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ABSTRACT
Regulation of immune function continues to be one of the most well-recognized extraskeletal actions of vitamin D. This stemmed ini-
tially from the discovery that antigen presenting cells such as macrophages could actively metabolize precursor 25-hydroxyvitamin D
(25D) to active 1,25-dihydroxyvitamin D (1,25D). Parallel observation that activated cells from the immune system expressed the intra-
cellular vitamin D receptor (VDR) for 1,25D suggested a potential role for vitamin D as a localized endogenous modulator of immune
function. Subsequent studies have expanded our understanding of how vitamin D exerts effects on both the innate and adaptive arms
of the immune system. At an innate level, intracrine synthesis of 1,25D bymacrophages and dendritic cells stimulates expression of anti-
microbial proteins such as cathelicidin, as well as lowering intracellular iron concentrations via suppression of hepcidin. By potently
enhancing autophagy, 1,25D may also play an important role in combatting intracellular pathogens such as M. tuberculosis and viral
infections. Local synthesis of 1,25D by macrophages and dendritic cells also appears to play a pivotal role in mediating T-cell responses
to vitamin D, leading to suppression of inflammatory T helper (Th)1 and Th17 cells, and concomitant induction of immunotolerogenic T-
regulatory responses. The aim of this review is to provide an update on our current understanding of these prominent immune actions
of vitamin D, as well as highlighting new, less well-recognized immune effects of vitamin D. The review also aims to place this mecha-
nistic basis for the link between vitamin D and immunity with studies in vivo that have explored a role for vitamin D supplementation as
a strategy for improved immune health. This has gained prominence in recent months with the global coronavirus disease 2019 health
crisis and highlights important new objectives for future studies of vitamin D and immune function. © 2020 The Authors. JBMR Plus pub-
lished by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
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Introduction

Vitamin D is obtained naturally from limited dietary compo-
nents or from photochemical and thermal conversion of the

cholesterol precursor 7-dehydrocholesterol in skin in the presence
of adequate ultraviolet B radiation. Cutaneous vitamin D synthesis
occurs efficiently only when the angle of the sun is above
45 degrees. As a result, it is not produced inmanymajor population
centers of North America or Europe for 6 months of the year or
more.(1) To become biologically active, dietary or cutaneous vita-
min D undergoes sequential hydroxylations, predominantly
hepatic 25-hydroxylation catalyzed by CYP2R1 and other
enzymes,(2–4) followed by CYP27B1-catalyzed 1α-hydroxylation in
peripheral tissues.(5) The major circulating metabolite of

vitamin D, 25-hydroxyvitamin D (25D) has a half-life of several
weeks and varies seasonally with fluctuations in cutaneous vitamin
D synthesis. The active form of vitamin D, 1,25-dihydroxyvitamin D
(1,25D), binds to the vitamin D receptor (VDR), a member of the
nuclear receptor family of ligand-regulated transcription factors,
and exerts its physiological effects largely, but not exclusively,
through regulation of gene transcription.(6) Notably, the most
strongly induced 1,25D target gene encodes CYP24A1, the enzyme
that initiates catabolism of both 25D and 1,25D, and thus acts as a
physiological negative feedback loop.

The most recognized functions of the vitamin D metabolic
and signaling system relate to its classical effects on musculo-
skeletal health.(7) However, in recent years there has been an
exponential increase in studies of nonclassical, extraskeletal
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actions of vitamin D.(8) Prominent among these has been the
growing body of evidence linking vitamin D with the immune
system. The potential role of vitamin D as an endogenous regu-
lator of both innate and adaptive immunity has garnered consid-
erable attention in the last few months because of the apparent
prevalence of vitamin D deficiency in communities where coro-
navirus disease 2019 (COVID-19) infection and disease severity
is equally pronounced. With this in mind, the aim of the current
review is to provide a definitive overview of our current under-
standing of the immunoregulatory actions of vitamin D, with dis-
cussion in the final sections of how this may impact viral
infection and the current COVID-19 pandemic.

Vitamin D Metabolism in the Innate Immune
System

Vitamin D was discovered as the cure for nutritional rickets, and
1,25D was originally considered to be solely a calcium homeo-
static hormone. However, there are links between vitamin D or
sun exposure and infections that go back to the use of heliother-
apy by the ancient Greeks to treat phthisis (tuberculosis [TB]).(9)

The concept re-emerged in the mid-1800s with the advent of
the sanatorium movement in Europe to treat TB, and the subse-
quent demonstration that ultraviolet (UV) light could treat cuta-
neous TB (lupus vulgaris).(10,11) Recently, epidemiological
observations have provided evidence for a protective role of
vitamin D in autoimmune conditions (such as multiple sclerosis
[MS] and type 1 diabetes mellitus [T1DM]) and infectious dis-
eases (eg. respiratory tract infections).(12–14) A rapidly expanding
series of preclinical studies have shown that vitamin D signaling
is active in both the innate and adaptive arms of the immune sys-
tem.(15,16) The innate immune system is hardwired to detect an
array of pathogens through numerous so-called pattern recogni-
tion receptors (PRRs). Although there are a variety of PRRs, the
two principle classes are the Toll-like receptors (TLRs) and the
NOD- (nucleotide-binding oligomerization domain-) like recep-
tors. PRRs are activated by a variety of receptor-specific
pathogen-associated molecular patterns (PAMPs).(17) PRR signal-
ing leads to the production of antimicrobial peptides, which
have direct antibacterial and antiviral actions, as well as the pro-
duction of numerous cytokines that recruit other components of
the immune system to the site of infection.

The paradigm shift in the perception of the physiological roles
of vitamin D began with the finding that CYP27B1 is widely
expressed in tissues that are unrelated to calcium homeosta-
sis.(5,18) Similarly, the vitamin D receptor (VDR) is widely
expressed(19); its broad expression, along with that of CYP27B1,
strongly implicates physiological roles of locally produced
1,25D acting in an intracrine or paracrine fashion. Among the
cells that express CYP27B1 are activated macrophages and den-
dritic cells of the innate immune system.(20–22) Importantly, con-
trary to the renal 1α-hydroxylase, CYP27B1 activity in these cells
is regulated by immune inputs such as IFN-γ, a T-cell cytokine
secreted by proinflammatory Th1 cells, as well as agonists of
PRRs such as the TLRs. Themost critical finding that provides evi-
dence that 1,25D signaling contributes to innate immunity
emerged from a study in which Modlin and collaborators stimu-
lated humanmacrophages with the 19-kDa lipopeptide ligand of
TLR1 and TLR2 (TLR2/1) heterodimers, which led to induction of
VDR and CYP27B1 expression and enhanced endogenous pro-
duction of 1,25D from circulating 25D(23) (Fig. 1). Likewise,

triggering TLR4 receptors through lipopolysaccharide (LPS) sig-
naling also upregulated CYP27B1 expression(22) (Fig. 1).

1,25D synthesis induced by TLR4 signaling is of interest given
that we have known since the early 1990s that the gene encoding
the TLR4 coreceptor, CD14, is a target gene of 1,25D.(24) in vitro
studies of CYP27B1 induction in cells of the monocyte lineage
are compatible with the clinical observation of excessive 1,25D
production by macrophages in patients with the granulomatous
disease sarcoidosis.(25) An intermediate in the pathway from
TLR2/1 stimulation to the synthesis of 1,25D was later identified
as being IL-15; the cytokine likely induces CYP27B1 mRNA expres-
sion through the transcription factor C/EBP-β.(26) Because IL-15 is
an inducer of macrophage differentiation from monocytes, this
finding also connects CYP27B1 expression to macrophage devel-
opment. In addition, TLR2/1 signaling induces VDR expression,
and the degree of induction was contingent on serum 25D
levels.(23) Responseswere reduced or even absent inmacrophages
cultured from subjects deficient in vitamin D. In particular, 25D
levels in African Americans were roughly 50% less than those of
white Americans, consistent with previous studies reporting vita-
min D deficiency in the former population based on reduced cuta-
neous vitamin D synthesis in darker skin.(27,28) Globally, these
observations reveal the importance of vitamin D metabolism in
macrophages, as well as the importance of vitamin D sufficiency
in the initiation of local 1,25D signaling.

Further analyses have shown that there are multiple transcrip-
tion factors that regulate CYP27B1 expression. In silico promoter
analyses identified numerous nuclear factor κB (NF-κB) sites in
the proximal CYP27B1 promoter, which were confirmed by elec-
trophoretic mobility shift assays.(29) Cotransfection of NF-κB p50
and p65 subunits was found to substantially decrease activity of
a CYP27B1 proximal promoter fragment, and treatment of human
embryonic kidney 293 cells with an NF-κB inhibitor yielded
enhanced CYP27B1 mRNA expression.(29) In addition to directly
regulating CYP27B1 activity, NF-κB can indirectly modulate the
enzyme’s transcription through mutual repression with nuclear
receptors such as the arylhydrocarbon receptor (AhR), the consti-
tutive androstane receptor (CAR), and the glucocorticoid receptor
(GR), as well as control its activity posttranscriptionally via induc-
tion of heme oxygenase or regulation of cytochrome P450 (CYP)
protein stability.(30) Another transcription factor that controls
expression of the gene is C/EBP-β (CCAAT/enhancer-binding pro-
tein β); TLR2/1 stimulation bymycobacterial lipoprotein was found
to trigger CYP27B1 transcription by activating C/EBP-β, which was
critical for lipoprotein-induced expression of the antimicrobial
peptide cathelicidin and stimulation of autophagy.(31) Functional
putative CCAAT boxes were also found in the promoter of the
CYP27B1 gene.(32) Finally, two new putative transcription factors
associated with CYP27B1 transcriptional regulation in LPS-
challenged humanmononuclear phagocytes were recently identi-
fied in silico: PLAGL2, a zinc finger protein that recognizes nucleic
acids, and STAT4.(33)

1,25D Induces Antimicrobial Innate Immunity

The findings described above demonstrated that immune cells
such as macrophages produce 1,25D upon pathogen intrusion.
1,25D through binding to the VDR, in turn, can regulate innate
immune responses upstream and downstream of PRR signaling
by activating transcription of the genes implicated in innate
immunity. As mentioned previously, CD14, the coreceptor of
TLR4 is robustly induced by 1,25D in human and murine
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cells.(24,34) Moreover, in human keratinocytes, vitamin D
enhanced TLR2 expression, and considering that signaling
through either TLR2 or TLR4 improves vitamin D signaling by
boosting expression of the VDR and CYP27B1, the outcome of
1,25D signaling on TLR2 and CD14 expression in keratinocytes
represents a positive feedback loop.(34) Interestingly, this loop
is not present in monocytes.(35) 1,25D treatment of human
monocytes inhibited both TLR2 and TLR4 mRNA and protein
expression, and this regulation was found to be time- and
dose-dependent. However, CD14 expression was induced by
1,25D; it was hypothesized that downregulation of PRRs by vita-
min D in antigen-presenting cells may serve to suppress extreme
Th1-mediated inflammatory responses and downstream autoim-
munity.(35) In addition, human macrophages, in the presence of
1,25D, were found to restrict dengue virus infection by suppres-
sing expression of the mannose receptor, which belongs to the
C-type lectin family of PRRs.(36)

