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Abstract: The aim of this study was to examine whether rubrofusarin, an active ingredient of the Cassia
species, has an antidepressive effect in chronic restraint stress (CRS) mouse model. Although acute
treatment using rubrofusarin failed, chronic treatment using rubrofusarin ameliorated CRS-induced
depressive symptoms. Rubrofusarin treatment significantly reduced the number of Fluoro-Jade
B-positive cells and caspase-3 activation within the hippocampus of CRS-treated mice. Moreover,
rubrofusarin treatment significantly increased the number of newborn neurons in the hippocampus
of CRS-treated mice. CRS induced activation of glycogen synthase kinase-3β and regulated
development and DNA damage responses, and reductions in the extracellular-signal-regulated
kinase pathway activity were also reversed by rubrofusarin treatment. Microglial activation
and inflammasome markers, including nod-like receptor family pyrin domain containing 3 and
adaptor protein apoptosis-associated speck-like protein containing CARD, which were induced by
CRS, were ameliorated by rubrofusarin. Synaptic plasticity dysfunction within the hippocampus
was also rescued by rubrofusarin treatment. Within in vitro experiments, rubrofusarin blocked
corticosterone-induced long-term potentiation impairments. These were blocked by LY294002,
which is an Akt inhibitor. Finally, we found that the antidepressant effects of rubrofusarin were
blocked by an intracerebroventricular injection of LY294002. These results suggest that rubrofusarin
ameliorated CRS-induced depressive symptoms through PI3K/Akt signaling.

Keywords: rubrofusarin; depressive disorder; chronic restraint stress; neuroinflammation; Akt;
synaptic plasticity

1. Introduction

Exposure to stress is known to affect various brain functions [1,2]. For instance, acute stress
induces norepinephrine and glucocorticoid release from the adrenal glands, causing bodily changes,
allowing individuals to adaptively respond to the stressor [3–5]. However, the experience of chronic
stress is believed to be involved in the onset of depression [6,7]. Constant feelings of low self-esteem
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and anhedonia are the main symptoms of depression. Different forms of stress can induce different
depression conditions [8,9]. Although the exact mechanisms underlying the onset of depression
are unknown, many drugs for patients with depression were developed based on the theory
that levels of monoamine neurotransmitters are low in these patient’s brains [10,11]. However,
current antidepression drugs not only are not fully effective for patients but also possess severe side
effects [12–14]. Thus, developing antidepressants is of importance.

Monoamine neurotransmitters, including serotonin, dopamine, and norepinephrine, are involved
in various psychological aspects such as mood, emotion, arousal, and compensation. Insufficient levels
of monoamine neurotransmitters are related to the pathophysiology underlying depression [15,16].
Most frequently prescribed antidepressants currently include Prozac (fluoxetine) and Zoloft (sertraline).
These are selective serotonin reuptake inhibitors which were developed based on the monoamine
theory, where other food and drug administration (FDA)-approved antidepressants are also based
on the monoamine theory. However, these antidepressants have various side effects such as nausea,
loss of sexual desire, and insomnia [17]. Moreover, studies revealed that antidepressants reduce
depressive symptoms in 50% of patients and prevent relapses in 23% of patients [18]. Therefore,
new antidepressants should be developed for better treatment efficacy.

Rubrofusarin, which is isolated from the Cassia species, is a member of the class of
benzochromenones. Rubrofusarin has been reported to have anticancer, antibacterial, and antioxidant
effects [19–21]. Recently, we found that rubrofusarin prevents amyloid-β (Aβ) aggregation and
improves Alzheimer’s disease-like dementia [22]. Moreover, recent studies reported that rubrofusarin
inhibits monoamine oxidase-A, which can degrade norepinephrine, serotonin, and dopamine, with
good blood–brain barrier penetration value [23]. These suggest that rubrofusarin may increase
monoamine neurotransmitter levels in the brain and demonstrate antidepressant-like effects. Thus,
this study aimed to test the effects of rubrofusarin on the onset of depressive symptoms in a chronic
restraint stress-induced depression-like model and mode of action.

