (5) 
Etiology (genetic, structural, immunological, 
metabolic, infectious, and unknown). (6) History 
of status epilepticus. (7) History of generalized 
tonic-clonic seizures (GTCS). (8) Nocturnal sei-
zures. (9) History of febrile seizures. (10) EEG 
findings: results of an EEG examination, catego-
rized as normal EEG (1), EEG with abnormal 
background (2), and EEG with epileptiform 

Figure 1.  Flow chart.
ASM, antiseizure medication; AUC, area under the curve; CE, clinical and 
EEG microstate features; DRE group, drug-refractory epilepsy group; EEG, 
electroencephalography; NDRE group, non-drug-refractory epilepsy group.
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discharge (3). (11) MRI findings: MRI positivity 
indicates radiological abnormalities related to 
epilepsy, the epilepsy-related radiological abnor-
malities primarily included the following: brain 
tumors, stroke lesions, vascular malformations, 
hippocampal sclerosis, cortical dysplasia, post-
traumatic lesions, central nervous system infec-
tion. (12) Absence epilepsy. (13) Comorbid 
cognitive disorder. The Montreal Cognitive 
Assessment (MoCA) and Mini-Mental State 
Examination (MMSE) were used to assess cogni-
tion. MMSE ⩽ 19 for illiterates, ⩽22 for those 
with elementary school education, and ⩽26 for 
those with junior high school education and 
above. According to the Chinese MoCA criteria, 
illiterates ⩽13, those with 1–6 years of education 
⩽19, and those with 7 or more years of education 
⩽24.23 (14) Comorbid Psychiatric disorder. (15) 
Comorbid depression. The Self-rating Depression 
Scale (SDS) was employed to evaluate depres-
sion. SDS index scores of 25–49 (raw score 20–
40) were normal; SDS index scores of 50 or more 
(raw score = 40) indicated the presence of depres-
sive symptoms.24

EEG acquisition and preprocessing
Resting-state EEG acquisition.  Subjects washed 
their hair prior to EEG collection, refrained from 
using oily cleaning or hair care products, recorded 
their scalp EEG in a quiet and relaxed state. All 
patients with epilepsy underwent VEEG record-
ing. To avoid slow waves caused by hunger, 
patients were required to have normal meals dur-
ing the monitoring period. EEG data were 
recorded continuously for 24 h, and a 10-min seg-
ment of EEG data during which the patients were 
awake was extracted for analysis.

VEEG recordings were performed using an EEG 
recorder (EEG-1200C, Japan) with 19 scalp elec-
trodes and two reference electrodes placed strictly 
according to the international 10 20 system. 
Video and EEG data were recorded in a synchro-
nized manner. Electrodes (Fp1, Fp2, F3, F4, F7, 
F8, T7, T8, P7, P8, C3, C4, P3, P4, O1, O2, Fz, 
Cz, and Pz) were positioned precisely using a 
standardized ruler.21 The electrical impedance of 
the scalp electrodes was less than 5 kΩ. The EEG-
1200C had a sampling rate of 500 Hz, the low-
pass filter rate was 70 Hz, and the high-pass filter 
rate was 0.5 Hz. Epileptic seizures and epilepti-
form discharges were analyzed and marked by 
two experienced EEG technicians.

EEG data preprocessing
The preprocessing of EEG data was carried out 
using Matlab R2013b software (MathWorks, 
Inc., Natick, MA, USA) equipped with the 
EEGLAB toolbox.25 The steps involved in pre-
processing are as follows: (1) Importing raw data: 
the raw EEG data were first imported into the 
EEGLAB toolbox. (2) Electrode localization: we 
localized the electrodes according to the standard 
10–20 system. (3) Interpolating bad electrodes: 
any electrodes with poor signal quality were inter-
polated to ensure data consistency. (4) Removing 
time segments with excessive drift: time segments 
with excessive drift or noise were identified and 
removed to enhance data quality. (5) 
Downsampling: the continuous EEG data were 
downsampled to 250 Hz to reduce computational 
load while retaining essential signal information. 
(6) Segmentation into epochs: the downsampled 
EEG data were segmented into 2-s epochs to 
facilitate analysis. (7) Band-pass filtering: a band-
pass filter was set from 1 to 40 Hz to focus on the 
frequency range of interest, which includes most 
of the relevant brain wave frequencies. (8) Notch 
filtering: a notch filter was applied at 50 Hz to 
eliminate line noise commonly found in EEG 
recordings. (9) Artifact removal using independ-
ent component analysis (ICA): ICA was employed 
to effectively remove artifacts caused by eye 
movements, heartbeats, and muscle activity, 
thereby improving the signal quality for subse-
quent analysis. (10) Readjusting the filter: finally, 
the filter was readjusted to 2–20 Hz to further 
refine the signal for the microstate analysis. For 
each patient, we retained 3 min of EEG data, 
which correspond to a total of 90 epochs.26

EEG microstate analysis
EEG microstate analysis was performed using 
Cartool software following EEG data preprocess-
ing,27 adhering to a standardized procedure from 
previous studies.28,29 The analysis involved three 
principal steps: First, we computed the global 
field power (GFP) to assess potential variations 
across electrodes at specific time points.14 When 
GFP reaches its peak, the EEG topography is 
deemed stable, and these topographies are defined 
as microstates.14 Subsequently, clustering analy-
sis was applied to the GFP’s local maxima.14,28 
The topographical maps at these GFP peaks were 
recognized as unique microstates, illustrating the 
dynamic shifts in EEG signals as transitions occur 
between these states.27 Utilizing a modified 
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version of the K-means clustering algorithm,30 we 
identified four distinct microstate topographies: 
A, B, C, and D. Finally, we calculated four 
parameters for each microstate—duration, fre-
quency, coverage, and TPs14—to collectively 
depict variations in the brain’s states.

