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Objective. Non-small cell lung cancer (NSCLC) explains about 80 percent of whole lung cancers, and its 5-year survival rate is
impoverished, as when people are first diagnosed, 68% of whom are identified at a dangerous stage.0e molecular mechanisms of
NSCLC are still being explored.Methods. GSE18842 and GSE19804 were exerted to scan for diversely expressed genes (DEGs) in
NSCLC, and then we used GEPIA for the validation of DEGs expression. 0e prognostic values were determined through
Kaplan–Meier analysis.0ree target prediction databases indicated potential microRNAs (miRNAs), while miRNet predicted hsa-
miR-1-3p′s upstream long non-coding RNAs (lncRNAs) and pseudogenes. UALCAN was utilized to identify the co-expressed
genes of PAICS, while enrichment analysis on them was managed with Enrichr. Results. We initially found that the gene ex-
pression level of cyclin B1 (CCNB1), cyclin-dependent kinases1 (CDK1), and phosphoribosylaminoimidazole succinocarbox-
amide synthetase (PAICS) had a notable increase in NSCLC. We predicted 6, 10, and 7 microRNAs to target CCNB1, CDK1, and
PAICS, respectively. Among miRNA-mRNA (microRNA-messenger RNA) pairs, we deduced that the hsa-miR-1-PAICS axis was
the most potential one to inhibit the occurrence of NSCLC. We also noted that the hsa-miR-1-3p-PAICS axis participated in
regulating the process of mitosis with mechanical functions. Moreover, we identified 5 pseudogenes and 33 long non-coding
RNAs (lncRNAs) that might inhibit the hsa-miR-1-3p-PAICS axis in NSCLC. Conclusions. 0e pseudogene/lncRNA-hsa-miR-1-
3p-PAICS is very important in NSCLC on the basis of this study, thus providing us with effective treatments and promising
biomarkers for the diagnosis of NSCLC.

1. Introduction

So far, there are many virulent tumors, especially NSCLC,
which mainly explains 80% of cases in China. It is worth
noting that NSCLC contains many subforms, such as
squamous cell carcinoma and adenocarcinoma. It is re-
ported that about 68% of patients are found at a hazardous
stage with a low five-year survival rate [1]. Surgery [2],
radiation [3], chemotherapy [4], biotherapy [5], immuno-
therapy [6], and electric field therapy [7] are the current
treatment options for NSCLC. However, the therapeutic
result remains poor with the usage of several treatment
procedures. 0e primary reason is that the pathophysiology
of the disease and its prognostic markers remain unclear.

0ere is a non-coding RNA, whose length is beyond 200
nucleotides, called lncRNA. Numerous studies have estab-
lished that lncRNA has a noteworthy function in manifold
biological processes, including dosage compensation [8],
epigenetic control [9], cell cycle regulation [10], and cell
differentiation regulation [11], which has been a focus of
genetic study. Generally, lncRNA transcripts can influence
the activity of particular proteins by chemically linking to
them. To regulate other RNA transcripts, competing en-
dogenous RNAs (ceRNAs) can strive for shared miRNAs. A
non-coding pseudogene can attach to and compete with the
same collection of miRNAs via microRNA response ele-
ments (MREs) as a combination zone [12], affecting the
distribution of miRNA molecules on all their target
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miRNAs. It has been proved that pseudogenes are a con-
vincing example of ceRNA as they presumably include many
of the same MREs as their ancestor genes and can operate to
combine with the target miRNAs [13]. Furthermore, ceRNA
may suppress the activity of some miRNAs [14], whose
decreased expression may lead to overexpression of par-
ticular genes associated with NSCLC.

0rough a variety of analytical processes, we created
a network connected with the evolution of NSCLC in this
study. We are sure that this research will bring new methods
to the fields of treatment and pathogenesis of NSCLC.
According to Figure 1, you would have a good un-
derstanding of our research process.

2. Materials and Methods

2.1. 5e Analysis of Microarray Data and Scanning for Di-
verselyExpressedGenes. Aiming at comparing genome-wide
gene expression of NSCLC with normal tissues, we searched
the widely utilized GEO database (https://www.ncbi.nlm.
nih.gov/geo/) [15]. For future studies, the GSE18842 dataset
(46 tumor and 45 normal samples) and the GSE19804
dataset (60 tumor and 60 normal samples) were used. We
filtered the DEGs on GSE18842 and GSE19804 microarray,
respectively, using the R program limma [16] with the
condition that p value is less than 0.05, log2FC is greater than
2. After that, We intersected the results to obtain the
common DEGs thus drawing a Venn diagram.