2. Results

2.1. Chronic Rubrofusarin Administration Ameliorated Chronic Restraint Stress (CRS)-Induced Depressive
Symptoms

To examine the effect of rubrofusarin (RF, Figure 1A) on CRS-induced depressive symptoms,
we administered rubrofusarin to mice 1 h before the restraint stress for 11 days. Mice experienced
restraint stress for 4 h a day for 11 days (Figure 1B). To test the effect of rubrofusarin on CRS-induced
cognitive dysfunction, an object recognition test was conducted. During a habituation session, the
CRS-treated group showed significantly shorter exploration time in the center zone of the open field
compared to control group. This suggested that CRS increased anxiety. RF (30 mg/kg) or fluoxetine
(FLX, 10 mg/kg)-treated CRS groups showed no significant changes in the time spent in the center
zone compared to the control group (F4,45 = 5.619, p < 0.05, n = 10/group, Figure 1C), suggesting
reductions in anxiety. During the training session, there were no significant differences in the total
exploration time for the two objects between groups (F4,45 = 0.475, p > 0.05, n = 10/group, Figure 1D).
During the test session, the CRS group showed a significantly lower discrimination index compared
to the control group, suggesting potential impairment in recognition memory. RF (30 mg/kg) or FLX
(10 mg/kg)-treated CRS groups showed significantly higher discrimination ratios compared to the CRS
group (F4,45 = 5.648, p < 0.05, n = 10/group, Figure 1E). During the forced swimming test for testing
levels of depression, the CRS group showed significantly higher immobility time compared to the
control group. RF (30 mg/kg) or FLX (10 mg/kg)-treated CRS groups showed significant reductions
in immobility time compared to the CRS group (F4,45 = 3.733, p < 0.05, n = 10/group, Figure 1F).
These behavioral results suggest that RF reduced CRS-induced depressive symptoms including anxiety,
memory impairments, and overall levels of depression.
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Figure 1. Effect of rubrofusarin on depressive symptoms: Restraint stress (4 h per day) was treated 
for 11 days. Rubrofusarin (10 or 30 mg/kg) or fluoxetine (10 mg/kg) was administered to mice 1 h 
before the restraint stress treatment. (A) Structure of rubrofusarin. (B) Schematic diagram of 
experimental schedule. (C) Time spent in the center of an open field in the habituation trial of object 
recognition test. (D) Total exploration time for objects in training trial of object recognition test. (E) 
Discrimination ration in the test trial of an object recognition test. (F) Immobility time in forced 
swimming test. Data represented as mean ± SD with raw data. *p < 0.05. 

  

Figure 1. Effect of rubrofusarin on depressive symptoms: Restraint stress (4 h per day) was treated for
11 days. Rubrofusarin (10 or 30 mg/kg) or fluoxetine (10 mg/kg) was administered to mice 1 h before
the restraint stress treatment. (A) Structure of rubrofusarin. (B) Schematic diagram of experimental
schedule. (C) Time spent in the center of an open field in the habituation trial of object recognition
test. (D) Total exploration time for objects in training trial of object recognition test. (E) Discrimination
ration in the test trial of an object recognition test. (F) Immobility time in forced swimming test.
Data represented as mean ± SD with raw data. * p < 0.05.
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2.2. Chronic Rubrofusarin Administration Rescued CRS-Induced Hippocampal Neuronal Damage

Previous reports indicated that CRS causes neurodegeneration in the hippocampus [24]. To test
whether RF rescues CRS-induced neuronal cell death, we conducted Fluoro Jade-B (FJB) staining
(Figure 2A). Mice were sacrificed 1 h after the forced swimming test (FST) test for FJB staining.
The CRS-treated group showed significantly more FJB-positive cells in the hippocampal dentate gyrus
(DG) region (p < 0.05). RF (30 mg/kg) or FLX (10 mg/kg) treatment blocked the increase of FJB-positive
cells by CRS (F4,20 = 41.01, p < 0.05, n = 5/group, Figure 2B). The FJB results suggest that RF blocked
CRS-induced neuronal cell death in the hippocampus.
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Figure 2. Effect of rubrofusarin on neurodegeneration: (A) Photomicroscopic image of Fluoro Jade-B
(FJB)-positive cells in the dentate gyrus region. (B) Quantitative analysis of the number of FJB-positive
cells in the dentate gyrus region. Data are represented as mean ± SD with raw data. * p < 0.05.