Duration referred to the average length of time 
(in milliseconds) during which a given EEG 
microstate remains stable/present, reflecting the 
stability of neural activity in the cerebral cor-
tex.14 Frequency represented the number of 
times an EEG microstate repeats within 1 s (in 
occurrences per second), indicative of the fre-
quency or tendency of activation in the underly-
ing neural populations or systems.14 Coverage 
represented the percentage of total time covered 
by a specific EEG microstate category (in per-
centages).14 TPs indicated the probabilities of 
transitions between different EEG microstates 
(in percentages).14

Modeling process
After completing the above steps, we used the 
“createDataPartition” function from the “caret” 
package to split the dataset into training and test-
ing sets in a 0.5:0.5 ratio. We randomly selected 
50% of the NDRE group (39 cases) and 50% of 
the DRE group (75 cases) to form the training 
set, totaling 114 samples. The remaining 50% of 
the dataset, consisting of 38 NDRE patients and 
74 DRE patients, comprised the test set, totaling 
112 samples.

To establish and validate a comprehensive model 
for predicting DRE, we employed multiple 
machine learning algorithms. Initially, we inte-
grated 10 algorithms: Lasso, Ridge, Elastic Net 
(Enet), Stepwise GLM (Stepglm), support vector 
machine (SVM), glmBoost, linear discriminant 
analysis (LDA), random forest (RF), gradient 
boosting machine (GBM), and naïve Bayes.31 We 
then created 48 combinations of these algorithms. 
In each combination, the first algorithm was used 
for important variable selection, and the second 
algorithm was further used for refinement and 
modeling. The important variables identified var-
ied across different algorithm combinations 
(Supplemental Table).

To reduce random errors in data partitioning, 
prevent information leakage, and 

ensure algorithm stability, we used a 10-fold 
cross-validation method.32 Utilizing the “create-
MultiFolds” function from the “caret” package, 
we performed 10-fold cross validation repeated 
200 times. The dataset was randomly divided 
into 10 subsets (“folds”), with 9 subsets used for 
training and 1 subset used for testing. This pro-
cess was repeated 10 times, with each subset used 
as the test set once.32 By averaging the perfor-
mance metrics across all folds, we ensured that 
the model’s evaluation is robust and not depend-
ent on a specific data split, ultimately aiding in 
the selection of the most optimal model.

The initial training of the models was conducted 
on the training set, followed by testing the model 
performance on the test set. Each model’s perfor-
mance was assessed by calculating Harrell’s con-
cordance index (C-index), and the model with 
the highest average C-index was selected as the 
optimal model. In this study, three predictive 
models for DRE were constructed: (1) a clinical 
model, consisting solely of clinical features; (2) an 
EEG model, based solely on EEG microstate fea-
ture parameters; and (3) a CE model, combining 
clinical features with EEG microstate analysis 
feature parameters.

To compare the performance of the three predic-
tive models with other models, we retrieved pub-
lished models by searching PubMed for articles 
published. We used the following Boolean terms 
for our search: (“epilepsy” OR “seizure” OR 
“convulsion”) AND (“refractory” OR “drug-
resistant” OR “pharmacoresistant” OR “intracta-
ble” OR “drug response” OR “prognosis”) AND 
(“risk factor” OR “predictor” OR “predictive”). 
We then selected original publications that estab-
lished models relevant as comparisons to the 
three DRE predictive models.33–60

Model performance evaluation
For each model, the concordance index (C-index) 
or area under the curve (AUC) was calculated 
across all datasets, and the model boasting the high-
est average C-index or AUC was deemed the opti-
mal model. These results were then benchmarked 
against multiple existing prediction models. To 
assess the agreement between the model’s predicted 
outcomes and actual results, a calibration curve was 
plotted. Decision curve analysis (DCA) was per-
formed to evaluate the utility of these models. 
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Additionally, a nomogram and a website were 
developed to visualize the model’s structure.