2.2. 5e Analysis of Functional Enrichment, Interplay Net-
work, and the Recognition of Hub Gene. In order to further
elucidate the dormant functional annotation and pathway
enrichment-related with the DEGs [17], Gene Ontology
(GO) analysis, was conducted using the clusterProfiler
package (version: 3.18.0) [18], and p< 0.05 indicates sta-
tistically remarkable variances. 0e network of DEGs’
protein-protein interactions (PPIs) was made through
STRING (version: 11.0) [19], and the threshold score was 0.4.
We deleted protein nodes that did not have a relationship
with other proteins. Additionally, the PPI network was
examined by Cytoscape (version 3.8.0) software to recognize
key modules and hub genes (which is shown in text foot
notation 8) (version 3.7.2) [20]. We also use the MCODE
(version: 2.0.0) plugin to identify important clustering
modules on the foundation of the following criteria: the
score of MCODE >10 and node count >20, and by using the
clusterProfiler software [21], the genes’ pathway enrichment
analysis included in these modules was conducted. Fol-
lowing that, we used the CytoHubba (0.1) plugin to scan for
the PPI network and identified genes with a degree greater
than 30 as NSCLC hub genes [22].

2.3. 5e Survival Analysis and Confirmation. To thoroughly
assess hub genes’ prognostic relevance in NSCLC, we use the
survival software (version 3.2-7) for survival analyses, with
the default settings and the median as the cut-off value [23].
0e sample of NSCLC was picked to be the dataset. Besides,

the Cox proportional hazards and Kaplan-Meier models
were exerted to compute hazard ratio (HR). p< 0.05 means
the dissimilarity is statistically marked. GEPIA database
(http://gepia.cancer-pku.cn/detail.php) [24], which is to
examine the expression data from RNA sequencing, con-
tains data from 483 cancers and 347 normal samples from
the TCGA and GTEx projects’ RNA sequencing programs.
To assess the above gene survival through this database, the
Group Cutoff to Quartile, the Cutoff-High to 75%, the
Cutoff-Low to 25%, and the 95% Confidence Interval to NO
were set. Betwixt tumor and normal samples, to study the
differential expression and to carry out differential expres-
sion analysis simultaneously, we set all parameters to default
values. p< 0.05 means the dissimilarity is statistically
notable.

2.4. 5e Prediction of miRNA of Hub Genes. A rather com-
plete approach to microRNA (miRNA) prediction was
conducted in this investigation. TargetScan (https://www.
targetscan.org/) [25], miRmap (https://mirmap.ezlab.org/)
[26], miRDB (http://mirdb.org) [27, 28], PITA (https://
genie.weizmann.ac.il/pubs/mir07/mir07_dyn_data.html)
[29], microT (http://www.microrna.gr/webServer) [30, 31],
RNA22 (https://cm.jefferson.edu/rna22/) [32], miRWalk
(http://mirwalk.umm.uni-heidelberg.de/) [33], miRanda
(http://www.microrna.org/microrna/home.do) [34]. Only
the miRNAs that were listed in several prediction systems
were picked for further investigation.

2.5. Screening for Key miRNAs. We used Cytoscape to
generate three target gene networks in this article [20].
Following that, the predictive importance of miRNA ex-
pression of hub genes that were found in NSCLC was de-
termined through the Kaplan-Meier plotter (https://kmplot.
com/) [35], a web-based database for gene expression. 0e
data of this database contains information about lung cancer
[36], ovarian cancer [37], gastric cancer [38], and breast
cancer [39].

To summarize, miRNAs were initially taken as input.
Based on the median expression value, the complete amount
cases of NSCLC were categorized into a lower expressed
classification and a higher expressed classification. 0en we
conducted Kaplan–Meier survival charts with the use of this
web page. Additionally, we generated and published the HR,
95% CI, and logrank p-value on the homepage automati-
cally. p-value <0.05 denotes statistically notable.

2.6. ENCORI Database Analysis. 0e ENCORI database
(https://starbase.sysu.edu.cn) is a free platform to research
the interactions of non-coding RNAs [40, 41]. We exerted
ENCORI to assess the bond betwixt miRNAs and genes or
pseudogenes expression and R -0.1 and p-value of 0.05 were
found to be the cut-off values for associated miRNA-gene/
pseudogene pairings. Additionally, the ENCORI database
was applied to foretell pseudogenes and lncRNAs that
possibly tie to hsa-miR-1-3p.
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2.7. UALCAN Database Analysis. UALCAN (http://ualcan.
path.uab.edu) is a database to evaluate the diverse expression
genes and survival effects that enables simple entry to
publicly accessible cancer transcriptome data, NSCLC [42,
43] included. 0e database work to identify PAICS co-
expressed genes in NSCLC in this investigation. 0en, as
noted previously, these co-expressed genes were cross-
referenced with those obtained from the GEPIA database.
0e co-expressed genes that were shown frequently in both

databases were reclassified as co-expressed genes and we
selected them to perform further enrichment analysis.