2.3. Chronic Rubrofusarin Administration Blocked CRS-Induced Reduction of Adult Neurogenesis

Various animal models and patients with major depressive disorders show reductions in adult
neurogenesis within the hippocampus [25]. To test whether rubrofusarin ameliorates reductions in
neurogenesis using the CRS model, we measured doublecortin-positive cells in the hippocampus.
Mice were sacrificed 1 h after the FST test for doublecortin immunostaining. The CRS-treated group
showed significant reductions in the number of doublecortin-positive cells in the DG region of the
hippocampus (p < 0.05, Figure 3A,B). RF treatment ameliorated this reduction in a dose-dependent
manner (F4,20 = 9.615, p < 0.05, n = 5/group, Figure 3B). FLX also ameliorated the reduction in the
number of doublecortin-positive cells in CRS-treated mice (p < 0.05, Figure 3A,B).
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Figure 3. Effect of rubrofusarin on adult neurogenesis: (A) Photomicroscopic image of doublecortin-
positive cells in the dentate gyrus region. Bar = 100 µm. (B) Quantitative analysis of the number of 
doublecortin-positive cells in the dentate gyrus region. Data represented as mean ± SD with raw data. 
*p < 0.05. 

2.4. Chronic Rubrofusarin Administration Blocked CRS-Induced Neuroinflammation 

Inflammation within the CNS is a component of depression [26,27]. Therefore, we observed the 
effect of RF on CRS-induced neuroinflammation. It was found that CRS induced microglial activation 
in the hippocampus (Figure 4A,B). RF (30 mg/kg) and FLX (10 mg/kg) significantly suppressed CRS-
induced microglial activation (F4,15 = 6.367, p < 0.05, n = 4/group, Figure 4B). The 
immunohistochemical result suggests that RF blocked CRS-induced neuroinflammation. 

Figure 3. Effect of rubrofusarin on adult neurogenesis: (A) Photomicroscopic image of
doublecortin-positive cells in the dentate gyrus region. Bar = 100 µm. (B) Quantitative analysis of the
number of doublecortin-positive cells in the dentate gyrus region. Data represented as mean ± SD with
raw data. * p < 0.05.

2.4. Chronic Rubrofusarin Administration Blocked CRS-Induced Neuroinflammation

Inflammation within the CNS is a component of depression [26,27]. Therefore, we observed
the effect of RF on CRS-induced neuroinflammation. It was found that CRS induced microglial
activation in the hippocampus (Figure 4A,B). RF (30 mg/kg) and FLX (10 mg/kg) significantly
suppressed CRS-induced microglial activation (F4,15 = 6.367, p < 0.05, n = 4/group, Figure 4B).
The immunohistochemical result suggests that RF blocked CRS-induced neuroinflammation.