Statistical analysis
All data processing, statistical analysis, and graph-
ing were conducted using R software version 
4.2.2. (R Foundation for Statistical Computing, 
https://www.r-project.org) Continuous variables 
were presented as mean ± standard deviation and 
categorical variables were presented as n (%). 
Continuous variables were tested using Student’s 
t-test or one-way ANOVA, as appropriate. 
Categorical variables were tested using the Chi-
square test or Fisher’s exact test, as appropriate. 
Feature correlations were calculated using the 
Pearson correlation coefficient, with visualization 
performed using heatmaps. The “createDataPar-
tition” function from the “caret” package was 
used to split the dataset into training and testing 
sets in a 0.5:0.5 ratio. The Receiver Operating 
Characteristic (ROC) curve for predicting binary 
classification variables was implemented using 
the “pROC” package in R software. Figures were 
drawn using the “ggplot2” and “Regplot” pack-
ages. The “shiny” package is employed to create 
a web calculator, providing users with an interac-
tive data analysis tool. The false discovery rate 
(FDR) was employed for multiple test correction. 
A p-value of <0.05 was considered statistically 
significant.

Results

Patients characteristics
A total of 226 patients were included in the study, 
including 110 males and 116 females, with an 
average age of 32.465 ± 14.166 years. The NDRE 
group consisted of 77 patients, including 39 males 
(50.65%) and 38 females (49.35%), with an aver-
age age of 32.234 ± 16.351 years. The DRE group 
consisted of 149 patients, including 71 males 
(47.65%) and 78 females (52.35%), with an aver-
age age of 32.584 ± 12.952 years.

Description of clinical features and analysis of 
EEG microstate features
The results showed no significant differences 
between the NDRE and DRE groups in terms of 
gender, age, BMI, educational level and years, 
family history of epilepsy, type of epilepsy, etiol-
ogy of epilepsy, history of status epilepticus, 

history of GTCS, nocturnal seizures, history of 
febrile seizures, MRI findings, comorbid cognitive 
disorders, and comorbid psychiatric disorders (all 
p > 0.05). However, significant differences were 
observed in the duration of epilepsy, age at onset, 
initial seizure frequency, abnormal EEG findings, 
absence epilepsy, and comorbid depression 
between the two groups (all p < 0.01), as demon-
strated in Table 1 and Figure 2. After applying the 
FDR for multiple testing correction, statistically 
significant differences in the duration of epilepsy, 
initial seizure frequency, EEG findings, absence 
epilepsy, and comorbid depression between the 
two groups were still evident.

The microstate maps were classified into four dis-
tinct categories as A, B, C, and D. Supplemental 
Figure visually presents the microstate topo-
graphic classes observed within the DRE group 
and NDRE group.

For microstates B and D, the differences in dura-
tion, frequency, and coverage between the two 
groups were statistically significant. The average 
duration, frequency, and coverage of microstate 
B in the DRE group were higher than those in the 
NDRE group. Conversely, the three indicators 
for microstate D were lower in the DRE group 
compared to the NDRE group. The duration of 
microstate C was statistically significantly shorter 
in the DRE group than in the NDRE group. For 
microstate A, the differences in duration, fre-
quency, and coverage between the two groups 
were not statistically significant (all p > 0.05). 
The TPs between the two groups were statisti-
cally significant (all p < 0.001), as demonstrated 
in Table 2 and Figure 3. After applying the FDR 
for multiple testing correction, these differences 
were still found to be statistically significant.

To investigate the correlations among feature var-
iables, we calculated the correlation coefficients 
between two groups of distinct variables and visu-
alized the results. The results are presented in 
Supplemental Figures 1 and 2.

Model establishment
We integrated 10 machine learning algorithms 
and 48 algorithm combinations. The AUC was 
computed for each algorithm. Select the algo-
rithm with the highest average AUC as the opti-
mal algorithm. The evaluation results of the 
algorithms were then visually presented using a 
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Table 1.  Baseline epilepsy patient characteristics in the DRE and NDRE groups.

Characteristic Level Overall NDRE DRE p-Adjust

n 226 77 149  

Gender (%) Female 116 (51.33) 38 (49.35) 78 (52.35) 0.7741

Male 110 (48.67) 39 (50.65) 71 (47.65)  

Age (years) 32.465 (14.166) 32.234 (16.351) 32.584 (12.952) 0.9021

BMI (kg/m2) 21.870 (3.435) 21.562 (3.045) 22.029 (3.619) 0.3435

Educational level (%) Primary 40 (17.70) 12 (15.58) 28 (18.79) 0.7478

Senior 113 (50.00) 38 (49.35) 75 (50.34)  

College or above 73 (32.30) 27 (35.06) 46 (30.87)  

Educational years 10.606 (3.629) 11.143 (3.772) 10.329 (3.534) 0.1488

Family history of epilepsy (%) No 16 (7.08) 3 (3.90) 13 (8.72) 0.2856

Yes 210 (92.92) 74 (96.10) 136 (91.28)  

Duration of epilepsy (years) 11.641 (9.792) 7.414 (7.433) 13.825 (10.164) <0.0001

Age at onset (years) 20.537 (14.912) 24.279 (16.630) 18.603 (13.600) 0.0158

Type of epilepsy (%) Focal 67 (29.65) 19 (24.68) 48 (32.21) 0.6836

Generalized 18 (7.96) 6 (7.79) 12 (8.05)  

F_to_G 29 (12.83) 11 (14.29) 18 (12.08)  

Multiple 47 (20.80) 15 (19.48) 32 (21.48)  

unknown 65 (28.76) 26 (33.77) 39 (26.17)  