2.8. Enrichr Database Analysis. As previously published
[44], we performed functional annotation and KEGG
pathway enrichment analysis on the co-expressed genes of
PAICS via the Enrichr database (https://maayanlab.cloud/
Enrichr/). 0ere were three classifications (BP, CC, and MF)
in the GO functional annotation. On the homepage, the first
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Figure 1: 0e process of this study.
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five enriched GO terms and KEGG pathways were shown
and downloaded as pictures.

2.9. Identification of lncRNAs Upstream of miRNA. To an-
ticipate the regulator of hsa-miR-1-3p, we use LncACTdb 2.0
(http://www.bio-bigdata.net/LncACTdb/) [45], which con-
tains extensive details on ceRNAs in various species and
disorders. Similarly, so as to foretell possible lncRNAs that
were associated with hsa-miR-1-3p, we used miRNet
(https://www.mirnet.ca/) [46], a comprehensive platform
that combined data from numerous miRNA-related data-
bases (TarBase, miRTarBase, miRecords, and miRanda). We
utilized ENCORI [40], miRNet [46], and LncACTdb [45, 47]
to predict the lncRNA upstream of hsa-miR-1-3p. By
combining the data, we achieved the maximum number of
possible lncRNAs for hsa-miR-1-3p.

3. Results

3.1. IdentificationofDEGs. 0eGSE18842 dataset consists of
2540 DEGs, 1084 of which are up-regulated and 1456 of
which are down-regulated (Supplementary Table S1). 1136
DEGs were identified by the GSE19804, comprising 337
highly expressed genes and 799 low expressed genes. Venn
graphs were constructed for two sets of DEGs by a bio-
informatics and evolutionary genomics online application.
Finally, we classified 919 DEGs, comprising 261 UP and 658
DOWN genes (Figures 2(a)–2(f)).

3.2. Dinucleotides’ Functional Enrichment Analysis, In-
tegration of Networks which Show Proteins Interact with Each
Other, and Analysis Modular. Intending to gain a better
comprehension of DEGs’ biological roles, GO enrichment
analysis was performed. 0e BP category enriched for
overexpressed DEGs involved in the division of the or-
ganelles, the nucleus, and the mitotic division of the nucleus
(Figure 3(a)). By contrast, the DEGs of down-regulation are
abundant in controlling vasculature development, regula-
tion of angiogenesis, and cell-substrate adhesion
(Figure 3(b)). 0e increased DEGs in the CC category are
mostly localized in the spindle and condensed chromosome
(Figure 3(a)). Down-regulated DEGs were commonly placed
in the collagen-containing extracellular matrix and cell-cell
junction (Figure 3(b)). Up-regulated genes are primarily
concentrated in extracellular matrix structural constituents
and metalloendopeptidase activity in the MF category. 0e
down-regulated DEGs are mostly actin binding, extracel-
lular matrix structural components, and cytokine binding
(Figure 3(b)). Furthermore, revealed by KEGG pathway
analysis, what was considered highly expressed in cell cycle,
Oocyte meiosis, and ECM-receptor interaction were up-
regulated DEGs (Figure 3(c)). In comparison, down-
regulated DEGs are much more frequent in Cytokine-
cytokine receptor interaction, as well as Cell adhesion
molecules (Figure 3(d)).

Next, we constructed the PPI system through STRING
and evaluated it through the Cytoscape program. We used
the MCODE plugin and obtained three major clustering

modules and examined the functional annotation’s degree
for these modules (Figure 4). 0e first cluster module
contains 63 nodes and 1777 edges. Module 1 genes are
primarily involved in progesterone-mediated oocyte mat-
uration (Figures 4(a), 4(d)). Module 2 of the cluster consists
of 43 nodes and 427 edges. Module 2 contains genes mainly
involved in malaria and the interleukin 17 (IL-17) pathway
(Figures 4(b), 4(e)). 0e third cluster module contains 55
nodes and 199 edges. In the module, the primary genes are
related to extracellular matrix-receptor (ECM-receptor)
interaction, transcription dysregulation in cancer, and
protein digestion and absorption (Figures 4(c), 4(f)). In
total, 125 DEGs were identified using the degree method in
the CytoHubba plugin for further research.

3.3. Survival Analysis and Validation. 0e predictive sig-
nificance of 125 important genes was assessed through the
r.survival program. Examination of survival data proved
most genes were not related to overall survival (OS) in
NSCLC patients. But Cox proportional risk suggested that
EZH2, CCNB1, MMP9, SOX2, FCGR3B, IL6, COL1A1,
PAICS, and CDK1 were substantially linked with the op-
erating system in NSCLC patients (Table 1). 0ree genes
(CCNB1, CDK1, and PAICS) have been shown to have
a fairly significant effect on patients’ OS rates, and the tumor
and normal groups’ differences is statistically significant
(Figures 5(a)–5(f)). Overall, CCNB1, CDK1, and PAICS
could be three critical genes that influence tumor stage
development of NSCLC and they could produce a poor
prognosis.