2.5. Chronic Rubrofusarin Administration Blocked CRS-Induced Synaptic Dysfunctions

Synaptic dysfunctions in the brain of patients with depression were reported [28]. Therefore,
we tested the effect of RF on synaptic dysfunction in the CRS-treated depression model. Long-term
potentiation (LTP) was significantly reduced in the hippocampus of the CRS-treated group (p < 0.05,
Figure 5A). This reduction was ameliorated by RF (Figure 5B,C) or FLX (Figure 5D) treatment (p < 0.05).
These results suggest that RF blocked CRS-induced synaptic deficits.
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Figure 5. Effect of rubrofusarin on synaptic deficit: Long-term potentiation in the Schaffer-collateral
pathway was induced by 2 trains of theta burst stimulation (TBS, 5 trains of 4 pulses at 100 Hz) after 30
min stable baseline. (A) Normalized Field excitatory postsynaptic potential (fEPSP) slop of control and
chronic restraint stress (CRS) group for 90 min. (B) Normalized fEPSP slop of CRS + rubrofusarin (10
mg/kg) group for 90 min. (C) Normalized fEPSP slop of control and CRS + rubrofusarin (30 mg/kg)
group for 90 min. (D) Normalized fEPSP slop of CRS + fluoxetine (10 mg/kg) group for 90 min. Data
represented as mean ± SD.
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2.6. Rubrofusarin Blocked Corticosterone-Induced LTP Impairment Through Regulating the Akt Signaling

To examine the underlying mechanism of rubrofusarin, we tested rubrofusarin in
corticosterone-induced LTP impairments in the acute hippocampal slices (Figure 6A). Corticosterone
(CORT, 1µM) suppressed Theta burst stimulation (TBS)-induced LTP induction (Figure 6B,G). RF (30 and
100 µM) blocked this CORT-induced LTP deficit in a concentration-dependent manner (F5,27 = 7.453,
p < 0.05, n = 5–6/group, Figure 6C–G). Moreover, suppression of Akt signaling with LY294002 but not
ERK signaling with U0126 blocked the effect of RF (p < 0.05, Figure 7A–D). These results suggest that
Akt signaling might be required for the effect of RF on CORT-induced LTP impairment.Int. J. Mol. Sci. 2020, 21, x 8 of 19 
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Figure 6. Effect of rubrofusarin on corticosterone-induced synaptic deficit: (A) Schematic diagram of
experimental schedule. Hippocampal slices were treated with rubrofusarin (RF) from 30 min before
corticosterone (CORT) treatment. HFS was delivered to the slices 30 min after the CORT treatment.
(B) Normalized fEPSP slop of control and CORT (1 µM) group for 80 min. (C) Normalized fEPSP slop
of CORT + RF (3 µM) group for 80 min. (D) Normalized fEPSP slop of CORT + RF (10 µM) group for
80 min. (E) Normalized fEPSP slop of CORT + RF (30 µM) group for 80 min. (F) Normalized fEPSP
slop of CORT + RF (100 µM) group for 80 min. Data represented as mean ± SD. (G) Normalized fEPSP
slop of each group during last 10 min. Data represented as mean ± SD with raw data. * p < 0.05.
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Figure 7. The role of Akt/GSK-3β signaling in the effect of rubrofusarin synaptic deficit:
(A) Hippocampal slices were co-treated with rubrofusarin (RF) and inhibitors. Corticosterone (1 µM,
CORT) was introduced to the slices 30 min after RF treatment. Theta burst stimulation (TBS, 5 trains
of 4 pulses at 100 Hz) was delivered to the slices 30 min after the CORT treatment. (B) Normalized
fEPSP slop of CORT + RF (30 µM) and CORT group for 80 min. (C) Normalized fEPSP slop of CORT +

RF (30 µM) + U0126 (50 µM) group for 80 min. (D) Normalized fEPSP slop of CORT + RF (30 µM) +

LY294002 (50 µM) group for 80 min. Data represented as mean ± SD.

