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Abstract: Herein, we report recent developments in order to explore chitin and chitosan derivatives
for energy-related applications. This review summarizes an introduction to common polysaccharides
such as cellulose, chitin or chitosan, and their connection with carbon nanomaterials (CNMs), such
as bio-nanocomposites. Furthermore, we present their structural analysis followed by the fabrication
of graphene-based nanocomposites. In addition, we demonstrate the role of these chitin- and
chitosan-derived nanocomposites for energetic applications, including biosensors, batteries, fuel
cells, supercapacitors and solar cell systems. Finally, current limitations and future application
perspectives are entailed as well. This study establishes the impact of chitin- and chitosan-generated
nanomaterials for potential, unexplored industrial applications.

Keywords: polymers; graphene oxide; bio-nanocomposites; chitosan; energy

1. Introduction

In recent decades, nanotechnology advancements have led towards the progressive
recycling of natural polymers into a variety of structurally enhanced nanomaterials [1,2].
This has been proven by the synthesis of polymer-based carbon nanomaterials (CNMs) [3].
The implication of CNMs has been established through various fields, such as biological
activities [4], drug delivery [5], tissue engineering [6], environmental [7] or energetic
applications [8]. Their unique properties have allowed them to be used in several electronic
devices [9]. It has been observed that dipole–dipole interactions between molecules and
powerful van der Waals forces have produced aggregation among CNMs [10]. Fortunately,
the consequences of this limitation, such as the modification of electrical, chemical and
mechanical properties, have been modified through functionalization [11]. Graphene is an
excellent example of a CNM due to its remarkable attributes, including a large surface area,
low weight and excellent thermal as well as mechanical properties [12,13].

Polysaccharides are natural polymeric biomaterials that have been widely used in
biotechnological fields due to their availability, biocompatibility and biodegradability [14,15].
Common examples of polysaccharides are starch, cellulose, chitin and chitosan [16]. They
can also be modified either chemically or enzymatically for any specific end use. Recently,
chitin and chitosan have been used in various applications, including food and nutrition,
pharmaceuticals, and biotechnology [17,18]. Owing to its biocompatibility, chitosan has
also been deemed a suitable material for wastewater treatment, as well as for medicinal
and electrochemical applications [19,20]. As nanotechnology advances, the fabrication of
chitosan nanocomposites with organic and inorganic nanofillers has significantly improved
the material’s mechanical, chemical and barrier properties [21]. These remarkable results
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are squandered as there are no works in the literature that study systematic nanostructures,
novel bio-nanocomposite possibilities and their associated fabrication processes, which are
needed. As a result, this study aims to bridge that gap by presenting future trends as well
as challenges associated with chitin and chitosan as a matrix for bio-nanocomposites.

Over the past few years, chitin- and chitosan-derived nanocomposites have shown
a tendency towards a wide range of applications. Recently, chitin- and chitosan-based
nanomaterials and their remarkable role as dye adsorbents [22], drug delivery vehicles to
combat COVID-19 [23], food packaging [24], membranes [25], wound dressings [26] and
for biomedical and environmental applications [27,28] have been presented.

To the best of our knowledge, there have been very limited studies which have
summarized, in particular, chitin- and chitosan-based nanocomposites for energy-related
applications. This work is briefly organized into the background of graphene and graphene
oxide (GO) properties as well as the structural properties of chitin/chitosan. In addi-
tion, common methods for the fabrication of chitin- and chitosan-derived graphene bio-
nanocomposites have been discussed. Finally, it reveals vital information of chitin/chitosan
bio-nanocomposites for applications in electronic devices and energy systems. To make
it more instructive, this study also presents future recommendations and challenges of
current times.

2. Graphene and Graphene Oxide

Research related to compatible two-dimensional (2D) CNMs, such as graphite and
diamonds, has expanded [29]. Graphene, which is derived from graphite, has been used
in a variety of applications. Single-layer graphene was explored theoretically by P. R.
Wallace in 1947. It was first unambiguously produced and identified in 2004 [30,31]. Many
efforts have been made to mass-produce graphene in selected industries, particularly
materials science and chemistry [32]. According to recent price checks, allocated budgets
for graphene fabrication and the production of its derivatives reached $67 million in 2015,
and are estimated to increase to $680 million by 2020 [33]. Graphene is composed of a
single layer of hexagonal graphite with sp2-hybridized carbons and sigma connections [34].
Furthermore, delocalized π-type bonds are formed from the remaining p or σ orbitals. It
has a two-dimensional structure composed of a layer of carbon atoms that are covalently
connected in the form of hexagonal lattices [35]. This is the fundamental structure of many
carbon allotropes [36].

Graphene possesses unique properties, such as a 1.42 Å carbon–carbon connection
interval, a 3.3 Å thickness, a large surface area, high movement ability and significant opti-
cal, mechanical, electrical and thermal properties [37,38]. Meanwhile, GO was produced
by the oxidation of graphite, which is composed of graphene and other functional groups,
such as –C=O, –OH, –COOH and –COC– [39]. The existence of oxygenated functional
groups on the surface of GO has caused it to have higher capacitance than graphene despite
having a smaller surface area [40]. Both GO and reduced graphene oxide (rGO) have great
potential to be used in energy-related applications due to their high capacitance, impressive
efficiency and enhanced properties as compared to graphene [41,42]. A wide range of
synthetic methods have been utilized to convert graphene from waste materials, which are
presented in Figure 1.