Initial seizure frequency (%) Daily 23 (10.18) 0 (0.00) 23 (15.44) <0.0001

Weekly 14 (6.19) 0 (0.00) 14 (9.40)  

Monthly 55 (24.34) 4 (5.19) 51 (34.23)  

Yearly 134 (59.29) 73 (94.81) 61 (40.94)  

Etiology (%) Genetic 6 (2.65) 1 (1.30) 5 (3.36) 0.2735

Structural 65 (28.76) 21 (27.27) 44 (29.53)  

Infectious 4 (1.77) 3 (3.90) 1 (0.67)  

unknown 151 (66.81) 52 (67.53) 99 (66.44)  

History of SE (%) No 186 (82.30) 63 (81.82) 123 (82.55) 1

Yes 40 (17.70) 14 (18.18) 26 (17.45)  

History of GTCS (%) No 59 (26.11) 20 (25.97) 39 (26.17) 1

Yes 167 (73.89) 57 (74.03) 110 (73.83)  

(Continued)
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Characteristic Level Overall NDRE DRE p-Adjust

Nocturnal seizure (%) No 80 (35.40) 25 (32.47) 55 (36.91) 0.6062

Yes 146 (64.60) 52 (67.53) 94 (63.09)  

History of febrile seizure (%) No 189 (83.63) 66 (85.71) 123 (82.55) 0.6748

Yes 37 (16.37) 11 (14.29) 26 (17.45)  

EEG findings (%) Normal 27 (11.95) 18 (23.38) 9 (6.04) 0.0007

Abnormal 
background

4 (1.77) 1 (1.30) 3 (2.01)  

Epileptiform 
discharges

195 (86.28) 58 (75.32) 137 (91.95)  

MRI findings (%) Negative 157 (69.47) 57 (74.03) 100 (67.11) 0.3592

Positive 69 (30.53) 20 (25.97) 49 (32.89)  

Absence epilepsy (%) No 191 (84.51) 73 (94.81) 118 (79.19) 0.004

Yes 35 (15.49) 4 (5.19) 31 (20.81)  

Comorbid cognitive disorder (%) No 38 (16.81) 8 (10.39) 30 (20.13) 0.0952

Yes 188 (83.19) 69 (89.61) 119 (79.87)  

Comorbid psychiatric disorders 
(%)

No 8 (3.54) 1 (1.30) 7 (4.70) 0.3519

Yes 218 (96.46) 76 (98.70) 142 (95.30)  

Comorbid depression (%) No 72 (31.86) 15 (19.48) 57 (38.26) 0.0065

Yes 154 (68.14) 62 (80.52) 92 (61.74)  

DRE, drug-refractory epilepsy; EEG, electroencephalography; GTCS, generalized tonic-clonic seizures; MRI: magnetic resonance imaging;  
n, number of patients; NDRE, non-drug-refractory epilepsy group; SE, status epilepticus.

Table 1.  (Continued)

heatmap (Figure 4(a)). Interestingly, the optimal 
algorithm was a combination of Lasso and 
Stepglm (direction = both) with the highest aver-
age AUC (0.98) (Figure 4(a)).

Next, we used the combination of the Lasso and 
Stepglm [both] algorithms to train the training 
set and the test set. The first step involved vari-
able selection from numerous potential influenc-
ing factors, performed using Lasso regression. 
Lasso regression analysis relies on the selection 
of the regularization parameter lambda, which 
applies penalty terms to reduce the coefficients 
of certain variables to zero. This process achieves 
sparse selection of variables and effectively 

screens out predictive factors related to the out-
come variable.31 The optimal lambda value, 
minimizing the model’s average prediction error, 
was identified through cross validation (Figure 
4(b)). With variables selected by Lasso regres-
sion, the model was further refined using 
Stepglm [both], which determined the key  
variables for the predictive model through a 
stepwise method of adding and deleting 
variables31(Figure 4(c)).

Clinical model
A total of eight features were included in the 
model: the duration of epilepsy, initial seizure 
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frequency, EEG findings, absence epilepsy, 
comorbid psychiatric disorders, and comorbid 
depression. The C-index [95% confidence 
interval] for the training set was 0.865 [0.801–
0.929], and for the test set, it was 0.861 
[0.788–0.94].

EEG model
A total of 10 features were included in the model. 
These features consist of the durations of micro-
states A, C, and D, along with the TPs from 
microstate A to C, A to D, B to D, C to D, D to 
A, D to B, and D to C. The C-index, which 

Figure 2.  Clinical features. Compare the age at onset, duration of epilepsy, initial seizure frequency, EEG 
findings, absence epilepsy, and comorbid depression between the two groups: (a) correspond to the age at 
onset, (b) correspond to the duration of epilepsy, (c) correspond to the initial seizure frequency, (d) correspond 
to the EEG findings, (e) correspond to the absence epilepsy, and (f) correspond to comorbid depression.
DRE, drug-refractory epilepsy; EEG, electroencephalography; NDRE, non-drug-refractory epilepsy.
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measures the model’s predictive accuracy, was 
0.912 [95% confidence interval: 0.857–0.967] 
for the training set. For the test set, the C-index 
was 0.927 [95% confidence interval: 
0.872–0.981].