2.7. Akt Signaling Was Required for the Antidepressive Effect of Rubrofusarin

To test whether Akt/glycogen synthase kinase-3 (GSK-3) signaling is involved in the antidepressive
effects of rubrofusarin, LY294002 (LY) was injected into the third ventricle through the cannulae to
block Akt/GSK-3-signaling. Neither treatments affected total exploration time during training session
of the object recognition test (F4,45 = 2.419, p > 0.05, n = 10/group, Figure 8A). The effect of RF on
stress-induced decreases of the discrimination ratio was blocked with LY (F4,45 = 24.77, p < 0.05,
n = 10/group, Figure 8B). The effect of RF on stress-induced reductions in time spent in the center zone
of the open field was also blocked by LY (F4,45 = 75.53, p < 0.05, n = 10/group, Figure 8C). In terms of
immobility time during the forced swimming test, LY blocked the effect of RF, as well (F4,45 = 11.60,
p < 0.05, n = 10/group, Figure 8D). These behavioral results suggest that the antidepressive effect of RF
might require activation of Akt/GSK-3 signaling.
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Figure 8. Effect of LY294002 on the effect of rubrofusarin on depressive symptoms: Mice were treated
with LY204002 (1 nmol, 3 µL, intracerebroventricular injection (i.c.v.)) 30 min before rubrofusarin
treatment. Rubrofusarin was administered to mice 1 h before restraint stress protocol. (A) Total
exploration time for objects in training trial of object recognition test. (B) Discrimination ration in test
trial of object recognition test. (C) Time spent in center of open field in the habituation trial of object
recognition test. (D) Immobility time in forced swimming test. Data represented as mean ± SD with
raw data. * p < 0.05.

To test whether Akt/GSK-3-signaling is also required for the effects of rubrofusarin on
stress-induced synaptic deficits, LTP in the hippocampus was measured (Figure 9A–F). LY treatment
blocked RF-restoring LTP impairment in the stress-treated hippocampus (F4,25 = 7.738, p < 0.05, n = 7
(7 slices from 3–4 mice)/group, Figure 9A–F).
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in the Schaffer-collateral pathway was induced by theta burst stimulation (TBS, 5 trains of 4 pulses
at 100 Hz) after 30 min stable baseline. (A) Normalized fEPSP slop of normal group for 90 min.
(B) Normalized fEPSP slop of CRS (stress) group for 90 min. (C) Normalized fEPSP slop of stress +

RF (30 mg/kg) group for 90 min. (D) Normalized fEPSP slop of stress + LY294002 (LY, 1 nmol, 3 µL,
i.c.v.) group for 90 min. (E) Normalized fEPSP slop of stress + RF (30 mg/kg) + LY (1 nmol, 3 µL, i.c.v.)
group for 90 min. Data represented as mean ± SD. (F) Normalized fEPSP slop of each group during
last 10 min. Data represented as mean ± SD with raw data. * p < 0.05.

3. Discussion

In the present study, we found that chronic treatment of rubrofusarin ameliorated CRS-induced
depressive symptoms. Rubrofusarin blocked CRS-induced neurodegeneration and reduction in
neurogenesis within the hippocampus. CRS-induced neuroinflammation was blocked by rubrofusarin.
Dysfunctions in hippocampal synaptic plasticity were also rescued by rubrofusarin treatment. Within
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the in vitro experiments, rubrofusarin blocked corticosterone (CORT)-induced LTP impairments
through regulating Akt signaling. Additionally, Akt inhibition blocked rubrofusarin-ameliorated
CRS-induced depressive symptoms.

Stress is thought to be a major environmental trigger for individuals with clinical depression [29,30].
Stress can stimulate release of norepinephrine and glucocorticoid from the adrenal glands, which
induce stress-related coping responses [31,32]. However prolonged stress, which can induce constant
high levels of blood glucocorticoid and long-term stimulation in nervous system by norepinephrine,
can cause harmful effects in the brain [33,34]. Pharmacological long-term elevations in corticosterone
can induce depressive symptoms including depressive behaviors and neurochemical changes in
mice. Glucocorticoid receptor (GR) antagonist blocked stress-induced depressive symptoms [35,36].
However, direct regulation of steroid receptors may cause unpredictable side effects including abnormal
negative feedback of steroid hormones.

Chronic stress induced neuronal degeneration [37,38]. Although the precise mechanism is not clear,
prolonged increases of corticosterone levels may induce abnormal activation of the N-methyl-d-aspartate
receptor (NMDAR), which can increase intracellular Ca2+ levels [39,40]. Increased intracellular Ca2+

levels may activate caspase-3 through calpain, a Ca2+-sensing protease [41,42], thereby triggering
neuronal death signals. In the present study, we found that CRS induced neuronal degeneration in the
hippocampal DG region. Moreover, CRS increased active-caspase-3 levels in the hippocampus. These
results suggest that CRS may induce neuronal degeneration and that this might be related to caspase-3
activation in the hippocampus. Rubrofusarin blocked CRS-induced neuronal degeneration.