3.4. hsa-miR-1-3p-PAICS Axis is Picked out to be a Potential
Pathway which is Linked to the Evolution of NSCLC.
MiRNAs chiefly functioned in negative gene regulation and
are important in human biological processes, cancer initi-
ation and progression included. As a result, we used eight
prediction programs to determine the upstream miRNAs of
CCNB1, CDK1, and PAICS (Table 2). Lastly, we discovered
6, 10, and 7 upstream miRNAs which may, respectively,
target CCNB1, CDK1, and PAICS. To facilitate visualization,
miRNA-CCNB1, miRNA-CDK1, and miRNA-PAICS sub-
networks were constructed, as seen in Figures 6(a)–6(c). 0e
predictive significance of these miRNAs in NSCLC was then
determined by the TCGA database. As seen in Figure 6(d),
among all predicted CCNB1 miRNAs, elevated appearance
of hsa-miR-548b-5p is in connection with a favorable OS
rate in NSCLC patients, whereas highly expressed hsa-miR-
3130-5p is in connection with a bad OS in NSCLC patients.
Higher expression of hsa-miR-6501-3p, hsa-miR-188-3p,
and hsa-miR-186-3p in CDK1 was, respectively, connected
to a favorable prognosis (Figure 6(e)). In PAICS, upregu-
lation of hsa-miR-374a-5p and hsa-miR-1-3p, respectively,
corresponded to favorable prognosis. Given the functional
mechanism and carcinogenic potential of CCNB1, CDK1,
and PAICS miRNAs, these three genes’ upstream miRNAs
ought to be tumor suppressive. As a result, we chose hsa-
miR-548b-5p, hsa-miR-186-3p, hsa-miR-6501-3p, hsa-miR-
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KEGG pathway analysis.
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188-3p, hsa-miR-374a-5p, hsa-let-7c-3p, hsa-miR-374b-5p
and hsa-miR-1-3p for further research of miRNA-mRNA
pair expression relationships. 0ere is a strong negative
correlation only in hsa-miR-1-3p with PAICS in NSCLC, as
seen in Figures 6(g)–6(n). At the same time, we exerted
GEPIA database to judge hsa-miR-1-3p′ expression differ-
ence, and the consequence was that its expression was
notably decreased in patients in comparison with the nor-
mal, proving that the research of the miRNA has clinical
significance (Figure 6(o)). In summary, the most plausible
pathway mediating the staging progression of NSCLC ought
to be the hsa-miR-1-3p-PAICS axis.

3.5.5ehsa-miR-1-3p-PAICSAxis is Related to the Regulation
of Mitosis Revealed by Co-Expression and Enrichment
Analyses. Two datasets were utilized for co-expression
analysis: UALCAN and GEPIA. We obtained, re-
spectively, 1898 and 200 (the top 200 most influential genes)

co-expressed genes from the two database, and Supple-
mentary Table S2 itemized them.We discovered that 185 co-
expressed PAICS genes were frequent in both databases
(Figure 7(a), Table 3). 0ese genes were subjected to GO
functional annotation and KEGG pathway enrichment
analysis using the enrichment of the Enrichr database.
Mitotic sister chromatid segregation and organelle fission
are included in the BP class (Figure 7(b)). 0e CC class
encompasses chromosome and centromeric regions
(Figure 7(c)), whereas the MF class has motor activity and
chemokine activity (Figure 7(e)). KEGG pathways that have
been enriched mainly indicate the PPAR signaling pathway
(Figure 7(d)). 0ese results indicate that by controlling the
chromosome and centromeric region the hsa-miR-1-3p-
PAICS axis may be implicated in mitotic sister chromatid
segregation, PPAR signaling pathway, and motor activity,
thus limiting the development of NSCLC.

3.6. Hsa-miR-1-3p-PAICS’s Upstream Dormant Pseudogenes
and lncRNAs. Pseudogenes and lncRNAs both are signifi-
cant subtypes of non-coding RNAs, whose main function is
interacting with mRNA as competing endogenous RNAs by
competing for common miRNAs. As a result, we used the
ENCORI database to anticipate dormant pseudogenes up-
stream of hsa-miR-1-3p-PAICS. In Figure 8(a), 119 pseu-
dogenes were identified. 0ese pseudogenes should be
oncogenes in NSCLC on the foundation of the ceRNA
mechanism. We exerted GEPIA to determine 119 pseudo-
genes’ expression degrees. Finally, only five pseudogenes
were substantially elevated in the part with cancer compared
to normal controls: FAM91A3P (shown in Figure 8(b)),
LRRC37A6P (shown in Figure 8(c)) lly, we predicted certain
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Figure 4: 0e analysis of MCODE in generic DEGs. (a b, c) 0e three important modules. (d, e, f ) 0e three important modules pathway
enrichment analyses.