CE model
In the Lasso regression, the optimal lambda value 
was determined when the partial likelihood devi-
ance reached its minimum (Figure 4(b)). Ten fea-
tures with nonzero Lasso coefficients underwent 

Table 2.  Comparison of EEG microstate features between NDRE and DRE groups.

Variables Level Overall NDRE DRE p-Adjust

Microstate A Duration 114.536 (12.916) 114.440 (12.456) 114.586 (13.189) 0.9358

Coverage 28.391 (6.960) 28.807 (6.855) 28.176 (7.027) 0.5553

Frequency 3.982 (0.617) 4.054 (0.661) 3.944 (0.592) 0.2564

Microstate B Duration 104.034 (10.649) 96.671 (9.800) 107.839 (8.962) <0.0001

Coverage 23.557 (5.831) 18.170 (4.792) 26.341 (4.122) <0.0001

Frequency 3.702 (0.696) 3.109 (0.586) 4.008 (0.532) <0.0001

Microstate C Duration 101.333 (11.400) 103.460 (10.185) 100.234 (11.864) 0.0476

Coverage 21.442 (5.390) 22.335 (5.166) 20.981 (5.462) 0.0910

Frequency 3.481 (0.540) 3.553 (0.487) 3.443 (0.563) 0.1547

Microstate D Duration 110.103 (15.440) 117.878 (17.627) 106.086 (12.457) <0.0001

Coverage 26.610 (5.909) 30.689 (5.497) 24.502 (4.943) <0.0001

Frequency 3.925 (0.535) 4.216 (0.485) 3.775 (0.497) <0.0001

TP of microstates A → B 0.090 (0.027) 0.071 (0.015) 0.099 (0.026) <0.0001

A → C 0.080 (0.015) 0.084 (0.016) 0.077 (0.014) 0.0013

A → D 0.094 (0.026) 0.115 (0.027) 0.084 (0.017) <0.0001

B → A 0.089 (0.026) 0.070 (0.014) 0.098 (0.026) <0.0001

B → C 0.071 (0.016) 0.062 (0.013) 0.075 (0.016) <0.0001

B → D 0.085 (0.018) 0.076 (0.018) 0.090 (0.016) <0.0001

C → A 0.080 (0.015) 0.086 (0.017) 0.077 (0.013) <0.0001

C → B 0.070 (0.017) 0.060 (0.014) 0.075 (0.016) <0.0001

C → D 0.081 (0.023) 0.092 (0.020) 0.075 (0.022) <0.0001

D → A 0.095 (0.025) 0.114 (0.026) 0.084 (0.018) <0.0001

D → B 0.085 (0.017) 0.077 (0.017) 0.090 (0.016) <0.0001

D → C 0.081 (0.023) 0.092 (0.019) 0.075 (0.023) <0.0001

A, Microstate A; B, Microstate B; C, Microstate C; D, Microstate D; DRE, drug-refractory epilepsy; n, number of patients; NDRE, non-drug-refractory 
epilepsy group; TP, transition probabilities; →, transition probability from one microstate to another microstate.
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further analysis using Stepglm [both], resulting in 
the identification of a final set of eight features 

(Figure 4(c)). Consequently, the model included 
a total of eight features: duration of epilepsy, 

Figure 3.  EEG microstate features. Compare the duration, frequency, coverage of each microstate, and 
transition probabilities between each microstate between the two groups: (a) correspond to the duration of 
microstate B, (b) correspond to the coverage of microstate B, (c) correspond to the frequency of microstate B, 
(d) correspond to the duration of microstate D, (e) correspond to the coverage of microstate D, (f) correspond 
to the frequency of microstate D, and (g) transition probabilities between each microstate.
*p < 0.05. **p < 0.01. ***p < 0.001. ****p < 0.0001.
DRE, drug-refractory epilepsy; EEG, electroencephalography; NDRE, non-drug-refractory epilepsy.
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Figure 4.  A prediction algorithm was developed and validated via the machine learning-based integrative 
procedure. Establish three models and compare them with other models: (a) a total of 10 machine learning 
algorithms and 48 algorithm combinations. The integrative algorithms included Lasso, Ridge, Enet, Stepglm, 
SVM, glmBoost, LDA, RF, GBM, and naïve Bayes. Further calculated the AUC of each model across all 
datasets, (b) the optimal lambda was obtained when the partial likelihood deviance reached the minimum 
value, and plot a vertical dashed line at the optimal value. The optimal lambda value yielded 10 non-zero 
coefficients, (c) coefficients of eight variables were finally obtained in the Stepglm [both] model, (d) C-index 
analysis of three models and 28 published other models in the training set, and (e) C-index analysis of three 
models and 28 published other models in the test set.
*p < 0.05. **p < 0.01. ***p < 0.001. ****p < 0.0001.
AUC, area under the curve; Enet, elastic network; GBM, generalized boosted regression model; glmBoost, generalized 
linear model boosting; LDA, linear discriminant analysis; RF, random forest; Stepglm, stepwise generalized linear model; 
SVM, support vector machine.
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initial seizure frequency, EEG findings, absence 
epilepsy, comorbid depression, and the TPs of 
microstates B to A, D to A, and D to B. The 
model, which integrated clinical and EEG micro-
state information, exhibited the best performance. 
The C-index [95% confidence interval] for the 
training and test sets were 0.990 [0.978–1.000] 
and 0.969 [0.941–0.998], respectively.