Strong evidence implicating direct regulation of antimicrobial
innate immune responses by 1,25D arose from the identification
of vitamin D response elements (VDREs) adjacent to the tran-
scription start sites of two genes that encode antimicrobial pep-
tides (AMPs) β-defensin 2 (DEFB2/DEFB4/HBD2) and cathelicidin
antimicrobial peptide (CAMP/LL37)(37) (Fig. 1). The study
revealed a robust induction of CAMP by 1,25D in all tested cell

types, which included multiple cell lines as well as human pri-
mary cell cultures; this initial finding was confirmed in subse-
quent in vitro and in vivo studies.(23, 38, 39) Consistent with this,
treatment with 1,25D stimulated secretion of antibacterial activ-
ity against pathogens such as the lung pathogen, Pseudomonas
aeruginosa into conditioned media.(37) As for HBD2, its expres-
sion by 1,25D alone was either modest or not detected.(23) How-
ever, 1,25D was observed to enhance induction of HBD2 by IL-1β,
a robust inducer of the antimicrobial peptide.(37) Signaling
through TLR2/1 pattern recognition receptors in human mono-
cytes was later shown to upregulate IL-1β expression and signal-
ing; moreover, the combination of IL-1β and 1,25D is required to
drive potent induction of HBD2.(40) It is likely that IL-1β signaling
stimulates binding of the NF-κB transcription factor to tandem
sites in the proximal HBD2 promoter.(40) Hence, the above find-
ings suggest a molecular basis for vitamin D sufficiency provid-
ing broad protection against bacteria and viruses. For instance,
Helicobacter pylori and rhinovirus infections enhance the
expression of defensins(41,42) and human cathelicidin was dem-
onstrated to inhibit HIV-1 replication,(43) indicating that 1,25D-
induced DEFB2 and CAMP expression may enhance protection
against these pathogens (Fig. 1).

Interestingly, many underlying mechanisms of vitamin D sig-
naling on innate immunity appear species-specific. Although

Fig 1. Vitamin Dmetabolism and innate immune signaling in the monocyte/macrophage. Schematic representation illustrating the regulation of expres-
sion of genes that encode antimicrobial peptides, pattern recognition receptors, and cytokines/chemokines by the 1,25D-bound vitamin D receptor (VDR).
In response to 1,25D, the VDR induces expression of the pattern recognition receptor NOD2, antimicrobial peptides CAMP and HBD2/DEFB4, and cyto-
kines IL-1β and IL-8. The 1,25D-VDR complex also functions to suppress HAMP expression, leading to increased ferroportin-mediated export of iron. Upon
stimulation with the ligandmuramyl dipeptide (MDP) generated by the breakdown of bacterial peptidoglycan, NOD2 and IL-1β can enhance HBD2, CAMP,
and IL1B expression.
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CD14 expression induced by 25D was abolished in mice that lack
CYP27B1,(34) and macrophage Cyp27b1 expression can be
induced by TLR signaling or IFN-γ in rodents,(21) there is substan-
tial evidence suggesting that many mechanisms of vitamin
D-regulated innate immunity are mechanistically conserved in
primates only. For instance, the VDRE in the CAMP gene was
shown to be present within an Alu repeat found exclusively in
primates.(38) The transposition event would appear to have
occurred in a primate progenitor, and as a result, is evolutionarily
conserved in humans, apes, and Old and New World mon-
keys.(44) This species specificity is further highlighted by the con-
servation of VDREs in HBD2, CAMP, and NOD2 genes in primates,
but not in rodents.(45) Furthermore, although the HBD2, CAMP,
and NOD2 genes are induced by 1,25D in human cells of epithe-
lial or myeloid origin, they are not similarly regulated in murine
cells. Likewise, conditioned media from 1,25D-treated mouse
epithelial cells did not generate antimicrobial activity against
Escherichia coli nor P. aeruginosa, whereas the activity was pro-
duced against both bacterial types in human epithelial cells
exposed to 1,25D.(45)

Distinct mechanisms of regulation of AMP expression in
humans and mice have been proposed to be caused by mice
being nocturnal, whereas humans are active during daytime
and can consequently acquire vitamin D from exposure to sun-
light.(23) It is also possible that some differences in human versus
murine immune function are caused by different sites for synthe-
sis of 1,25D, with some reports suggesting that CD8+ T cells
rather than macrophages are the major immune cell source of
CYP27B1 expression and activity in mice.(46) Despite these key
differences between humans and mice, it is important to recog-
nize that there is also significant homology in immune responses
to vitamin D. This is particularly evident in comparisons of
human and mouse models of immune disease. Recent studies
have shown similarities between human and murine models of
infectious disorders such as sepsis,(47) suggesting that there is
some commonality in innate immune response to infection
between species, including dysregulation of the murine CAMP
homolog, cathelicidin-related antimicrobial protein (CRAMP) in
vitamin D-deficient mice.(47) This study also highlighted another
key facet of species homology in immune responses to
vitamin D, namely the link between vitamin D deficiency and
dysregulated inflammation in humans and mice. Indeed, several
mouse models of inflammation are known to replicate human
diseases, notably autoimmune diseases such as MS and inflam-
matory bowel disease (IBD),(48) where anti-inflammatory T-cell
responses to 1,25D show similarity to human T-cell responses.

1,25D also regulates the expression of another antibacterial
agent, hepcidin antibacterial protein (HAMP; Fig. 1).(49) In con-
trast to CAMP and DEFB4, the direct microbiocidal properties of
HAMP are not as apparent. Rather, the major function of hepci-
din is to suppress ferroportin-mediated export of iron, and it
plays a role in the anemia of infection or inflammation. Almost
all microorganisms use iron to sustain their growth; therefore,
restricting circulating levels of iron presents a significant host
response to systemic infection.(50) Moreover, bacterial and viral
stimuli are known to enhance the expression of HAMP.(51) There-
fore, in this context, suppression, rather than induction, of HAMP
by vitamin D may be of benefit because by abrogating HAMP-
induced suppression of ferroportin, this facilitates iron export
and lower intracellular concentrations of iron. Indeed, Hewison
and colleagues have shown that once bound to the VDR, the
active hormone transcriptionally suppresses the HAMP gene in
monocytes and hepatocytes.(49) This led to a corresponding

increase in the membrane expression of ferroportin and a
decrease in ferritin expression, which serves as a biomarker for
intracellular iron levels. Furthermore, in contrast to CAMP and
DEFB4, elevated serum 25D levels subsequent to vitamin D sup-
plementation of human subjects were correlatedwith a decrease
in the circulating concentrations of HAMP. However, similar to
cathelicidin and defensin, 1,25D directly regulates hepcidin gene
expression by binding to specific VDREs embedded in the HAMP
promoter, and its regulation is not observed in murine models,
suggesting that control of the HAMP-ferroportin axis by vitamin
D is part of the same evolutionary adaptations as those of the
AMPs described earlier in this review (Fig. 1).(49)

1,25D Regulates Pattern Recognition Receptor
Gene Expression

Another aspect of innate immune signaling regulated by vitamin
D is PRR expression. In addition to CD14, expression of the intra-
cellular pathogen-sensing protein NOD2/CARD15/IBD1 is tran-
scriptionally induced by 1,25D in cells of monocytic and
epithelial origin.(52) Two distal VDREs were located in the NOD2
gene, and the function of the putative VDREs were confirmed
by chromatin conformation capture assay, which identifies loops
between distant chromatin sites that can be viewed by the for-
mation of ligation-dependent PCR products. NOD2/CARD15 rec-
ognizes muramyl dipeptide (MDP), a lysosomal breakdown
product of bacterial peptidoglycan and in cells expressing func-
tional NOD2, cotreatment with 1,25D and MDP displayed syner-
gistic NF-κB-dependent induction of DEFB4 and CAMP (Fig. 1).
However, the regulation was absent in cells from patients with
Crohn disease (CD) that were homozygous for a nonfunctional
mutation of the NOD2 gene.(52) Notably, these findings provide
a strong association between 1,25D signaling and the pathogen-
esis of CD, a relapsing IBD originating from insufficient manage-
ment of intestinal bacterial load by innate immune cells.(53)

Susceptibility to CD has been linked with polymorphisms in both
the NOD2 and HBD2 loci,(54, 55) and although vitamin D defi-
ciency has been associated with CD, there is some disagreement
as to whether the deficiency arises from intestinal malabsorption
of the hormone or whether the insufficiency contributes to path-
ogenesis of the disease. However, the direct induction of NOD2
expression, as well as the direct and indirect regulation of
HBD2 expression, suggests a molecular link between 1,25D defi-
ciency and CD. Furthermore, 1,25D-mediated regulation of
NOD2 may be relevant to fighting intracellular infections by
mycobacteria (eg, Mycobacterium tuberculosis), as these bacteria
generate the N-glycolyl form of MDP, which binds to NOD2 with
higher affinity than the N-acetyl form(56) (Fig. 1).