Table 1: Survival analysis of all hub genes showed 8 genes with
a prognostic value.

Gene HR 95% CI Logrank P
EZH2 1.31 1.15–1.48 3.80E-05
CCNB1 1.62 1.37–1.91 8.70E-09
MMP9 1.14 1–1.29 0.046
SOX2 1.33 1.13–1.57 7.00E-04
FCGR3B 1.2 1.06–1.36 0.0046
IL6 1.32 1.16–1.49 2.00E-05
COL1A1 1.33 1.17–1.51 1.20E-05
PAICS 1.3 1.14–1.47 6.10E-05
CDK1 1.4 1.9–1.21 2.60E-04
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Figure 5: All DEGs’ differential expression and Survival analysis results. Differential expression and survival analyses were performed
through the GEPIA database. 0e figures manifested that all three genes were diversely expressed in normal samples as well as tumor
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Table 2: Prediction of miRNAs binding to CCNB1, CDK1, or PAICS.

Gene symbol miRNA name Predicting program Number
CCNB1 Hsa-miR-548b-5p miRWalK, miRDB, TargetScan 3
CCNB1 Hsa-miR-892b miRWalK, miRDB, TargetScan 3
CCNB1 Hsa-miR-3130-5p miRWalK, miRDB, TargetScan 3
CCNB1 Hsa-miR-548w miRWalK, miRDB, TargetScan 3
CCNB1 Hsa-miR-4482-5p miRWalK, miRDB, TargetScan 3
CCNB1 Hsa-miR-548aq-5p miRWalK, miRDB, TargetScan 3
CDK1 Hsa-miR-208a-5p miRWalK, miRDB, TargetScan 3
CDK1 Hsa-miR-186-3p miRWalK, miRDB, TargetScan 3
CDK1 Hsa-miR-378a-5p miRWalK, miRDB, TargetScan 3
CDK1 Hsa-miR-208b-5p miRWalK, miRDB, TargetScan 3
CDK1 Hsa-miR-1267 miRWalK, miRDB, TargetScan 3
CDK1 Hsa-miR-5009-3p miRWalK, miRDB, TargetScan 3
CDK1 Hsa-miR-6083 miRWalK, miRDB, TargetScan 3
CDK1 Hsa-miR-6762-3p miRWalK, miRDB, TargetScan 3
CDK1 Hsa-miR-4698 miRWalK, miRDB, TargetScan 3
CDK1 Hsa-miR-6501-3p miRWalK, miRDB, TargetScan 3
CDK1 Hsa-miR-188-3p miRWalK, miRDB 2
PAICS Hsa-miR-128-3p PITA, miRmap, microT, miRanda 4
PAICS Hsa-miR-339-5p PITA, RNA22, miRmap, miRanda 4
PAICS Hsa-miR-142-5p PITA, miRDB, miRmap, microT 4
PAICS Hsa-miR-146a-5p PITA, miRDB, miRmap, miRanda 4
PAICS Hsa-miR-516b-5p PITA, miRDB, miRmap, microT 4
PAICS Hsa-miR-340-5p PITA, miRmap, microT 3
PAICS Hsa-miR-10b-5p PITA, miRmap, miRanda 3
PAICS Hsa-miR-1-3p PITA, miRanda 2
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Figure 6: Identification of upstream potential miRNAs of CCNB1, CDK1 and PAICS. (a-c) 0e miRNA-CCNB1 network, miRNA-CDK1
network, and miRNA-PAICS network that were constructed by Cytoscape. (d-f ) Potential upstreammiRNAs’ prognostic values of CCNB1,
CDK1, PAICS in NSCLC. (g-n) Expression correlation of hsa-miR-548b-5p and CCNB1, hsa-miR-188-3p and CDK1, hsa-miR-6501-3p and
CDK1, hsa-miR-188-3p and CDK1, hsa-miR-374a-5p and PAICS, hsa-let-7c-3p and PAIC, hsa-miR-374b-5p and PAICS, hsa-miR-1-3p
and PAICS in NSCLC. (o) Diverse expression of hsa-miR-1-3p based on GEPIA database.
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Figure 7: Results of co-expressed genes’ enrichment analysis of PAICS in NSCLC. (a) 0e co-expressed genes of PAICS both in UALCAN
and GEPIA databases. (b) First five enriched BP items. (c) First five enriched CC items. (d) First five enriched MF items. (e) First five
enriched KEGG items.

Table 3: 0e co-expressed genes of PAICS commonly appeared in
UALCAN database and GEPIA database.