Comparison of three models and other models
The C-indexes of the three models were com-
pared with other models,33–60 as detailed in Table 
3 and Supplemental Table 1. Notably, the CE 
model achieved the highest C-index on both the 
training and test sets (Figures 4(d) and (e)).

The Brier score was used to assess the accuracy of 
the probability of the best-performing model, 
defined as the mean square deviation between the 
observed and predicted outcomes. The Brier 
scores ranged from 0 to 1.00, with 0 representing 
the best calibration. The Brier scores [95% confi-
dence interval] for three models in the training set 
were 0.144 [0.109–0.179], 0.114 [0.075–0.152], 
and 0.034 [0.010–0.058]. The Brier scores [95% 
confidence interval] for three models in the test 
set were 0.144 [0.104–0.183], 0.092 [0.057–
0.127], and 0.071 [0.031–0.111]. The CE model 
had the lowest Brier score of the three models, 
closest to 0, both for the training and test sets, 
which indicates the good performance of the con-
structed prediction model. Through the calibra-
tion curve, it could be observed that the predicted 
risk aligned well with the actual risk represented 
by the reference line. This indicated that the 
model possesses good calibration capability 
(Figure 5(a) and (b)).

Then, we chose CE model as the final prediction 
model for DRE and further constructed a corre-
sponding nomogram. The total nomogram score 
was applied to obtain the sort of probability for 
predicting incident DRE. The duration of epi-
lepsy, initial seizure frequency, EEG findings, 
absence epilepsy, comorbid depression, and the 
TP of microstates B–A, D–A, and D–B were 
included in the nomogram (Figure 5(c)). When 
using the nomogram, we first needed to deter-
mine the position of different variables on their 
respective axes and then find the corresponding 
points on the top axis. After adding together the 
point values for all variables, we drew a vertical 

line downward from this total point value to pre-
dict DRE. We found that DRE was indepen-
dently associated with several factors: the duration 
of epilepsy, initial seizure frequency, comorbid 
depression, and the TPs of microstates B–A, 
D–A, as well as D–B. The AUC values for the 
three models in the training set were 0.990, 0.912, 
and 0.865, respectively (Figure 6(a)). Similarly, 
the AUC values for the three models in the test 
set were 0.969, 0.927, and 0.861, respectively 
(Figure 6(b)). DCAs (Figure 6(c) and (d)) were 
established to confirm the clinical applicability of 
the nomogram. DCA showed that the prediction 
of DRE with the nomogram provide greater net 
benefits when the threshold probability was 
>70%.

Discussion
Despite the development and availability of over 
20 different ASMs, approximately one-third of 
epilepsy patients struggle to achieve seizure con-
trol through medication.1,2 The early identifica-
tion of patients developing DRE and subsequently 
shifting their treatment approach toward more 
personalized interventions, such as ketogenic 
diet, surgical resection, and neuromodulation 
therapies,3 holds significant clinical importance. 
To address this objective, we constructed a com-
prehensive predictive model based on clinical and 
EEG microstates features. Through C-index, 
AUC, calibration curve, Brier score, and DCA, 
this model demonstrated its superior discrimina-
tive ability, calibration, and clinical applicability. 
Additionally, our study innovatively visualized 
the application of the comprehensive prediction 
model through constructing a nomogram and 
developing a web calculator (https://fydxh.shin-
yapps.io/CE_model_of_DRE/), providing a novel 
approach for rapidly obtaining real-time predic-
tions of the probability of DRE occurrence. In 
our study, a total of 45 clinical feature variables 
and EEG microstate feature variables were 
included. Correlation analysis of variables 
revealed correlations among some of them. To 
address collinearity issues and overfitting of the 
data, a combination of Lasso and Stepglm [both] 
algorithms was employed for variable selection, 
effectively resolving collinearity and interaction 
problems. Additionally, 10-fold cross validation 
was utilized to ensure the model’s generalization 
ability and accuracy. These methods contributed 
to constructing a simplified model, enhancing 
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Table 3.  Comparison of three DRE prediction models from this study with models reported in previous 
research.