Neurogenesis is believed to be the mechanism underlying learning and memory in the
hippocampus [43,44]. Neurogenesis is decreased in various animal models of depression and within
the depressed patient’s brain [45,46]. Chronic stress can suppress neurogenesis through suppression
of phosphoinositide 3-kinases (PI3K)/Akt signaling [47]. Activation of GSK-3β is also involved in
stress-related suppression of neurogenesis [48,49]. Lithium, a GSK-3 inhibitor, showed antidepressive
effects and restored neurogenesis [50]. Moreover, many FDA-approved antidepressants including
fluoxetine and venlafaxine also restored suppressed neurogenesis in depression models, suggesting
that regulation of neurogenesis is an important action of antidepressants [51]. In the present study, we
found that CRS suppressed neurogenesis and that rubrofusarin blocked this in the hippocampus.

Neuroinflammation is additionally a major underlying mechanism of depression. Chronic
stress-activated microglia have been studied as key mediators for the onset of brain diseases [52,53].
Recent studies show that the nod-like receptor family pyrin domain containing 3 (NLRP3)
inflammasome is upregulated in microglia and may play an important role in depression [54].
Moreover, studies show NLRP3 inflammasome activation in animal models of depression [55] as
well as in patients with depression [56]. Silymarin showed antidepressive effects through regulation
of NLRP3 inflammasome activation [57,58]. P2X7 receptor and NLRP inflammasome activation
in the hippocampus were involved in chronic stress-induced onset of depressive symptoms [58].
Glucocorticoid-induced NLRP3 inflammasome activation in the hippocampal microglia might mediate
chronic stress-induced depressive symptoms [55]. These suggest that the NLRP3 inflammasome
might be a novel target for antidepressants. In the present study, CRS induced microglial activation
and increased NLRP3 inflammasomes in the hippocampus. Rubrofusarin suppressed CRS-induced
these neuroinflammation.

Recently, it was found that corticosterone suppressed hippocampal synaptic plasticity through
activation of caspase-3 [59]. Chronic glucocorticoid receptor (GR) activation may induce synaptic
depression through caspase-3 activation, which might be mediated by abnormal activation of
NMDAR [60,61]. GR-induced synaptic depression may be a phenomenon of the depressed
brain [6,62,63]. Antidepressants ameliorated this synaptic depression through various mechanisms.
In the present study, CRS caused synaptic deficits in the hippocampus. Oral administration of
rubrofusarin blocked CRS-induced synaptic deficits. Moreover, corticosterone, by itself, caused
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synaptic deficits within the hippocampal slices. Rubrofusarin ameliorated corticosterone-induced
synaptic deficits through regulation of Akt/GSK-3β signaling.

Rubrofusarin blocked various CRS-induced depressive symptoms including behavioral and
synaptic deficits and neuroinflammation. These results may indicate that rubrofusarin has
antidepressive, anti-neurodegenerative, and anti-neuroinflammation effects. Otherwise, rubrofusarin
may act as a blocker of upper stream signals, which are activated by CRS, such as GR [64,65].
In the present study, we found that Akt/GSK-3β signaling is implicated in the various effects of
rubrofusarin. GR activation can suppress Akt, resulting in GSK-3β activation [59,66]. Activation
of GSK-3β is implicated in neurogenesis [67], synaptic deficits [68], and neuroinflammation [69].
Therefore, rubrofusarin inhibited GSK-3β resulting in amelioration of various symptoms including
neurogenesis, synaptic deficits, and neuroinflammation.

In conclusion, rubrofusarin blocked CRS-induced onset of depressive disorder through inhibiting
Akt-relating signaling. These results suggest that rubrofusarin may be a needed compound for
developing antidepressant. However, we still do not know whether rubrofusarin inhibits Akt activity
directly or indirectly. To elucidate this, further study will be needed.