Common co-expressed genes
of PAICS Ra Rb

PPAT 0.87 0.85
SRP72 0.8 0.75
POLR2B 0.72 0.71
LYAR 0.71 0.67
NCAPG 0.69 0.66
WDR43 0.67 0.61
CCNA2 0.66 0.63
CENPE 0.66 0.64
NAA15 0.66 0.62
ABCE1 0.66 0.61
CHEK1 0.66 0.63
PRR11 0.65 0.59
CCNB1 0.65 0.63
SKA1 0.64 0.61
CDCA5 0.64 0.63
BUB1 0.64 0.6
CDC25A 0.64 0.62
PSMD12 0.64 0.59
MCM10 0.64 0.61
KIF4A 0.64 0.61
CKAP2L 0.63 0.59
TPX2 0.63 0.6
DEPDC1 0.63 0.6
MELK 0.63 0.59
FARSB 0.63 0.59
KIAA1524 0.63 0.59
R3HDM1 0.63 0.61
BUB1B 0.63 0.62
CENPO 0.63 0.59
PA2G4 0.63 0.56
FEN1 0.63 0.62
FANCI 0.62 0.58
PLK1 0.62 0.6

Table 3: Continued.

Common co-expressed genes
of PAICS Ra Rb

SGOL1 0.62 0.6
WHSC1 0.62 0.6
TTK 0.62 0.59
KIF14 0.62 0.6
TSR1 0.62 0.58
KPNA2 0.62 0.59
ERCC6L 0.62 0.6
FOXM1 0.62 0.62
NCAPH 0.62 0.6
CCT8 0.62 0.57
MCM4 0.62 0.59
KIF18A 0.62 0.57
DKC1 0.61 0.61
DBF4 0.61 0.59
KIF23 0.61 0.58
PRPF40A 0.61 0.54
SMC2 0.61 0.55
DTL 0.61 0.59
INCENP 0.61 0.58
KIF11 0.61 0.57
SHCBP1 0.61 0.54
ARHGAP11A 0.61 0.59
SSRP1 0.61 0.6
POLR1B 0.6 0.5
RAD51 0.6 0.56
FIP1L1 0.6 0.6
MAD2L1 0.6 0.57
GSG2 0.6 0.58
URB2 0.6 0.59
CSE1L 0.6 0.58
NOL10 0.6 0.57
HNRNPR 0.6 0.56
MCM6 0.6 0.57
HNRNPD 0.6 0.55
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Table 3: Continued.

Common co-expressed genes
of PAICS Ra Rb

ANAPC1 0.6 0.51
RNASEH1 0.6 0.54
NUP153 0.6 0.55
CCRN4L 0.6 0.56
DLGAP5 0.6 0.57
NUSAP1 0.6 0.57
MTIF2 0.6 0.54
UHRF1 0.6 0.58
PRC1 0.6 0.59
RRM2 0.6 0.56
UBE2K 0.6 0.52
NOP14 0.6 0.57
BUB3 0.6 0.54
CLSPN 0.6 0.56
ASPM 0.59 0.6
GMPS 0.59 0.55
CCDC86 0.59 0.6
CCT7 0.59 0.57
LMNB2 0.59 0.55
PLK4 0.59 0.6
MASTL 0.59 0.56
DDX18 0.59 0.48
CDC6 0.59 0.56
DIAPH3 0.59 0.52
NEK2 0.59 0.57
EXO1 0.59 0.57
WDR75 0.59 0.55
RACGAP1 0.59 0.54
SPC25 0.59 0.54
SLBP 0.58 0.53
MKI67 0.58 0.57
KPNB1 0.58 0.57
CCT4 0.58 0.5
KIF20A 0.58 0.57
CEP135 0.58 0.54
AURKA 0.58 0.56
TIPIN 0.58 0.55
FAM136A 0.58 0.57
H2AFZ 0.58 0.55
SET 0.58 0.5
EIF2S1 0.58 0.49
SDAD1 0.58 0.54
RAD51AP1 0.58 0.54
CPSF3 0.58 0.48
GRPEL1 0.58 0.54
SUV39H2 0.58 0.55
GART 0.58 0.55
LIN54 0.58 0.53
NOLC1 0.58 0.54
NCL 0.58 0.55
SKA3 0.58 0.55
CDCA3 0.58 0.58
LMNB1 0.58 0.55
KIF2C 0.58 0.56
BIRC5 0.58 0.54
NCAPD2 0.58 0.55
CKAP2 0.58 0.54
NLN 0.57 0.51
GRSF1 0.57 0.52
ANLN 0.57 0.54

Table 3: Continued.