Models Training set Test set

  C-index 95% CI C-index 95% CI

CE model 0.99 0.978–1.00 0.969 0.941–0.998

EEG model 0.912*** 0.858–0.966 0.927* 0.872–0.981

Clinical model 0.865**** 0.802–0.928 0.861*** 0.788–0.934

Seker Yilmaz60 0.775**** 0.702–0.849 0.824**** 0.757–0.891

Kwong33 0.772**** 0.693–0.853 0.766**** 0.685–0.847

Ohtsuka58 0.779**** 0.697–0.862 0.788**** 0.707–0.868

Wirrell59 0.603**** 0.492–0.713 0.724**** 0.623–0.824

Berg57 0.789**** 0.709–0.869 0.826**** 0.754–0.899

Sanjay56 0.575**** 0.467–0.683 0.636**** 0.529–0.744

Ramos-Lizana34 0.773**** 0.695–0.852 0.774**** 0.696–0.851

Geerts35 0.773**** 0.693–0.853 0.766**** 0.685–0.847

Tripathi36 0.782**** 0.700–0.865 0.806**** 0.729–0.884

Huang37 0.773**** 0.689–0.857 0.816**** 0.741–0.892

Saygi38 0.773**** 0.695–0.852 0.774**** 0.696–0.851

Gomez-Ibañez39 0.706**** 0.601–0.810 0.785**** 0.698–0.872

Mangunatmadja40 0.512**** 0.423–0.601 0.515**** 0.422–0.608

Roy41 0.811**** 0.732–0.889 0.878*** 0.817–0.938

Li42 0.795**** 0.711–0.879 0.808**** 0.730–0.886

Karaoğlu43 0.787**** 0.706–0.869 0.797**** 0.717–0.876

Mohammadzadeh44 0.542**** 0.477–0.607 0.555**** 0.488–0.623

Voll45 0.542**** 0.435–0.649 0.578**** 0.470–0.685

Zhang46 0.532**** 0.421–0.642 0.534**** 0.423–0.645

Boonluksiri47 0.635**** 0.530–0.741 0.747**** 0.654–0.840

Orozco-Hernández48 0.509**** 0.443–0.575 0.483**** 0.401–0.565

Zhong49 0.630**** 0.550–0.709 0.557**** 0.471–0.644

Tokatly Latzer50 0.603**** 0.492–0.714 0.624**** 0.512–0.737

Callaghan51 0.659**** 0.549–0.769 0.750**** 0.660–0.841

Wang55 0.802**** 0.721–0.883 0.874*** 0.812–0.936

Abokrysha52 0.570**** 0.476–0.663 0.567**** 0.472–0.661

Yu53 0.591**** 0.479–0.703 0.607**** 0.493–0.722

Kamitaki54 0.612**** 0.507–0.718 0.648**** 0.541–0.755

*p < 0.05. **p < 0.01. ***p < 0.001. ****p < 0.0001.
CE model, clinical + EEG comprehensive predictive model; C-index, concordance index; 95% CI, 95% confidence interval; 
DRE, drug-refractory epilepsy; EEG model, EEG microstate model; EEG, electroencephalography.
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model interpretability, and optimizing overall 
performance.31,32

Kuzmanovski et al.61 indicated that a longer 
duration of epilepsy is associated with an 
increased likelihood of drug resistance. 
Consistent with this observation, our study 
reports that patients diagnosed with DRE expe-
rienced epilepsy for an average of 6 years longer 
than those in the NDRE group. This further 
confirms that an extended duration of epilepsy 

may increase the incidence of DRE. This 
increase could be associated with the heightened 
complexity of treatment and the broader variety 
of ASMs used as the duration of epilepsy extends. 
A meta-analysis conducted in 2019 revealed that 
EEG abnormalities, including slow waves and 
epileptiform discharges, are predictive factors 
for DRE.62 Additionally, focal slowing in EEG 
has been demonstrated as a clinical risk factor 
that predicts DRE in children with cerebral 
palsy.50 In this study, compared to the NDRE 

Figure 5.  Establishment of nomograms for predicting patients with DRE: (a) calibration curve of the three 
models in the training set, (b) calibration curve of the three models in the test set, and (c) Nomogram for 
predicting patients with DRE using the duration of epilepsy, initial seizure frequency, EEG findings, absence 
epilepsy, comorbid depression, and the transition probability of microstates B–A, D–A, and D–B.
*p < 0.05. **p < 0.01.
DRE, drug-refractory epilepsy; EEG, electroencephalography.
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group, the DRE group exhibited a higher pro-
portion of EEG with abnormal background and 
epileptiform discharges, consistent with the 
results of previous studies. This suggests that 
EEG abnormalities may serve as an indicator of 
the occurrence of DRE. The initial seizure fre-
quency is considered a strong and independent 
factor in predicting the development of DRE.37,45 
Furthermore, a high seizure frequency indicates 
a more severe disease condition and suggests a 
more severe form of epilepsy.43 In our study, the 
DRE group had a higher initial seizure fre-
quency, consistent with the results of previous 
studies. This could be due to the loss of neurons 
in the hippocampus and the sprouting of mossy 
fibers caused by repeated seizures, potentially 

leading to the formation of recurrent excitatory 
circuits, thereby promoting the occurrence of 
DRE.43

Psychological disorders are common comorbidi-
ties in patients with epilepsy, involving a range of 
complex neurobiological mechanisms.63 Among 
these, depression is the most prevalent,64 and the 
coexistence of depression is significantly associ-
ated with an increased risk of developing DRE.65 
In studies of patients with refractory epilepsy, 
about 30% of those with DRE also suffer from 
depression, with a prevalence rate of approxi-
mately 35% in this specific population.22,64 This 
rate is significantly higher than the prevalence of 
depression in the general population, 