The identification of NOD2 as a 1,25D target gene also pro-
vides a connection between 1,25D and autophagy, a crucial
defense mechanism involving the usage of autophagosomes to
target intracellular pathogens for lysosomal degradation.(57) In
particular, MDP-bound NOD2 recruits the autophagy protein
ATG16L1, the product of a CD susceptibility locus, to the plasma
membrane at the entry site of bacteria and, upon stimulation,
induces autophagy and clearance of pathogen. However, in cells
homozygous for the CD-associated NOD2 and ATG16L1 muta-
tions, this effect was abolished, indicating that impaired autop-
hagy in cells with these mutations supports their contribution
to the pathogenesis of CD.(57) In addition, there is evidence for
1,25D-induced expression of CAMP and enhanced autophagy
in macrophages infected with mycobacteria.(58) Direct effects
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on autophagy by vitamin D have also been reported; for
instance, synthetic 1,25D analogs were shown to inhibit the
mammalian target of rapamycin (mTOR), which is known to
result in autophagy.(59) Also, more recently, the VDR was docu-
mented as a master transcriptional regulator of autophagy in
breast cancer cells.(60)

1,25D Regulates Expression of Cytokines
Important in Innate Immunity

The induction of genes encoding cytokines and chemokines also
represents a crucial part of 1,25D-mediated innate protection
against pathogen threat; this was highlighted by transcriptome
profiling of M. tuberculosis (Mtb) infected and noninfected
macrophages in the presence or absence of 1,25D, which
revealed numerous genes regulated by 1,25D being altered by
infection.(61) Among those genes were several chemokines and
cytokines, and 1,25D was found to broadly enhance the
infection-stimulated chemokine/cytokine response. Specifically,
1,25D directly augmented transcription of IL-1β, one of the first
cytokines generated in response to infection, and is released into
the circulation from its pro-form by proteolytic cleavage cata-
lyzed by caspase 1 coupled to PRR-activated complex known
as the inflammasome (Fig. 1). The physiological significance of
this was demonstrated by a coculture of infected macrophages
with primary human airway epithelial cells; from this, it was
shown that the 1,25D and Mtb induced IL-1β secretion, pro-
longed survival in infected macrophages, and decreased Mtb
burden in those cells by inducing DEFB4 production in the cocul-
tured lung epithelial cells. IL-8, a neutrophil chemoattractant, is
another cytokine robustly stimulated by 1,25D in uninfected
and Mtb-infected macrophages, and it would be of interest to
investigate whether there is a corresponding effect on the
expression of CXCR2, the IL-8 cell surface receptor, on 1,25D-
treated pathogen-challenged human neutrophils (Fig. 1). Other
secreted agents generated by 1,25D-exposed infected macro-
phages include the chemokines CCL3, CCL4, and CCL8.(61)

1,25D has also been shown to dose-dependently attenuate
the expression of proinflammatory cytokines IL-6, TNFα, and
IFN-γ in Mtb-infected human peripheral blood mononuclear
cells.(62) On the other hand, the authors of this study also
reported enhanced expression of IL-10, an anti-inflammatory
cytokine, by 1,25D. The proposed mechanism behind the inhib-
ited proinflammatory cytokine response appears to involve a
VDR-mediated repression at the mRNA and protein level of the
PRRs TLR2, TLR4, Dectin-1, and mannose receptor.(62) Further-
more, LPS-induced production of IL-6 and TNFα was inhibited
by 1,25D in human and murine monocytes and
macrophages,(63,64) and this regulation appeared to differ with
the stage of monocyte/macrophage maturation and was
dependent on MAPK phosphatase 1.(64) There is also evidence
for 1,25D acting in synergy with other agents to regulate IL-6
expression. For example, 1,25D was found to enhance
glucocorticoid-induced suppression of LPS-stimulated IL-6 in
human monocytes.(65)

Vitamin D and Granulocyte Biology

Most of the studies to date have investigated the innate immune
regulation by vitamin D in monocytes and macrophages. How-
ever, it is important to note that a variety of cell types express
PRRs and acquire the necessary tools to generate innate immune

responses to pathogen threat. The most abundant among these
are granulocytic cells such as neutrophils; these short-lived cells
with a circulating half-life of 6–8 hours represent 70% of all leu-
kocytes, and in response to inflammatory stimuli, are rapidly
recruited to sites of infection where they efficiently bind, engulf,
and inactivate bacteria.(66) Neutrophils are known to express VDR
mRNA at a level comparable to monocytes, and once treated
with 1,25D, also induce expression of CD14.(67) These granulo-
cytic cells are among the cell types that exhibit 1,25D-driven
expression of CAMP, although the physiological relevance of this
has yet to be determined.(37) Unlike monocytes, however, neu-
trophils do not appear to express CYP27B1, suggesting that they
are more likely to be systemic responders to hormonal 1,25D.
Despite this, they appear to be the major source of serum cathe-
licidin/LL37 based on their abundance and the presence of neu-
trophil granules that store the majority of LL37 released at
infection sites.(68,69) A link between low serum LL37 and mortal-
ity in patients with chronic kidney disease has been reported; the
levels of LL37 correlated with serum 1,25D rather than 25D,
which may serve as an endocrine-regulated innate immune
response that may involve CYP27B1-negative, VDR-positive neu-
trophils.(70,71) However, in patients with sepsis, a systemic inflam-
matory disease associated with maintained presence of
neutrophils, circulating levels of LL37 are lower in more severe
cases, and this is correlated with low serum levels of 25D.(72)

In the early 2000s, a physiological role for the VDR in neutro-
phils was investigated by using differential display analysis to
identify expression of genes in 1,25D-treated, LPS-stimulated
neutrophils.(67) Of the genes identified, the neutrophil elastase
inhibitor trappin-2/elafin/SKALP was potently induced in LPS-
exposed neutrophils, but was mildly suppressed by 1,25D. Under
the same conditions, IL-1β was slightly inhibited by the active
hormone.(67) Since then, a few other studies have delved into
the role of vitamin D in neutrophil innate immunity. Among
those was one that found increased apoptosis in neutrophils
from patients with chronic obstructive pulmonary disease
(COPD) treated with 1,25D.(73) This is noteworthy because COPD
pathogenesis is characterized by a lower rate of neutrophil apo-
ptosis, and vitamin D acquired the capacity to counter this via
activation of p38MAPK. Furthermore, 1,25D treatment enhanced
the production of IL-8 in LPS-exposed neutrophils; however, no
effect was detected on the phagocytic capacity of the cells when
challenged with E. coli.(74)

Recently, the formation of neutrophil extracellular traps (NETs)
by vitamin D was explored; the production of these networks of
extracellular fibers composed of DNA, histones, and enzymes
that function to immobilize pathogens were enhanced by
1,25D.(75) However, the NETs-like structures were not verified to
be bona fide NETs. Moreover, 1,25D was reported to augment
neutrophil killing of Streptococcus pneumoniae and also to lower
inflammatory cytokine production by inducing the expression of
the anti-inflammatory cytokine IL-4 and suppressor of cytokine
signaling (SOCS) proteins.(76) Overall, these findings suggest a
role for vitamin D in dampening neutrophil-driven inflammatory
responses, while still boosting pathogen killing by the cells; how-
ever, one study found that although 1,25D decreased LPS-
induced expression of macrophage inflammatory protein-1β
and VEGF in adult neutrophils, this anti-inflammatory response
was not observed in neonatal cells.(77) The authors speculate that
this may be because of the decreased expression of VDR and
CYP27B1 in neonates.

Eosinophils, granulocytic effector cells involved in T-helper
type 2 cell- (Th2-) mediated diseases, such as asthma and atopic
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dermatitis,(78) are also subject to the effects of vitamin D. In a
murine model of lung eosinophilic inflammation, treatment with
vitamin D decreased airway eosinophilia, and this was attributed
to the downregulatory effect of 1,25D on IL-15, the key cytokine
implicated in recruitment of eosinophils to local inflammatory
sites.(79) Likewise, vitamin D supplementation was found to
reduce eosinophilic airway inflammation in patients with nona-
topic asthma and severe eosinophilic airway inflammation in a
randomized controlled trial.(80) Another cell type well-known
for its role in allergic responses is the mast cell, which expresses
the VDR and, unlike neutrophils, also expresses CYP27B1.(81) Both
25D and 1,25D were demonstrated to suppress IgE-mediated
mast-cell derived proinflammatory and vasodilatory mediator
production in human and murine mast cells. In addition, in
response to 1,25D, production of the immune regulatory IL-10
is significantly upregulated in mouse mast cells,(82) providing
an explanation for why mice deficient in mast cells are resistant
to the immune suppressive effects of UVB.(83) UVB irradiation
transmits the immune suppressive signal in the skin by trigger-
ing mast cells to migrate to lymph nodes.(84) There, the IL-
10-producing mast cells contact B cells and inhibit antibody
class-switch recombination and affinity maturation in germinal
centers. Because mast cells are known to induce activation of T
regs and B cells, it is speculated that this is a mechanism by
which UVB and vitamin D are working to repress some adaptive
immune responses.(84)

Effects of Vitamin D on NK, NKT, and γδ T Cells

Natural killer (NK) cells acquire the capacity to efficiently kill
infected cells and, because some NK subsets canmodulate adap-
tive immune responses by the secretion of cytokines and chemo-
kines, they are generally described to function at the interface
between innate and adaptive immunity.(85) Despite some studies
showing no effect of 1,25D on NK function,(86–88) others suggest
an important role for 1,25D on NK cell biology.(89–94) Patients
with diseases that affect metabolism of vitamin D, such as
chronic renal failure and vitamin D-resistant rickets, have
impaired activity of NK cells.(89,90) In these patients, vitamin D
supplementation can improve and even normalize NK-cell activ-
ity. In a healthy elderly population, it was shown that NK-cell
cytolytic function is associated with serum 25D levels.(93) This
was later confirmed in in vitro studies, where 1,25D treatment
dose-dependently enhanced the activity of NK cells without
influencing cell proliferation by increasing cellular granule con-
tent and shortening the delay in the secretion of
granzyme A.(91,94) Furthermore, 1,25D in combination with the
synthetic glucocorticoid dexamethasone induced IL-10 mRNA
expression in NK cells, implying that vitamin D signaling can
stimulate a regulatory phenotype, where antigen-specific T-cell
responses are suppressed, in NK cells.(92) Recently, one study
noted that 1,25D had regulated cytotoxicity, cytokine secretion,
and degranulation in NK cells isolated from women with idio-
pathic recurrent pregnancy losses, a condition associated with
aberrant NK activity and vitamin D deficiency.(95) Other current
reports also corroborate a regulatory role for vitamin D in NK-cell
effector function.(96,97)

CD1d-reactive natural killer T (NKT) cells, a subset of T cells that
lack immunological memory,(98) are thought to be among the
most immediate producers of cytokines in the innate immune
response.(99) As a result of early IL-4 production by activated NKT
cells, NKT cell activation delays the onset and represses the

symptoms of experimental autoimmune encephalomyelitis and
experimentally induced colitis.(100,101) Furthermore, low numbers
of NKT cells are correlated with increased susceptibility to autoim-
munity.(102) Although the role of vitamin D in NKT cell biology is
not yet completely elucidated, animal studies on the topic have
revealed differing roles for the VDR and 1,25D in the regulation
of invariant NKT cell (iNKT) numbers and function. VDR gene
knock-out (KO)mice demonstrate a blockade in iNKT cell develop-
ment, resulting in reduced numbers of NKT cells in the thymus,
liver, and spleen compared with their wild-type (WT) counter-
parts.(103) Furthermore, the residual iNKT cells from VDR KO mice
are intrinsically defective, and only a small fraction of the cells pro-
duce IL-4 and IFN-γ. In contrast, 1,25D sufficiency appears to only
regulate the number of iNKT cells, as evidencedby decreased iNKT
cell counts in vitamin D-deficient mice in utero.(104) Remarkably,
this was found to not be corrected by subsequent intervention
with 1,25D based on increased apoptosis of early thymic iNKT cell
precursors. From these findings, it appears that the quantity of
vitamin D available in the environment during prenatal develop-
ment may influence the number of iNKT cells and the subsequent
resulting risk of autoimmunity.(104)