4. Materials and Methods

4.1. Animals

CD-1 mice weighing 25–30 g (male, 6-week-old) were purchased from Samtako (Osan, Korea).
The mice were habituated to the living environment for 1 week before each experiment. Five mice
were housed in one cage and were provided water and food ad libitum (temperature, 23 ± 1 ◦C;
humidity, 60 ± 10%) under a 12 h illumination cycle (lights on from 07:30 to 19:30). Animal treatments
and maintenance were carried out in accordance with the Animal Care and Use Guidelines issued
by Dong-A University, Republic of Korea. All experimental protocols using mice were approved
by the Institutional Animal Care and Use Committee of Dong-A University (approval number,
DIACUC-approve-19-33, 10/12/2019).

4.2. Restraint Stress

Using clear plastic tube (3 cm in diameter and 10 cm in length) having many holes for ventilation,
restraint stress was introduced to mice for 4 h per day for 11 days restraint from 10:00 a.m. to 2:00 p.m.
Mice are able to move anterior limbs and the head but not the body. The control group (nonrestraint
mice) stayed in the home cages until the object recognition test started. Behavioral tests were started 1
h after the 4-h period of restraint stress.

4.3. Objective Recognition Memory Test

Habituation of mice to open field (cube shape with 25 cm3) was conducted for 10 min. During
habituation, time spent in center (5 cm × 5 cm) was measured for analyzing anxiety state of the mice.
Thirty minutes later, mice were placed in the same open field with two same objects (two glass boxes).
Total exploration time was measured during training. After 24 h, mice were return to the same open
field for testing. The two different objects (glass box and crystal cylinder) were again present. Mice
were allowed to freely explore the environment and the objects for 5 min. Total time spent exploring
the novel (Tnovel) and familiar (Tfamiliar) objects were measured. Discrimination ratio was calculated
by the following formula: Tnovel − Tfamiliar/(Tnovel + Tfamiliar).

4.4. Forced Swimming Test

Using a clear glass cylinder (25 cm in height and 14 cm in diameter) containing water (24 ± 2 ◦C),
the forced swimming test was performed for 6 min in a dim environment. Their immobility times were
recorded using the video-based Ethovision System (Noldus Information Technology B.V., Wageningen,
Netherlands) during the last 4 min of the 6 min test.
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4.5. Tissue Slices Preparation

Mice were anesthetized using isoflurane (3%) immediately after the forced swimming test.
Transcardial perfusion was conducted with 100 mM phosphate buffered saline (PBS, pH 7.4) followed
by ice-cold 4% paraformaldehyde. Then, isolated brains were postfixed in PBS containing 4%
paraformaldehyde for 12 h. Then, the brains were stored in a sucrose solution (30% in 50 mM PBS,
4 ◦C). Coronal sections including the hippocampus were stored in a storage solution at 4 ◦C.

4.6. Floro-Jade B Staining

Fluoro-Jade B staining was conducted to label degenerating cells. Coronal sections mounted on
gelatin-coated slide glass were incubated in 0.06% potassium permanganate for 15 min. The sections
were rinsed for 1 min in distilled water (DW) and then incubated in the Fluoro-Jade B staining
solution (0.0001% wt/vol in distilled water containing 0.1% acetic acid) for 30 min and rinsed
with DW for 3 times. The slides were incubated in 100% of xylene and then coverslipped with
Dibutylphthalate Polystyrene Xylene mounting media (Sigma-Aldrich, Saint Louis, MO, USA). The
number of Fluoro-Jade–B-positive cells in the hippocampal dentate gyrus was measured. Only positive
neurons with a near-complete cell body shape and size were counted. Cell counts were expressed as
the total number of Fluoro-Jade-positive cells per section.