Figure 6.  The ROC curves and DCA demonstrated the accuracy and clinical applicability of these prediction 
models: (a) ROC curve for the three models in the training set, (b) ROC curve for the three models in the test 
set, (c) decision curve for the three models in the training set, and (d) decision curve for the three models in 
the test set.
DCA, decision curve analysis.
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underscoring the importance of identifying and 
treating depressive disorders in patients with 
DRE.22 In our study, the occurrence of comorbid 
depression was higher among patients with DRE 
compared to those without DRE, consistent with 
past research, and further highlighted the signifi-
cance of coexisting depression in the development 
of DRE. Kamitaki et al.54 suggested that absence 
seizures serve as an independent risk factor for 
DRE. In our study, we found a higher proportion 
of absence seizures in the DRE group. The pres-
ence of absence seizures may increase the risk of 
developing DRE. However, further research is 
needed to explore the exact association between 
absence seizures and drug-resistant epilepsy.

Recent studies have highlighted the significant 
potential of EEG microstates in epilepsy and its 
treatment.66,67 Jiang et al.66 found that patients with 
idiopathic generalized epilepsy (IGE) who experi-
enced seizures in the past 6 months showed higher 
frequencies and coverage of microstate A and lower 
of microstate C, with no significant differences in 
microstates B and D. Sun et al.67 observed signifi-
cant changes in the temporal characteristics of the 
four typical EEG microstates in patients with tem-
poral lobe epilepsy and depression. Microstate A is 
associated with brain activity in the temporal cortex 
and left insula.14 Microstate B is related to the vis-
ual network,14 and an increase in the average dura-
tion of microstate B has been found to be associated 
with cognitive fatigue.14 Alzheimer’s disease (AD) 
and bipolar affective disorder are the most typical 
examples, with patients of both diseases showing 
increased connectivity in the auditory and visual 
networks, and cognitive impairment leading to a 
more visual-oriented brain activity.68 In our study, 
DRE group showed increased average duration, 
frequency, and coverage of microstate B, while 
these parameters of microstate D decreased. 
Moreover, the TP from microstate D to B increased, 
consistent with previous studies. This result may 
reflect cognitive impairment in DRE patients due 
to uncontrolled long-term seizure activity, prompt-
ing a shift in brain activity toward visual functional 
areas. It is speculated that the frequent occurrence 
of microstate B in DRE patients may come at the 
expense of microstate D.14

Research indicates that microstate C is associated 
with the salience network, and a decrease in the 
frequency of microstate C may result from declin-
ing cognitive levels, cognitive fatigue, and epileptic 
seizures.69 In our study, the duration of microstate 

C decreased in the DRE group, consistent with 
previous research, which may suggest obstacles in 
the patients’ cognitive-emotional assessment of the 
environment.69 Abnormalities in microstate D are 
associated with decreased attention, and the sever-
ity of the condition is negatively correlated with the 
average duration and frequency of microstate D.70 
Baldini et al.71 reported a decrease in duration, 
coverage, and frequency of microstate D in patients 
with temporal lobe epilepsy, a trend also observed 
in our study, indicating potential attention deficits 
in patients with DRE. The TPs between EEG 
microstates are non-random and hold potential 
importance for understanding brain dynamics. 
Our study showed increased TPs (B–A, D–B) in 
the DRE group compared to the NDRE group, 
with lower transitions from D to A in the DRE 
group. These differences may reflect fundamental 
distinctions in brain activity patterns between 
patients with DRE and NDRE, implying different 
neural network dynamics and brain connectivity 
patterns. When combined with our previous asser-
tion that cognitive dysfunction (reduced micro-
state D, increased D to B transitions) could 
enhance the functionality of microstate B, we can 
hypothesize that increased TPs from B to A may 
result from disease-induced dysfunctional connec-
tivity between neural networks. This contrast with 
alterations in TPs from D to A and D to B could 
potentially enhance connectivity between micro-
states A and B, thereby increasing TPs.70 These 
findings imply that the TPs between different 
microstates can all serve as important reference 
indicators for evaluating DRE. Future research 
should focus on exploring the relationship between 
these changes in microstate TPs and susceptibility 
to epileptic seizures, drug responsiveness, and 
brain network function.

Limitations
Our study has several limitations. First, the retro-
spective nature of the study introduces selection 
bias. To address this issue, future prospective 
studies are necessary. Second, our study lacks a 
formal power analysis for sample size calculation. 
Future studies should include a formal power 
analysis to determine the optimal sample size. 
Additionally, the sample size is small and limited 
to Asian individuals, which may affect the gener-
alizability of our findings. Larger and multicenter 
studies involving diverse populations are needed. 
In addition, we selected other models from the 
PubMed database to compare with the three 
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DRE prediction models, which may introduce 
selection bias. Finally, future research should 
focus on implementing these markers in clinical 
practice to establish accurate models for predict-
ing DRE.

Conclusion
Our research shows that predicting DRE is pos-
sible using a comprehensive model that combines 
clinical and EEG microstate features. More eval-
uation is needed to determine its applicability in 
clinical settings.
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