Arguably the most intricate and advanced cellular representa-
tive of the innate immune system are γδ T cells.(105) Representing
a small number of T cells in the circulation of healthy individuals,
an increase in the number and inflammatory phenotype of γδ T
cells has been detected in patients with autoimmune hepati-
tis.(106,107) Interestingly, transcriptional profiling of γδ T cells
revealed an upregulation of VDR upon activation of these cells
with phosphate-containing ligands.(108) Activity of the receptor
was demonstrated by observing a 1,25D-mediated dose-
dependent inhibition of phospho-ligand-induced γδ T-cell
expansion and IFN-γ production. Similarly, in cattle, 1,25D pro-
duction bymacrophages within TB lesions inhibited proliferation
of γδ T cells and decreased expression of the activation marker
CD44 on the surfaces of remaining responding cells.(109) These
studies globally propose an immunosuppressive role of vitamin
D on this small subset of T cells as part of the more generalized
anti-inflammatory response to 1,25D.

Vitamin D and T Cells

Although primarily an activator of the innate immune system to
enhance immediate response to infection, vitamin D acts to reg-
ulate activity of the adaptive immune system. Consistently, low
levels of circulating serum 25D have been correlated with
increased risk of developing T-cell-mediated autoimmune dis-
eases such as MS,(110, 111) T1DM,(112) IBD,(113) systemic lupus
erythematous (SLE),(114) and rheumatoid arthritis (RA).(115)

These associations may also correlate with exposure to UV
light;(112,114) for example, patients with SLE experience increased
sensitivity to UV light, which leads to avoidance.(114) However,
despite these observations and the well-described direct and
indirect effects of 1,25D on T cells as detailed below, therapeutic
use of vitamin D in supplementation trials has so far shown only
modest effects. There remains a need to better understand the
mechanisms of 1,25D-mediated immunomodulation to improve
treatment of autoimmune inflammatory disease.

VDR expression and T-cell activation

Early studies showed that the intracellular VDR, as determined by
specific 1,25D binding, was expressed in activated lympho-
cytes.(116) Since then, levels of VDR expression on T-cell subsets
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have been investigated further, occasionally with conflicting
results. As 1,25D acts primarily through binding to the VDR, it is
important to consider VDR expression levels as a determinant
of T-cell function. Studies using VDR knockout (KO) mice have
shown comparable levels of CD4+ and CD8αβ+ T cells in the
periphery, indicating that 1,25D is not required for T-cell thymic
development or subsequent egress from the thymus.(117) This
is with the exception of iNKT cells and CD8αα+ T cells, a protec-
tive subset found in the gut, which fail to develop from their thy-
mic precursors in VDR KO mice.(103,118) With no overall
abnormalities in peripheral T-cell numbers, it appears that
1,25D acts more as a regulator of fully developed and differenti-
ated cells, to dampen overactive responses, than a regulator of
development.

VDR is expressed at very low,(119) and often undetectable,(120,
121) levels in naïve T cells. Upon activation, in response to T-cell
receptor (TCR) signaling via the p38 MAPK pathway, expression
of the VDR is significantly increased in T cells.(119,120) One study
suggested that this initial upregulation of the VDR then led to
the upregulation of PLCγ-1, a key enzyme in T-cell activation,
whichwas able to reciprocally further enhance TCR signaling.(119)

It is also reported that 1,25D upregulates expression of the T-cell
markers CD38 and HLA-DR.(122) However, these studies were car-
ried out in vitro and require further investigation in vivo to fully
define the relevance of this finding. In comparison, mice have
sufficient levels of PLCγ-1 prior to TCR activation and do not
require upregulation of the enzyme.(123) Binding of 1,25D to
the VDR has been shown to prevent degradation of the receptor,
forming a positive feedback loop for increased VDR levels in acti-
vated T cells (Fig. 2).(120)

VDR expression in T-cell subsets

Although it is known that all naïve T cells upregulate VDR expres-
sion upon TCR activation, there are conflicting reports on the
level of VDR expression in differentiated T-cell subsets. In one
study, human naïve CD4+ T cells differentiated for 3 days in the
presence of cytokines that induced Th1, Th17 or Th2 cells were
shown to have equal levels of VDR in all three Th types (120).
However, it is likely that 3 days is not sufficient time for full polar-
isation of human CD4+ T cell subsets and therefore VDR expres-
sion in this case may reflect the initial upregulation of the
receptor after TCR engagement. In mice, studies have reported
that Th1 cells do not express the VDR to the same level as Th2
or Th17 cells,(124,125) even suggesting levels to be comparable
to naïve T cells.(124) The latter of these studies saw no change
in IFN-γ with 1,25D treatment,(125) an effect that is usually
observed in vitro.(126,127) There have been similar reports for
induced regulatory T cells (iTregs). One study, sorting human
Tregs as CD4+CD25hi cells, showed comparable expression of
the VDR in Tregs and T conventional cells.(128) However, because
CD25 is upregulated during T-cell activation, it is possible there
was some contamination of the Treg population during sorting.
In mice, it was shown that Tregs have much lower levels of
VDR expression compared with Th2 and Th17 cells.(124,129) The
potential functional impact of differences in VDR expression
levels between T-cell subsets, or between human and mouse,
remains unclear.

VDR polymorphisms and inflammatory disease

In addition to the relationship between circulating 25D status
and risk of T-cell-mediated inflammatory diseases described

above, research has also implicated changes in VDR structure
and function with susceptibility to autoimmune disease.
Genome-wide association studies (GWASs) have identified
multiple single nucleotide polymorphisms (SNPs) that increase
susceptibility to a disease. In such studies, four main polymor-
phisms in the Vdr gene: TaqI, BsmI, ApaI, and FokI have been
linked to increased susceptibility to MS, TIDM, IBD, SLE, and
RA.(130–135) Association of the four VDR variants differs between
population and disease, but the presence of SNPs in the VDR
gene is common to GWASs of many T-cell-mediated inflamma-
tory diseases.

Alongside these GWASs, others directly link VDR abnormali-
ties in T cells to increased risk of autoimmune inflammatory dis-
ease. For example, one study demonstrated that a promoter
region of the VDR gene had increased levels of methylation in
T cells from patients with MS compared with healthy con-
trols.(136) Additionally, in both cell lines and human T cells, when
cells were cultured in the presence of low serum 25D, it was
shown that there was decreased binding of the VDR to multiple
gene variants commonly identified in GWASs to predispose to
autoimmune disease.(137) The above studies highlight the com-
plex nature of disease susceptibility, but strongly suggest a role
for vitamin D in limiting the pathogenicity of T-cell-mediated
autoimmune diseases.

Direct Effects of 1,25D on T Cells

IL-2 production and proliferation

The regulatory effects of 1,25D can be seen almost immediately
after T-cell activation with the inhibition of IL-2 production
(Fig. 2).(138) The IL2 gene has two VDR response elements,(139)

with another demonstrating that the VDR-RXR heterodimer
prevents the formation of the NFAT/AP-1 complex, which is
required for activation of the IL2 promoter.(140,141) Initial studies
showed that 1,25D inhibited T-cell proliferation.(138,142) This
was observed in bulk peripheral blood mononuclear cells
(PBMCs) and purified populations of CD4+ or CD8+ T
cells.(138,142,143) Recently, transcriptome analysis of CD4+ T cells
from mice with experimental autoimmune encephalomyelitis
(EAE), a model of MS, treated with vitamin D showed downre-
gulation of multiple genes involved in proliferation.(144) The full
antiproliferative effects of 1,25D are not completely under-
stood; however, several potential mechanisms have been
proposed.

In cancer cells, it has been reported that 1,25D causes cells to
arrest at the G1 phase of the cell cycle by preventing cyclin-
dependant kinase activity, inhibiting proliferation.(145) In EAE,
1,25D treatment decreased expression of cyclins in CD4+ T
cells.(144) However, other evidence for cell-cycle alteration by
1,25D in T cells is limited. Some studies have suggested that
the antiproliferative effects of 1,25D are attributable to the
reduction in IL-2 production(138,142) and others have linked it to
the effects of 1,25D on antigen-presenting cells, thereby indi-
rectly suppressing T-cell proliferation.(126,146) In one study, cul-
tured purified CD4+CD25− T cells in the presence of 1,25D
demonstrated no changes in proliferative capacity, suggesting
that the antiproliferative effects seen previously were caused
by the actions of other cells in the environment.(126) A few
reports have suggested that 1,25D is able to sensitize T cells to
undergo apoptosis in EAE(147) and a T1DM mouse model,(148)

but the relevance of this effect for disease pathology has still to
be determined.
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Th1 cells

In both human and mouse studies, 1,25D has been shown to
inhibit Th1 and reciprocally promote Th2 cell differentia-
tion.(79,127,149,150) In these studies, the change in the T-cell subset
is described as an alteration in cytokine profile. This is often a
decrease in the Th1-cell-associated cytokine, IFN-γ, and an
increase in Th2-cell cytokines such as IL-4, but sometimes also
IL-5 and IL-13. Transcription factors appear to be less consistently
affected, although changes in T-bet (Tbx21) and Gata3 expres-
sion are reported (Fig. 2).(151) Although described in multiple
studies as a Th1-to-Th2 skew, inhibition of Th1 cell differentiation
is not always accompanied by an increase in Th2 cells.(151,152) In
addition to these effects on Th differentiation, 1,25D is also
reported to directly inhibit IFN-γ expression in existing
Th1-effector cells.(126,153)