Common co-expressed genes
of PAICS Ra Rb

STIP1 0.57 0.56
HMMR 0.57 0.52
CKAP5 0.57 0.54
UCHL5 0.57 0.52
POLR2D 0.57 0.49
SSB 0.57 0.53
IMMT 0.57 0.54
PATL1 0.57 0.54
CENPH 0.57 0.55
PNO1 0.57 0.5
PNPT1 0.57 0.53
USP14 0.57 0.5
OLA1 0.57 0.51
RRM1 0.57 0.54
SGOL2 0.57 0.52
FAM83D 0.57 0.56
CENPI 0.57 0.54
HJURP 0.57 0.54
CPSF6 0.57 0.33
CENPN 0.57 0.52
SASS6 0.57 0.54
WDR12 0.57 0.54
HAUS6 0.57 0.52
HEATR1 0.57 0.51
IARS 0.57 0.53
MTBP 0.57 0.54
CEP55 0.57 0.54
POP1 0.56 0.55
PGAM5 0.56 0.53
BRCA1 0.56 0.53
EIF2S2 0.56 0.51
HSPD1 0.56 0.55
PPM1G 0.56 0.53
TOPBP1 0.56 0.54
MSH6 0.56 0.51
ESPL1 0.56 0.57
C18orf54 0.56 0.5
UBA6 0.56 0.53
DENR 0.56 0.52
EXOSC2 0.56 0.51
KIF20B 0.56 0.52
ZWILCH 0.56 0.51
MRTO4 0.56 0.53
ELAVL1 0.56 0.51
CUL2 0.56 0.48
MRPL3 0.56 0.52
PWP1 0.56 0.48
DARS 0.56 0.52
TRA2B 0.56 0.46
UNG 0.56 0.53
CDC25C 0.56 0.54
TMPO 0.56 0.51
NUP37 0.56 0.49
RFWD3 0.55 0.5
RRP1B 0.55 0.52
EIF4E 0.55 0.5
GTSE1 0.55 0.53
MTHFD1L 0.55 0.49
aCorrelation coefficient determined by UALCAN database. bCorrelation
coefficient determined by GEPIA database.
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Figure 8: Hsa-miR-1-3p′s upstream dormant pseudogenes. (a) Pseudogenes-hsa-miR-1-3p axis 0e expression degrees of FAM91A3P
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lncRNAs that would influence hsa-miR-1-3p (Figure 9,
Supplementary Table S3). As shown in Figures 9(a)–9(c), 82,
44, and 92 upstream lncRNAs were, respectively, discovered
in lncACTdb, miRNet, and ENCORI. Supplementary
Table S3 has detailed lncRNAs. 0rough the intersection of
the three databases, 33 lncRNAs are constructed
(Figure 9(d)). In summary, overexpression of lncRNAs/
pseudogenes results in enhanced PAICS expression and
mitosis regulation, which contributes to the development of
NSCLC (Figure 10).

4. Discussion

NSCLC grow and divide slowly in comparison to small cell
lung cancer cells and disseminate relatively late. NSCLC
accounts for around 80% of all lung malignancies [48],
approximately 68% of which are diagnosed at a late stage

with a poor 5-year survival rate [1]. It is essential to com-
prehend the molecular process of NSCLC advancement to
create innovative therapeutic strategies and improve pa-
tients’ survival rates.

With bioinformatics technology being introduced into
medical molecular biology [49], the scope of basic research
can be expanded, and the prediction of important bio-
markers can be more convenient and accurate. Furthermore,
it’s through the bioinformatics methods that comprehensive
exploration and analysis of mRNA data sets [50], miRNA
data sets [51], and lncRNA data sets [52] in different da-
tabases can be conducted, which eventually improves the
accuracy of differentially expressed genes determination.
0is study screened three genes with research values from
919 DEGs.0en, the main idea of this study was to construct
the regulatory axis of ceRNA, and to predict the potential
miRNAs, lncRNAs, and regulated upstream of central genes
through the data set. Finally, the regulatory axis hsa-miR-1-
3p-PAICS is constructed.

0rough analysis and survival analysis, this study
identified three genes (CCNB1, CDK1, and PAICS) as key
genes linked with the development of NSCLC in this study.
CCNB1, CDK1, and PAICS expression levels raised in
NSCLC, which have been implicated in the development of
many human malignancies as oncogenes. What’s more, we
can indicate that three genes potentially function as bio-
markers for cancer from previous studies. For instance, the
high-level mRNA expression of CCNB1 and CENPF can be
regulated by hnRNPR, thus promoting the aggressiveness of
gastric cancer [53]; Zhang et al. [54] suggested that high
expression of CCNB1 in pancreatic cancer inhibits cell
proliferation and promotes cell senescence through p53
pathway; Sepideh lzadi [55] found that CDK1 is an im-
portant target for breast cancer diagnosis and treatment;
Huang et al. [56] indicated that the interaction between
CDK1 and SOX2 promotes the dryness of the cells in lung
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Figure 9: Hsa-miR-1-3p′s dormant upstream lncRNAs. (a-c) Dormant lncRNAs foretold by lncACTdb, miRNet, and ENCORI. (d) 3
intersected lncRNAs from lncACTdb, miRNet, and ENCORI databases.