4.7. Immunohistochemistry

Primary antibodies including goat anti-doublecortin or rat anti-iba-1 antibody (1:1000 dilution)
were mixed with 0.3% Triton X-100 and 1.5% normal serum. Free-floating sections were incubated for
24 h in PBS (4 ◦C) containing primary solution. After washing, the sections were treated with biotinylated
secondary antibody (1:1000 dilution) for 90 min and then incubated in an avidin–biotin–peroxidase
complex (1:100 dilution, 1h, room temperature). After washing, the sections were incubated in 3,
3′-diaminobenzidine solution (0.02% in DW containing 0.01% H2O2, 3 min). Finally, the sections were
mounted on gelatin-coated slides. Then the slides were dehydrated in an ascending alcohol series
(75%, 90%, 95%, and 100%) and cleared in xylene. Only near-complete cell body shape and size were
counted. Cell counts were expressed as the total number of doublecortin-positive cells per section.
Iba-1-immunopositive area was analyzed with ImageJ software.

4.8. Hippocampal Slices Preparation and Electrophysiology

Artificial cerebrospinal fluid (ACSF) is composed with NaCl (124 mM), KCl (3 mM), NaHCO3

(26 mM), NaH2PO4 (1.25 mM), CaCl2 (2 mM), MgSO4 (1 mM), and d-glucose (10 mM). We rapidly
isolated the hippocampus and submerged it in chilled ACSF. For tissue slicing, we used McIlwain
tissue chopper; 400-µm-thick hippocampal slices were incubated in ACSF (20–25 ◦C, 2 h) before
the experiment.

Field excitatory postsynaptic potential (fEPSP) was recorded in the CA1 area
(Schaffer-collateral-commissural pathway). Constant stimuli were delivered through stimulating
electrode (0.033 Hz). The slope of the evoked fEPSP was averaged over consecutive recordings evoked
at 30 s intervals; 30 min after the initiation of a stable baseline, theta burst stimulations (TBS: 5 trains
of 4 pulses at 100 Hz) were introduced to induce long-term potentiation (LTP). LTP was quantified
by comparing the mean fEPSP slope at 80 min after the TBS with the mean fEPSP slope during the
baseline period.

4.9. Microinfusion of Drugs

Mice were placed in a stereotaxic frame (David Kopf Instruments, Los Angeles, CA, USA) under
isoflurane anesthesia (induction 3% and maintenance 2%), and guide cannulae (26 G) was aimed at
the right lateral ventricle (AP, −0.02 mm from bregma; ML, −0.80 mm from midline; DV, −2.50 mm
from the dura) based on atlas of the mouse brain [70]. The guide cannulae were fixed to the skull
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with dental cement and covered with dummy cannulae. Following surgery, mice were allowed to
recover for 7 days. LY294002 was dissolved in 0.1% dimethyl sulfoxide in saline (0.9% NaCl) before
infusion. Fifteen minutes before the oral administration of rubrofusarin, mice were carefully restrained
by hand and infused with LY294002 (1 nmol, 3 µL) or vehicle through injector cannulae (30 G) extended
1.0 mm beyond the tips of guide cannulae. The infusion volume was 3 µL, and the infusion rate was
0.5 µL/min. After the infusion, the infusion needle was left in the guide cannula for 1 min to ensure
proper delivery of the reagents.

4.10. Statistics

The results of all experiments were analyzed with one-way ANOVA followed by Turkey’s test for
multiple comparisons. Student’s t-test was used to compare two groups. The values are expressed as
the means ± SD with raw data; p < 0.05 was considered significant.
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Abbreviations

CRS Chronic restraint stress
REDD1 Regulated in development and DNA damage responses 1
NLRP3 Nod-like receptor family pyrin domain containing 3
GSK-3 Glycogen synthase kinase-3
PI3K Phosphoinositide 3-kinases
ACSF Artificial cerebrospinal fluid
fEPSP Field excitatory postsynaptic potential
TBS Theta burst stimulation
LTP Long-term potentiation
RF Rubrofusarin
FLX Fluoxetine
DG Dentate gyrus
CORT Corticosterone
NMDAR N-methyl-d-aspartate receptor
GR Glucocorticoid receptor
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