Mechanistically, it was demonstrated in one study that VDR-
RXR binds to promoter regions of the Ifng gene to directly inhibit
transcription.(154) However, it is likely that there are other mech-
anisms of IFN-γ inhibition by 1,25D, as mRNA is not consistently
downregulated in studies where downregulation of the protein

is seen.(150) IL-12, an important cytokine for Th1 differentiation
and expression of IFN-γ, is also inhibited by 1,25D.(152) It is likely
that the decrease in IL-12 partially limits the induction of a Th1
phenotype. This is demonstrated in two EAE studies, both
highlighting the reduction in IL-12 as key in preventing Th1-cell
development and ameliorating EAE.(155,156) Moreover, some
studies do not demonstrate a decrease in IFN-γ during Th1-cell
polarization in the presence of 1,25D, often these cultures con-
tain supplemented IL-12, which may partially reduce the inhibi-
tory effects of 1,25D. This is shown in one study, where the
addition of IL-12 to 1,25D-treated-T cells increased IFN-γ produc-
tion to a level between control and 1,25D alone.(157)

Th2 cells

It is widely considered that Th2 cells are increased by 1,25D, as a
consequence of the transcriptional increase of GATA3, seen in
multiple mouse and human studies.(127,149,158) This is accompa-
nied by an increased expression of the characteristic Th2 cyto-
kine IL-4; some studies also reported increased IL-5 and IL-

Fig 2. Immunomodulatory effects of 1,25D on CD4+ T cells. T-cell-receptor signaling induces an upregulation in the vitamin D receptor (VDR), which is
stabilized from degradation by 1,25D binding. IL-2 production is suppressed by 1,25D signaling after T-cell activation. Th1- and Th17-cell differentiation
is suppressed by vitamin D3 signaling alongwith characteristic, inflammatory cytokine production. CCR6 on Th17 cells is also suppressed, preventing hom-
ing to tissues. Downregulation of transcription factors T-bet and RORγt is less consistently reported. Th2-cell differentiation is widely thought to be
increased by 1,25D, although this is dependent on conditions. 1,25D causes upregulation of IL-4 and STAT-6, which increases GATA-3. Overall, the Th1/Th2
balance is in the favor of Th2 cells. Similarly, the Th17/iTreg balance favors Tregs with the addition that Th17 cells, additionally suppressed by FoxP3 upre-
gulation, can convert to a Treg phenotype. 1,25D upregulates IL-10, TGF-β, and inhibitory markers CTLA-4 and CD25 to promote an anti-inflammatory
phenotype.
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13.(127,150) It has been suggested that the increase in GATA-3 is
downstream of upregulated STAT-6 activity, mediated by
1,25D, although the mechanism for this is unclear.(150) Th2 cells
are unique in that they are both induced by and producers of
the same cytokine, IL-4. IL-4 is able to induce STAT-6, which then
induces GATA-3 and production of IL-4 (Fig. 2).(150)

Literature on the effect of 1,25D on Th2 cells is, however,
largely inconsistent, with differing effects between mouse,
human, tissue, and culture methods. One study showed that
there was only an increase in IL-4 when T cells from human
PBMCs were cultured in the presence of 1,25D and IL-4, suggest-
ing a requirement for the presence of IL-4 in 1,25D-mediated
effects on Th2 differentiation.(157) This is also highlighted by a
polarization study on murine CD4+ T cells from lymphoid tissue,
where IL-4 was only increased in the cultures supplemented with
IL-4 or no polarizing conditions.(153) However, in another study
using Th2 polarizing conditions on murine naïve and memory
CD4+ T cells from splenocytes, there was a decrease in IL-4 pro-
duction in naïve CD4+ T cells and no change in the memory
CD4+ T cells.(151) A study, which cultured human cord blood cells
in the presence of 1,25D and IL-4, found a decrease in IL-4 pro-
duction when compared with the cells cultured with IL-4
alone.(159) There is also often no change in IL-4 in 1,25D-treated
mouse models of inflammation.(160,161) These variable observa-
tions are well-demonstrated in one study in which IL-4 was
increased by 1,25D in murine T-cell cultures, whereas in vivo,
no change in IL-4 was seen.(79)

Th17 cells

Th17 cells are a unique subset of T cells characterized by their
ability to produce IL-17 and IL-22, and express the transcription
factor RORγt.(58) Vitamin D acts on Th17 cells to suppress expres-
sion of IL-17, IL-22, TNF-α, IFN-γ, and the chemokine receptor
CCR6, thereby preventing migration of Th17 cells to inflamed tis-
sues (Fig. 2).(124,126,158,162) This inhibition of a Th17 phenotype
has been reported following differentiation of naïve CD4+ T cells
and ex vivo human Th17 memory cells.(158,162) Similar to Th1 cell
suppression, data for effects of 1,25D on RORγt expression are
inconsistent. One study using isolated human CD4+ memory T
cells showed a reduction in cytokine transcription, but no
change in RORγt with 1,25D treatment.(162) In contrast, other
studies in vivo and during in vitro Th17-cell differentiation
observed a reduction in RORγt mRNA, suggesting that 1,25D
has a greater influence on transcription factors before full polar-
ization, when T cells have a less-stable phenotype.(144,153,163)

It has been well-described that a reduction in Th17 cells often
occurs in parallel to an increase in Tregs, as part of a proposed
Th17/Treg reciprocation axis. An important focus of improving
treatments for autoimmune diseases is to restore the Th17/Treg
imbalance that occurs during chronic inflammation. Many stud-
ies analyzing the effect of 1,25D on Th17 cells have also reported
an increase in Treg markers such as CTLA-4, CD25, FoxP3, and in
production of Treg cytokines such as IL-10 (Fig. 2).(126,162,164) The
mechanism of action of 1,25D on Th17 cells is not completely
understood, but some pivotal pathways have been identified.
Expression of the Treg marker FoxP3 is directly upregulated by
1,25D, through binding of VDR to a VDRE in the FOXP3
gene.(165,166) FoxP3 is able to suppress the upregulation of RORγt
in CD4+ T cells,(167) suggesting that by inducing FoxP3 expres-
sion in naïve CD4+ or Th17 cells, 1,25D is able to suppress Th17
differentiation.(166) Additionally, 1,25D-mediated inhibition of
the NFAT pathway blocks the production of IL-17,(166) and

upregulation of PLCγ-1 by 1,25D induces the production of
TGF-β, further promoting the differentiation of Tregs.(168,169)

T-regulatory cells

When reviewing the effects of 1,25D on Tregs, it is important to
distinguish effects on Treg differentiation and plasticity from
direct effects on Treg function. Evidence suggests that 1,25D is
able to induce FoxP3 expression in naïve CD4+ T cells and pro-
mote Treg differentiation, with resulting functional increases in
expression of IL-10 and other regulatory markers such as
CTLA-4 (Fig. 2).(126,165,169) Studies have also shown plasticity of
Th17 and Th2 cells converted to a regulatory phenotype by
1,25D.(162,170) As highlighted above, induction of a Treg pheno-
type by 1,25D is attributed to the direct upregulation of genes
such as FOXP3 and CTLA4 and parallel downregulation of genes
such as IFNG and IL17A.(126,165,166,168) There is little evidence for
direct induction of IL-10 by 1,25D in T cells. However, in mono-
cytes, VDR binding to a promoter region of the IL10 gene has
been reported.(139,171) Induction of IL-10 in 1,25D-treated T-cell
cultures was shown to be increased at lower doses than effects
on FOXP3, and in distinct cell populations, suggesting that IL-
10 upregulation is FoxP3 independent.(172) IL-10 induction by
1,25D in CD4+ T cells was shown to be partially dependent on
a 1,25D-mediated increase in α-1-antitrypsin,(173) and
α-1-antitrypsin has also been shown to induce IL-10 in DCs,(174)

suggesting a role for 1,25D-induced α-1-antitrypsin in immuno-
modulation. The increase in IL-10 production is then able to indi-
rectly mediate further anti-inflammatory effects of 1,25D.(172)

Studies have shown the combination of 1,25D and TGF-β on
CD4+ T cells to increase the induction of Tregs above 1,25D used
alone, which mechanistically may relate to maintenance of the
expression of IL-2 that is inhibited by 1,25D.(139,169) Moreover, it
has been shown in vitro that adding IL-2 to 1,25D-treated CD4+

T cells is able to increase the production of Tregs.(169,175)

Direct effects of 1,25D on Treg function are less clear, espe-
cially considering the contradictory evidence supporting VDR
expression in Tregs.(124,128,129) Consistent with the low VDR levels
described in one study, they also observed no effect of 1,25D on
Tregs.(129) However in another study, where equal levels of VDR
in human T-regulatory (CD4+ CD25high) and T-conventional cells
were described, a slight increase in IL-10 from the Treg popula-
tion was also observed alongside a decrease in proliferation, sug-
gesting a level of response to 1,25D.(128) However, as mentioned
previously, it may be that CD4+ CD25high is not a reliable identi-
fier of human Tregs. Nevertheless, one study was able to corre-
late the levels of serum 25(OH)D3 with Treg function in patients
with MS.(176)

Effects of 1,25D on T-Cell Metabolism

Upon activation, T cells require significant metabolic reprogram-
ming to support their new energetic demands.(177) Naïve and
memory T cells maintain a catabolic metabolism, supported by
oxidative phosphorylation (OXPHOS). In contrast, effector T cells
increase nutrient uptake from the environment and levels of gly-
colysis to switch to an anabolic metabolism that favors biosyn-
thesis of effector molecules and growth.(177,178) Changes in
metabolism can also directly affect the function of T cells. For
example, GAPDH is an enzyme used in glycolysis, but also acts
as a transcriptional repressor of IFNG. With increased glycolysis,
GAPDH is released from binding to IFNG, resulting in increased
IFN-γ expression.(179) This tight link between cellular metabolism
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and function also means that each T-cell subset has a unique
metabolic profile, dependent on tissue environment and dis-
ease.(180,181) T-cell metabolism can be altered bymultiple stimuli,
including cytokines, TCR signaling, and cellular stress.(178,182–184)

The impact of 1,25D on T-cell metabolism has not been explored,
but may warrant investigation given substantial effects on
metabolism described in other cell types as detailed below.