Pseudogene

lncRNAhsa-miR-1-3p

PAICS

glycolysis

nucleotide
metabolism

Upregulated in cancer
Downregulated in cancer

Inhibition
Promotion

cancer
programming

Figure 10: 0e pseudogene/lncRNA-hsa-miR-1-3p-PAICS net-
work model and its expression and dormant influences on NSCLC.
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cancer; the study of Shuyi Zhou [57] suggested that PAICS
may provide us a novel treatment for lung adenocarcinoma;
Moloy Goswami et al. [58] confirmed that increased ex-
pression of PPAT and PAICS affects disease progression by
regulating lung adenocarcinoma metabolism. From all the
reports and our analytic results, we can draw the conclusion
that CCNB1, CDK1, and PAICS may be three hub onco-
genes in the development of NSCLC.

MiRNAs are non-coding RNA molecules that are in-
volved in controlling biological activity by downregulating
the expression of target genes [59]. So we intend to identify
miRNAs that specifically target CCNB1, CDK1, and PAICS.
Numerous miRNAs were predicted through a variety of
online sources, including six for CCNB1, ten for CDK1, and
seven for PAICS. 0e miRNAs mentioned above function as
tumor suppressor miRNAs in NSCLC on the foundation of
their mode of action. Following survival analysis, we picked
eight sets of miRNA-mRNAs as expressions for subsequent
correlation study. Connection analysis revealed a strong
negative correlation only in the hsa-miR-1-3p-PAICS pair.
In conclusion, the hsa-miR-1-3p-PAICS axis is being in-
vestigated as a possible route implicated in the development
of NSCLC. Numerous studies have established that hsa-
miR-1-3p is a critical inhibitor of the genesis and pro-
gression of a range of humanmalignancies. For example, the
study of Zhanrui Mao [60] showed that the low level of hsa-
miR-1-3p may be a indication of CR which had a significant
relationship with the disease stage according to the analysis
of miRNA data in TCGA; Li et al. [61] suggested that the
apoptosis and proliferation of the cells in hepatoma can be
influenced by the overregulation of hsa-miR-1-3p. After-
ward, we identify the co-expressed genes of PAICS. 0e GO
analysis revealed a high enrichment of these co-expressed
genes during mitosis. Consequently, by regulating the mi-
tosis, the hsa-miR-1-3p-PAICS axis may restrict the cell
division of NSCLC, thereby halting stage advancement.

Along with miRNAs, there are several additional forms
of RNAs, including lncRNAs and pseudogenes. 0ey could
affect health and illness, including cancer, by binding
competitively to common miRNAs as ceRNA [62]. Using
the ENCORI database, we acquired 119 upstream pseudo-
genes of the hsa-miR-1-3p-PAICS axis. 0e GEPIA database
was utilized to better distinguish between NSCLC samples
and normal controls, as well as between main phases.
Correlation analysis of expression data showed that hsa-
miR-1-3p negatively correlated with FAM91A3P,
LRRC37A6P, PKMP1, RPL9P32, and BMS1P8. When the
ceRNA mechanism and the findings of the preceding in-
vestigation are combined, it is verified that pseudogenes may
regulate the hsa-miR-1-3p-PAICS in NSCLC. Finally, the
lncACTdb, the miRNet, and the ENCORI databases were
employed to determine the hsa-miR-1-3p-PAICS axis’s
upstream regulatory lncRNAs. 33 lncRNAs have commonly
appeared in the three databases, which shows many of these
lncRNAs functioned as oncogenes in different human
cancers. For example, lncRNA UCA1 promotes pro-
liferation, migration, and immune escape and suppresses
apoptosis in gastric cancer by binding anti-tumor miRNAs
[63]; lncRNA CYTOR promotes the resistance of tamoxifen

in breast cancer cells via binding miR-125a-5p [64]; lncRNA
RMRP promotes proliferation, migration, and invasion of
bladder cancer via miR-206 [65]. 0e reports above further
indicated that these lncRNAs have similarities with those
119 possible pseudogenes, may also participate in hsa-miR-
1-3p-PAICS network regulation, thus involving in the de-
velopment of NSCLC.

Although we constructed the hsa-miR-1-3p-PAICS axis
to better understand the occurrence of NSCLC, there are
some limitations in our study. Above all, this study lacks
experimental verification. Further in vivo and in vitro ex-
periments will be conducted soon to confirm the expression
and function of key genes. Additionally, we should further
investigate the binding affinity of the biomarkers in our
study through experiments.

5. Conclusion

In conclusion, integrated bioinformatics investigations in-
dicate that the hsa-miR-1-3p-PAICS axis may contribute to
the evolution of NSCLC via mitosis regulation. Additionally,
we discovered putative upstream pseudogenes and long
non-coding RNAs of the hsa-miR-1-3p-PAICS axis. In the
future, the structure of this pseudogene within the lncRNA-
hsa-miR-1-3p-PAICS axis may function as a marker and
target for treatment.
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