Cellular metabolism

In macrophages, 1,25D alters cholesterol metabolism to limit
foam-cell formation in type 2 DM.(185,186) Dendritic cells differen-
tiated in the presence of 1,25D form a tolerogenic phenotype
(TolDC) with a unique metabolic profile, including induction of
pathways of glycolysis and oxidative phosphorylation, forming
a highly glycolytic TolDC dependent on the PI3K/Akt/mTOR
pathway.(187,188) In contrast to upregulation of mTOR, 1,25D
caused direct transcriptional upregulation of mTOR inhibitor
DDIT4 in osteoblasts, leading to decreased proliferation.(189) It
is also well-described that vitamin D increases OXPHOS and
maintains mitochondrial function in skeletal muscle.(190,191) Most
studies looking at the impact of 1,25D on cellular metabolism are
in cancer models. Vitamin D is suppressive of glycolysis in multi-
ple cancers.(192–195) For highly glycolytic cancer cells, this inhibi-
tion of glucose metabolism is detrimental, resulting in loss of
proliferation and increased apoptosis.(193,195,196) In several stud-
ies, this decrease in glycolysis is linked to inhibition of c-Myc, a
regulator of glycolytic gene transcription, by 1,25D.(192,195,196) It
has also been reported that 1,25D is able to suppress glutamine
metabolism in breast cancer cells, partially through inhibiting
transcription of the glutamine transporter.(197) In skin, vitamin
D can also protect against cancer by increasing glycolysis, autop-
hagy, and mitophagy after UV-mediated DNA damage to main-
tain DNA repair in keratinocytes.(198)

T-cell metabolism

Few studies have investigated a role for 1,25D in modulating T-
cell metabolism. In bulk PBMCs isolated from adults with differ-
ent serum levels of 25D, PMBCs from those in the low vitamin
D group had consistently higher basal OXPHOS and basal glycol-
ysis compared with those with higher serum 25D levels.(199) A
similar study also correlated lower 25D levels in the winter with
higher basal PBMC metabolism and increased inflammatory
cytokines.(200) Although only a correlation—and confounded
by multiple additional factors—these data warrant further study
into the mechanisms of 1,25D-mediated metabolic regulation of
immune cells. In a study on isolated CD4+ T cells, 1,25D treat-
ment for 24 hours caused a reduction in c-Myc expression.(201)

This finding had been previously reported in a study that found
1,25D-mediated inhibition of c-Myc after 72 hours, but only in
the presence of sufficient TCR stimulation to upregulate VDR
expression.(202) Although not investigated by either study, this
decrease in c-Myc may suppress glycolysis in CD4+ T cells.

Transcriptomic analysis of CD4+ T cells from EAE mice treated
with vitamin D revealed the downregulation of multiple meta-
bolic pathways, including multiple genes from the tricarboxylic
acid (TCA) cycle and glycolysis, as well as the PI3K/Akt/mTOR
pathway.(144) In line with this, another study using CD4+ T cells
from EAE mice, showed that those treated in vitro with 1,25D
had reduced mTOR activity; however, these data were only from
a limited number of biological replicates.(203) The data also sug-
gested that 1,25D was able to upregulate glucocorticoid-

induced apoptosis, and that in EAE mice with a specific mTOR
defect in T cells, this effect was ablated.(203) Although a full mech-
anism was not explored, this study does highlight the need for
further studies investigating the effect of 1,25D on T-cell metab-
olism in autoimmune inflammatory diseases. Another study of
EAE showed that 1,25D increased transcription of BHMT1, an
enzyme involved in the conversion of homocysteine to methio-
nine. This upregulation of methionine increased the global
DNA methylation status of antigen-specific CD4+ T cells and
increased Treg numbers.(204)

Collectively, these studies show a potential role for 1,25D as a
regulator of T-cell metabolism. The data suggest that 1,25D sup-
presses T-cell glycolysis. If confirmed, this reduction may link to
the inhibition of IFN-γ by 1,25D, as glycolysis is known to regulate
IFN-γ expression.(179) Although shown to be transcriptionally
regulated by vitamin D,(154) in some studies little change in IFNG
mRNA is seen, despite a reduction in cytokine production.(150)

This suggests additional posttranslational control that may come
into effect at different time points or doses.

Indirect Effects of Vitamin D on T Cells

For T cells, the main source of 1,25D is locally synthesized by
APCs expressing the enzyme CYP27B1 and conversion of 25D
to 1,25D.(146) It has been reported that murine CD8+ T cells, but
not CD4+ T cells, have functional CYP27B1 activity.(205) Human
CD4+ T cells do express functional CYP27B1, although at compa-
rably low levels to dendritic cells.(146,206) Vitamin D binding pro-
tein (DBP) present in serum also appears to blunt 25D
conversion in T cells.(146,206) The relevance of CYP27B1 expres-
sion by T cells in vivo is not clear. However, it is suggested that
the activity level seen in vitro is too low to support any clear
changes in cell phenotype.(146) Therefore, T cells rely heavily on
the local production of 1,25D to reach a sufficient concentration
for immunomodulatory effects.(146,207) As discussed above, vita-
min D exerts a range of effects on innate immune cells. These
can then indirectly impact T-cell differentiation and function.

Treatment with 1,25D has been shown to decrease CD40L
expression on macrophages that may limit T-cell activation and
induction of a proinflammatory phenotype.(208) Althoughmacro-
phages are capable of antigen presentation to T cells, studies
suggest that dendritic cells are muchmore influential in this role.
During dendritic cell differentiation, treatment with 1,25D leads
to development of a tolerogenic phenotype.(188,209) TolDCs are
less mature than mature dendritic cells and retain the monocyte
marker CD14, as well as exhibiting lower expression of costimu-
latory molecules such as CD80/86 and MHCII/HLA-DR.(188, 209)

TolDCs have the ability to suppress inflammatory T-cell prolifera-
tion and favor Treg differentiation to restore Th17/Treg
balance.(207,210,211)

TolDCs promote Treg generation through increased IL-10 pro-
duction and a lower expression of costimulatory molecules, also
preventing antigenic T-cell activation.(14,209) One study has sug-
gested that the ability of 1,25D to increase PFKFB4, an enzyme
in glycolysis, is essential for the ability of dendritic cells to induce
Tregs.(207) This highlights the relevance of 1,25D-mediated alter-
ations inmetabolism inmodulating inflammatory cell function in
disease. It was reported that 1,25D-induced TolDCs expressed
higher levels of membrane-bound TNF (mTNF), which is essential
for the generation of Tregs.(212) Another potential mechanism for
1,25D-specific induction of TolDCs, is the upregulation of PD-L1,
not seen in dexamethasone-treated TolDCs, but required for
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Treg production.(210) Overall, it is currently not fully understood
how 1,25D-treated DCs are able to induce high levels of Tregs.
Of particular interest is the unique metabolic profile, directly
induced by 1,25D,(187,188) to TolDC function. It has been reported
that in mouse models of autoimmune disease TolDCs are immu-
nosuppressive.(14,211,213) Multiple clinical trials have also demon-
strated the safety and therapeutic potential for patient
administration of TolDC, although often these TolDCs are gener-
ated by dexamethasone.(214–216) Further understanding the
mechanisms for 1,25D–TolDCs will be important to move to
human trials and develop therapeutic options for 1,25D–TolDCs
in inflammatory disease.

Anti-Inflammatory Effects of Vitamin D and
Autoimmune Disease

Pathogenesis in autoimmunity can be simplified as an increase in
proinflammatory factors, often cytokines produced by inflamma-
tory T cells, and a decrease in anti-inflammatory factors, such as
Tregs and IL-10. Using vitamin D as a therapeutic option for auto-
immune inflammatory disease is therefore a promising avenue
based on the immunomodulatory actions described earlier in
this review, although translating these potential therapies to
human use has shown only limited success so far.

Multiple sclerosis

Because of the well-described correlation between sunlight
exposure and incidence of MS,(217,218) there have been a variety
of studies on the effects of 1,25D in MS disease models such as
EAE. Treatment with 1,25D has been shown to improve EAE
symptoms with increases in Th2 cells(150) and decreases in Th1
and Th17 cells.(144,156,175) Studies have also confirmed the essen-
tial role of VDR expression in CD4+ T cells, and the expression of
IL-10 to mediate the protective effects of 1,25D in EAE.(219,220) A
potential synergy of 1,25D and estrogen has been suggested
by one EAE study, causing an increase in Tregs.(221) This may be
an important factor in the sex bias of MS incidence and for
potential stratification of patient treatment.(221) In patients with
MS, it has been reported that the ratio of serum 1,25D:25D, but
not 1,25D or 25D alone, correlates directly with peripheral Treg
percentages.(176,222) It was also demonstrated that vitamin D
treatment increased Treg numbers in healthy adults.(223) One
study showed correlation of cytokine levels to disease progres-
sion, showing lower levels of inflammatory cytokines, such as
IFN-γ and IL-17, associated with better disease scores.(164) In this
case, 1,25D treatment of CD4+ T cells from patients with MS
in vitro was able to reduce the production of inflammatory cyto-
kines.(164) In clinical trials, the effects of vitamin D have been
more modest. A trial of patients with relapsing–remitting MS
(RRMS) treated with vitamin D3 (cholecalciferol) showed no
improvement, but suggested that there may be a benefit in
patients already treated with IFN-β.(224) However, in a trial involv-
ing patients with RRMS on IFN-β therapy, no difference was
observed in proportions of T-cell subsets with vitamin D3 treat-
ment.(225) Moreover, in another trial on RRMS patients treated
with IFN-β, no additional effect on patient recovery was seen
upon vitamin D3 treatment, but it was suggested that there
was a potential improvement observed on development of
new lesions.(226)

Rheumatoid arthritis

In a mouse model of RA, collagen-induced arthritis (CIA), 1,25D
treatment showed significant effects, completely halting the
progression of the disease.(227) This improvement was linked to
changes in multiple cell types, including synovial fibroblasts
and monocytes, and likely involved a range of 1,25D-mediated
immunomodulatory effects.(228–230) Another study using CIA
mice showed 1,25D treatment to decrease the production of
IL-17 and increase regulatory cells in the synovial fluid of dis-
eased mice.(231) This study suggested a novel mechanism of
microRNA induction by 1,25D, which then inhibited IL-6 signal-
ing, a key inflammatory cytokine in RA.(231)

Other studies have focused on in vitro treatment of human RA
CD4+ T cells, where RA Th17 cells are able to differentiate into
regulatory cells when cultured with 1,25D.(158,162) These memory
Th17 cells, although losing CCR6 expression, were still able to
migrate to inflamed synovial fluid, showing promise for future
therapeutic use.(162) Additionally, RA T-cell-synovial fibroblast
cocultures have shown that, in combination with TNF-α block-
ade, a 1,25D-mediated decrease in IL-17 aids in dampening syno-
vial inflammation.(232) Although multiple in vitro effects have
been reported for 1,25D and RA, more trials and human studies
evaluating a role for vitamin D supplementation in treating
inflammatory RA are required. This is highlighted in a recent
study, which showed that CD4+ T cells from RA synovial fluid
are less sensitive to suppression by 1,25D than those from
peripheral blood,(233) an important factor to consider when
developing vitamin D therapy.

Systemic lupus erythematosus

T cells are instrumental in SLE pathogenesis, aiding B-cell
responses and amplifying inflammation. Because of the systemic
nature of SLE, in vitro and animal studies are more
limited.(234–236) However, vitamin D3 therapy has shown consid-
erable success in trials with patients with SLE. Clinical studies
focused on disease activity and fatigue in patients with SLE have
found that vitamin D3 supplementation has beneficial
effects.(237) Several of these trials have also reported alterations
to T cells after vitamin D treatment. One relatively large study
of 267 patients showed a significant decrease in inflammatory
cytokines, IL-18, IL-1, IL-6, and TNF-α, in the vitamin-D-treatment
group.(238) Multiple studies have also identified an increase in
Tregs with vitamin D treatment, with less-consistent decreases
in Th17 cells and Th1 cells and increases in Th2 cells.(239–241) In
contrast, a study evaluating the effect of vitamin D on the IFN sig-
nature in patients, a key marker of SLE pathogenesis, showed no
differences between vitamin D and placebo groups.(242) How-
ever, this was a relatively short-term study of 12 weeks and ana-
lyzed the expression of only three signature genes.(242)

Inflammatory bowel disease

Mouse models of IBD have identified multiple anti-inflammatory
effects of vitamin D in the gut.(243–245) A study, using the trinitro-
benzene sulfonic acid (TNBS) IBD model with vitamin D treat-
ment, showed increases in IL-10, IL-4, TGF-β, and IL-4 along
with a decrease in Th1 cells.(149) Another common model of
IBD is the use of IL-10 KOmice. In these studies using these mice,
although lacking the increase in IL-10 associated with 1,25D
activity, vitamin D supplementation was nonetheless able to
improve symptoms and decrease TNF-α expression.(244,245)

Patients with Crohn disease exhibited similar results to the
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mouse studies with increased IL-10 and decreased IFN-γ produc-
tion upon 1,25D treatment.(246) Vitamin D supplementation trials
for IBD have shown some benefit in suppressing inflammatory
disease score.(247–250) However, additional parameters such as
cytokine levels have yet to be investigated. Of particular interest
is the potential use of vitamin D as a supplement to anti-TNF-α
treatment to improve immunomodulation in patients with
IBD.(251,252) Currently, trials have focused on and reported a
reduction in IBD disease progression with the view to move to
larger cohort studies.(248,249)

Type 1 diabetes mellitus

Consistent with the other mouse models of chronic autoimmu-
nity, vitamin D treatment of nonobese diabetic (NOD) mice has
been shown to alleviate DM by reducing the production of IFN-
γ, increasing Treg numbers, and restoring defective T-cell apo-
ptosis.(148,211,253) In contrast, a study using VDR−/− NOD mice
showed that mice lacking the VDR were no worse off in DM pre-
sentation, suggesting that vitamin D has little effect in disease
progression.(254) Human studies are similarly contradictory, two
studies have reported no association with pregnancy/neonatal
25D levels and risk of developing T1DM,(255,256) whereas another
larger study reported a reduced risk of developing T1DM with
neonatal vitamin D supplementation.(257) Several adult cohort
studies have investigated a potential protective effect of vitamin
D on β-cell function. Two studies showed that 1,25D provided no
protection to β cells,(258,259) but another suggested β-cell func-
tion is preserved with a combination of insulin and 1α-
hydroxyvitamin D3 therapy.(260) In the only study to report
changes in the T-cell compartment, an increase in Tregs was
reported in males treated with vitamin D3.

(261) This provides a
good rationale for further studies investigating vitamin D-
mediated improvements in T-cell function in DM and highlights
a potential sex bias in some effects.(261,262)

Airway disease

In several studies, lower circulating 25D levels have been
reported in individuals with severe asthma.(263) Moreover, in
one study, patients with the lowest baseline 25D levels were
found to be at highest risk of severe asthma exacerbation requir-
ing hospital admission over a 4-year period, which may indicate
some degree of causality.(264) Studies aimed at identifying a
mechanistic basis for this relationship have identified positive
correlations between vitamin D status and both the frequency
of FoxP3+ regulatory T cells and levels of the anti-inflammatory
cytokine IL-10 in the airways of patients with asthma,(172,265) con-
sistent with the capacity of 1,25D to drive differentiation of CD4+

T cell populations in vitro.(126,172) Effects on other types of cells
present in the airway may also partly explain these relationships:
For example, 1,25D suppresses production of IgE by B lympho-
cytes(266) and of inflammatory cytokines by neutrophils,(76) but
promotes epithelial cell secretion of anti-inflammatory ST2,
which blocks mast cell priming by IL-33.(267) Notably, 1,25D also
augments the sensitivity of both T cells and monocytes to the
anti-inflammatory activity of corticosteroids, which are a main-
stay of treatment of this disease.(268–270) Despite these in vitro
findings and the relationship between vitamin D status and
asthma severity described above, interventional randomized
controlled trials of vitamin D supplementation in respiratory dis-
ease have so far produced inconsistent results in adults,

although more encouraging results have been described in
children.(263)

Although studies of the effects of vitamin D on inflammatory
disease using mouse models have provided mechanistic insight
into the immune functions of 1,25D, and support the further
investigation of possible benefits of vitamin D supplementation
in human inflammatory disease, there are several caveats to con-
sider. First, as detailed earlier, it is clear that some immune
responses to vitamin D, in particular innate immune responses,
may show significant differences between mice and humans.(45)

It is also important to recognize that although murine models of
immune disease have focused on the effects of enhanced 1,25D
or VDR knockout on inflammation, most human studies have
centered on the effects of vitamin D deficiency (low serum
25D) or vitamin D supplementation and associated increases in
serum 25D. Direct therapeutic administration of 1,25D in humans
is complicated by well-established hypercalcemic side-effects.
Therefore, human studies have relied on the fundamental
assumption that vitamin D supplementation, leading to
increased serum 25D, will also result in increased localized syn-
thesis of 1,25D commensurate with direct administration of
1,25D as commonly used in mice. Conversely, studies of vitamin
D deficiency in humans are assumed to mimic some elements of
VDR ablation in mice. Despite this dichotomy in experimental
strategies for vitamin D in humans and mice, there have been
some studies of the effects of vitamin D deficiency on mouse
immune function that parallel human studies. Dietary vitamin
D deficiency and low serum 25D in mice have been shown to
result in dysregulated inflammation in mouse models of
IBD,(271) similar to the effects of VDR knockout. However, in other
autoimmune disorders such as MS, the EAE mouse model
showed variable responses to vitamin D deficiency, with reports
describing both protective effects of vitamin D deficiency(272)

and increased disease severity,(273) depending on when the defi-
ciency occurred relative to disease induction. These observations
highlight an important objective for future studies of vitamin D,
namely the development of animal models that better reflect
the likely application of vitamin D in either the prevention or
treatment of immune diseases in humans.

Vitamin D and Antiviral Innate Immunity

Mechanisms of antiviral innate immunity parallel those that
counter bacterial infections; viral pathogens are first detected
through a series of pattern recognition receptors, which initiate
signaling cascades that induce type 1 interferon and cytokine
responses, as well as antiviral effectors.(274,275) Several endoso-
mal or intracellular PRRs are activated by various forms of nucleic
acids, such as double-stranded RNA (dsRNA), and act as sensors
of invading viral genomes. Initial transcriptional responses to
detection of viral pathogens are channeled through a limited
number of transcription factors, notably, members of the inter-
feron regulatory factor family such as IRF3 and IRF7, AP-1 family
members, and NF-kB.(276,277) The initial transcriptional wave and
downstream interferon signaling give rise to the production of a
number of antiviral effectors.

Numerous epidemiological and clinical studies have exam-
ined links between vitamin D status and immune protection
against several classes of viruses, notably several viral respiratory
pathogens, hepatitis viruses, human immunodeficiency virus,
and herpes simplex viruses. For a recent comprehensive over-
view of clinical evidence for vitamin D signaling in antiviral
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immunity, readers are referred to the review by Lee.(278) We will
focus here on vitamin D signaling in viral respiratory tract infec-
tions. Available epidemiological data support a role for vitamin
D in reducing rates of acute respiratory tract infections. A meta-
analysis by Martineau and colleagues found that daily or weekly
vitamin D supplementation reduced the incidence of such infec-
tions, and that the effects were most pronounced in subjects
with the lowest levels of circulating 25D.(279) One of the most
compelling studies in this regard was a randomized placebo-
controlled trial in Japanese school children, wherein supplemen-
tation diminished the incidence of seasonal influenza A (InA),
with themost striking results in a subgroup that had not received
supplements prior to the trial.(280)

Many respiratory viruses target lung epithelial cells, which are
highly vitamin D responsive. The bulk of the evidence suggests
that vitamin D signaling boosts primary antiviral immunity, while
suppressing proinflammatory cytokine responses. Hansdottir
and colleagues(281) found that primary human lung epithelial
cells express CYP27B1, and that, importantly, its expression was
enhanced by dsRNA. 1,25D strongly induced expression of CAMP
and CD14, and evidence was presented that proinflammatory
NF-κB signaling was downregulated. Similarly, Telcian and col-
leagues found that respiratory syncytial virus (RSV) infection of
bronchial epithelial cells induced 1α-hydroxylase activity.(282)

One of the key elements of 1,25D-mediated antiviral responses
is the robust induction of CAMP expression. The secreted form
of CAMP, LL-37, appears to exert antiviral activity by multiple
mechanisms. For example, LL-37 augments signaling the PRR
TLR3, a detector of viral dsRNA. Lai and colleagues found that
LL-37 stimulated TLR3 signaling induced by poly(I:C) and facili-
tated recognition of viral dsRNAs by TLR3.(283) Subsequent work
provided evidence that LL-37, an amphipathic cationic peptide,
bound directly to dsRNA and trafficked to endosomes where
TLR3 is located. Dissociation of LL-37-bound dsRNA occurred in
acidic endosomal compartments.(284)

LL-37 may also have direct antiviral activity against InA virus.
Tripathi and colleagues found that LL-37 binds directly to InA
viruses, and electron microscopy data suggested that LL-37
directly disrupted viral membranes.(285) Similar evidence was
found for a direct antiviral effect of human and murine forms
of CAMP in mouse models of InA infection. Moreover, treatment
of infected mice with LL-37 reduced pulmonary levels of proin-
flammatory cytokines.(286) Likewise, LL-37 has antiviral activity
against RSV in vitro. Treatment of infected epithelial cells pre-
vented virus-induced cell death and suppressed viral replication
via inhibition of assembly of viral particles.(287) There may also be
a role for another 1,25D-inducible AMP, HBD2/DEFB4, in antiviral
responses. HBD2 expression is induced by RSV infection in lung
epithelial cells, and in vitro studies showed that it had direct anti-
viral activity by blocking viral entry possibly via disruption of the
integrity of the viral envelope.(288) In another study by Hansdottir
and colleagues,(289) vitamin D signaling enhanced production of
NF-κB inhibitor IKBα and suppressed expression of NF-κB target
genes in RSV-infected cells. The effect of 1,25D could be mim-
icked by transduction of a nondegradable form of IKBα. Impor-
tantly, treatment with 1,25D did not lead to an increased viral
load, leading to the conclusion that vitamin D suppressed inflam-
matory responses without compromising host defense in
infected cells.(289) Similar conclusions were reached by Stoppe-
lenburg and colleagues in a model of RSV infection in which
the VDR was expressed in A549 human lung epithelial cells.(290)

Available results for rhinovirus infection are mixed. In one study
using primary human bronchial epithelial cells, no significant

effect of 1,25D on rhinovirus viability was observed.(291) Con-
versely, in other experiments in bronchial epithelial cells, rhinovi-
rus infection decreased expression of the VDR and CYP24A1,
whereas 1,25D treatment decreased rhinovirus replication and
release. The effect of 1,25D was accompanied by increased
expression of CAMP and interferon-stimulated genes.(282)

Other facets of the antibacterial mechanisms that are acti-
vated by vitamin D may also play a pivotal role in mediating its
antiviral functions. NOD2 is known to recognize single-stranded
RNA to trigger type I interferon antiviral responses.(292) Thus, the
ability of 1,25D to strongly induce NOD2 expression(52) may indi-
rectly enhance antiviral activity. NOD2 is also known to trigger
autophagy,(57) and autophagy has been shown to be induced
by herpes simplex virus and human cytomegalovirus herpes
virus infection.(293) Thus, the potent effects of 1,25D in promot-
ing autophagy to enhance the intracellular environment for bac-
terial killing may also play a role in antiviral activity by facilitating
viral clearance.(294,295) By packaging viral particles for lysosomal
degradation and antigen-presentation, autophagic encapsula-
tion provides an initial step in development of adaptive antiviral
immune responses.(296) However, it is important to recognize
that some viruses are able to hijack components of autophagy
to promote viral replication. For example, hepatitis C virus infec-
tion is known to promote autophagy,(297) but the resulting lipid-
filled autophagosomes can act to enhance the assembly of hep-
atitis C virions.(298)

Autophagy is another key mechanism for controlling viral
infection and replication, and both 25D and 1,25D have been
shown to enhance macrophage expression of the autophagy
marker LC3.(31,58) Thus, autophagy is subject to the same local-
ized innate immune intracrine vitamin D metabolic system
observed for antibacterial proteins.(299) Vitamin D can promote
autophagy first by direct induction of key enzyme drivers of
autophagy such as promoting Beclin 1 and PI3KC3.(300) However,
it can also enhance autophagy indirectly by suppressing inhibi-
tion of autophagy by the mTOR signaling pathway,(301) and by
stimulating intracellular calcium and nitric oxide (NO) by 1,25D
to enhance PI3KC3 activity.(302) Another key indirect mechanism
for 1,25D-mediated induction of autophagy is via cathelicidin
expression, which, in turn, stimulates key autophagy factors such
as Beclin 1.(58) The overall autophagy effect of vitamin D appears
to be as a homeostatic regulator of the balance between autop-
hagy and apoptosis to enable optimal antiviral responses to
infection.(303) The potential benefit of vitamin-D-induced autop-
hagy as an inhibitory mechanism to counter viral infection has
been reviewed in detail elsewhere,(303) and notably includes
beneficial effects on infection by hepatitis C,(304) InA,(305)

rotavirus,(306) and HIV-1.(307,308)

Comorbidities, such as COPD and asthma, can aggravate
respiratory infections, and available, albeit partially conflicting,
results suggest that vitamin D metabolism is disrupted in these
conditions. TGF-β1 levels are elevated in COPD and suppress
expression of host defense mediators. Schrumpf and colleagues
investigated the combined effects of 1,25D and TGF-β1 on air-
way epithelial cell host defenses in vitro.(309) TGF-β1 inhibited
1,25D-induced CAMP expression in part by augmentation of
CYP24A1 production. TGF-β1 also attenuated the expression of
vitamin D-independent defense mediators, consistent with an
attenuation of vitamin D-dependent and vitamin D-independent
host defenses.(309) However, these findings were not borne out
by the results of a longitudinal study by Jolliffe and
colleagues,(310) who found vitamin D supplementation did not
augment circulating 25D levels to the same degree in patients
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with COPD or asthma as in healthy controls. This may have been
because of reduced 25-hydroxylation of vitamin D, but could not
be attributed to elevated 25D catabolism in COPD, as CYP24A1
levels were somewhat reduced in patients with COPD. 1,25D-
dependent gene expression signatures were also modestly
attenuated in COPD.(310)

Vitamin D and COVID-19

Given the extensive number of reports establishing an antiviral
role for vitamin D signaling, it is reasonable to speculate the vita-
min D sufficiency may have a role in attenuating the current out-
break of the novel severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) that is causing the widespread
COVID-19. Although randomized controlled trials and large
population studies assessing vitamin D status and severity of
COVID-19 have yet to be completed, there is existing evidence
to suggest that vitamin D could exert a protective effect against
the disease. SARS-CoV-2 initially uses immune evasion
mechanisms, which in certain patients, is accompanied with ele-
vated proinflammatory cytokine release, increased risk of
pneumonia,(311) sepsis, and subsequent acute respiratory dis-
tress syndrome (ARDS) that frequently results in mortality.(312)

In this regard, there is evidence for a protective role of vitamin
D in many conditions associated with pneumonia, cytokine
hyperproduction, and ARDS.(313,314) 1,25D has also recently been
proposed as a repurposed drug for InA H5N1 virus-induced lung
injury, an infectious disease with characteristic features similar to
COVID-19.(315) The study found that vitamin D supplementation
in H5N1 virus-infected mice decreased the lung injury score,
improved mouse lung edema, and increased survival of
H5N1-virus–infected mice. Moreover, vitamin D treatment was
beneficial in animal models of ARDS as 1,25D was shown to
reduce LPS-induced–increased lung permeability by regulating
activity of the renin-angiotensin system and expression of angio-
tensin converting enzyme 2 (ACE2), the host cell receptor
responsible for mediating infection by SARS-CoV-2.(316) Consis-
tent with this, gene-set–enrichment analysis of genomic data
sets identified the VDR as being coexpressed with both ACE2
and FURIN genes, both of which have a key role in promoting
high-affinity binding of viruses and their entry into human cells,
in human tissues.(317) The study also reported that 1,25D altered
expression of genes encoding human proteins for 19 of 27 (70%)
of SARS-CoV-2 proteins.

Vitamin D deficiency in individuals self-isolating because of
the COVID-19 pandemic may be aggravated by confinement
indoors, a condition that could be reversed by short, daily expo-
sures to the sun in the middle of day.(318) Moderate exposure to
sunlight would promote sufficient vitamin D production in the
skin from March through to September in most countries in
northern latitudes. Several epidemiological findings support a
therapeutic role for vitamin D in COVID-19 pathogenesis. To illus-
trate, the number of cases in countries in the southern hemi-
sphere, specifically those that lie below 35� North, have a
relatively lower mortality rate.(319) As an example, Australia is
1 week behind the United Kingdom in the spread of the virus;
however, if one compares the mortality (68 per million) in the
United Kingdom with the mortality (2 per million) in Australia
at corresponding dates in the pandemic, there is a large discrep-
ancy. It is important to note that there are outliers; for instance,
mortality is low in Scandinavian countries that instituted confine-
ment protocols such as Norway. However, the country is

relatively thinly populated and vitamin D insufficiency is rare
because of widespread consumption of cod liver oil supple-
ments, as well as fortification ofmilk and dairy products.(320) Con-
versely, Italy and Spain have higher total death counts, as well as
a relatively high prevalence of vitamin D deficiency, possibly
because of the population’s strong preference of shade under
the strong sun,(321) as well as darker skin pigmentation, which
decreases vitamin D synthesis.(322) Another trend observed is
the number of COVID-19 case-fatality rates that increase with
age and chronic disease comorbidity, both of which are associ-
ated with lower serum 25D levels.(323–326)

One recent study suggested a crude negative correlation
between mean vitamin D levels in European countries and the
number of COVID-19 cases and deaths caused by the dis-
ease(327); in contrast, another group that explored COVID-19
transmission and UV radiation in 62 Chinese cities did not find
evidence for such an association.(328) However, as mentioned
earlier, randomized controlled trials and large population studies
are still required to evaluate whether vitamin D could be of
benefit, as well as whether it could be used as a preventive or a
therapeutic measure. Given that ethnic minorities are dispropor-
tionately affected by COVID-19 in the United Kingdom, the
United States, and other countries in Europe, further research is
warranted, especially because there is evidence for vitamin D
deficiency in these ethnic groups.(329,330) At this writing, there
are 18 clinical trials registered (www.clinicaltrials.gov) investigat-
ing links between vitamin D and COVID-19,(331–344) a number
that is growing rapidly.

Conclusions

There is strong evidence that vitamin D metabolic enzymes are
expressed in virtually all cells in the innate and adaptive arms
of the immune system. Considering the findings discussed
above, vitamin D signaling appears to influence susceptibility
to and severity of bacterial and viral infection via several mecha-
nisms. These include its direct effects on the production of anti-
microbial peptides and cytokines, as well as its regulation of the
NF-κB pathway during infection. Overall, preclinical and clinical
data propose a strong link between vitamin D status and suscep-
tibility to infectious and autoimmune diseases. There is evidence
that vitamin D deficiency during early life may predispose the
immune system to a greater risk of autoimmune disease or
allergy.(345) Several laboratory and clinical studies have provided
support for a role of vitamin D in combating respiratory tract
infections. Evaluation of vitamin D supplementation as an adju-
vant therapeutic intervention could be clinically and economi-
cally significant in the ongoing COVID-19 crisis, as well as in the
treatment of other infectious diseases. Based on the immunoreg-
ulatory properties of vitamin D presented above, improving cir-
culating 25D levels may slow progression of disease or even
ameliorate patient survival. Though the evidence for amechanis-
tic role for vitamin D signaling in immune system regulation is
highly compelling, there is still a need for large-scale randomized
controlled trials to confirm whether maintaining vitamin D suffi-
ciency reduces the incidence and severity of infections and/or
autoimmune diseases.
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