Chitin and Chitosan; Structural Analysis

Chitosan, the world’s second most abundant biopolymer [43], is composed of N-
acetyl glucosamine and glucosamine residues [44]. It is a valuable polymer as it can be
easily obtained from marine wastes, including crustaceans and microorganisms such as
fungi [45]. Chitosan can be produced in a variety of molecular weights (MWs) and degrees
of de-acetylation (DA). Following the DA process, chitosan has been extracted from the
solution in the form of powder, fiber and sponges [46]. The solubility of chitosan has a
large influence on the ionic concentration, MW, pH, acid nature, DA and distribution of
acetyl groups, as well as the main chain. Chitosan is usually dissolved in weak acids, most
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notably 1% of 0.1 M acetic acid [47]. Furthermore, chitosan can be dissolved in water in the
presence of glycerol 2-phosphate at a neutral pH [48]. This type of chitosan is appropriate
for plant-based applications [49]. A stable solution can be obtained at room temperature.
On the other hand, it endorses reversible gel formation above 40 ◦C. In comparison to chitin,
chitosan possesses better complex-forming ability, which has been attributed primarily to
the existing free –NH2 groups distributed along its main chain (Figure 2) [50]. Chitosan, a
partially deacetylated chitin product, is a copolymer composed of β-(1→4)-2-acetamido-
D-glucose and β-(1→4)-2-amino-D-glucose units [51]. In chitosan structure, the R1, R2
and R3 radicals correspond to hydrogen available in plain chitin and chitosan molecules.
These surface groups result in the formation of hydroxyl (OH) and amino (NH2) groups.
They are accountable for the organic modifications of chitosan, which have the potential to
produce polymeric derivatives of these compounds [52].
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Crustacean shell wastes are a source of biomass raw material for chitin and chi-
tosan production. They contain chitin, lipids, inorganic salts and proteins, as displayed
in Figure 3 [54]. Numerous characterization techniques, such as SEM, FTIR, DSC, TGA,
1H liquid-state NMR, XRD and elemental analysis have been used to investigate mor-
phological, structural, degree of DA, crystallinity and other physicochemical or thermal
properties [50,55].
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3. Fabrication of Graphene Nanocomposites

The distribution of materials in polymeric matrices has a significant influence on the
mechanical, thermal and electrical properties of nanocomposites, as well as their water
vapor permeability [56]. Poor distribution of biopolymer–graphene/GO produces unsta-
ble nanocomposites, and jeopardizes their properties. The aggregation of graphene/GO
nanoparticles and restacking into biopolymeric materials has been a concerning issue [57].
For example, water-soluble polymers such as poly(vinyl alcohol) and poly(ethylene oxide)
have been used in the fabrication of GO nanocomposites [58]. Earlier studies have revealed
that graphene/GO fillers were incorporated into polymer matrices through common meth-
ods, such as solution intercalation, electrospinning and in situ intercalative polymerization,
as shown in Figure 4 [59,60].

Polymers 2021, 13, x FOR PEER REVIEW 5 of 28 
 

 

 
Figure 4. Fabrication of a polymer-based (polyaniline) graphene nanocomposite [61]. 

Most researchers have used a solution intercalation method, in which the chemical 
structure of a polymer matrix changed as the amount of graphene/GO increased [62]. This 
was attributed to the occurrence of mild chemical reactions, primarily physical interac-
tions between biopolymers and graphene/GO [60]. Characteristically, this method in-
volves shear mixing of colloidal graphene/GO suspensions with polymers, followed by 
solvent evaporation. As a result, the adsorbed polymer reassembled, forming a sandwich 
between the polymer and graphene/GO [63]. Furthermore, polymer–graphene/GO matri-
ces were used in solution-based methods with non-water-soluble polymers via the chem-
ical modification of GO [64]. Poly(methyl methacrylate) and polyurethanes are two exam-
ples of non-soluble polymers that have been used in this method [65]. Another interesting 
method of preparing graphene/GO bio-nanocomposites is in situ polymerization, which 
uses solvents to lower the dispersions’ viscosity [66]. For example, GO has prepared nano-
composites with enhanced properties by intercalative polymerization of poly(methyl-
methacrylate) [67] and epoxy resins [68]. Furthermore, polyethylene [69] and polypropyl-
ene matrix GO nanocomposites [70] have been successfully prepared via in situ polymer-
ization. 

Poly(methylmethacrylate) chains were grafted onto GO to make the filler compatible 
with the polymeric matrix [71]. The melt-blending method has been used to disperse ther-
mally reduced GO into polymers as well as into a renewable polylactide [72]. Satisfactory 
distribution rates are attainable through this process. However, it increases polymer melt 
viscosity, which complicates the process. The preparation of polymer composites, such as 
graphite, into polypropylene has been done by solid-state shear dispersion using a modi-
fied twin-screw extruder [73]. Table 1 entails the synthesis of graphene nanocomposites, 
comprising polymeric and other matrices, for an enormous number of applications. 

Table 1. Summary of the graphene nanocomposites with inorganic and polymeric materials. 

Counterparts Manufacturing Methods Parameters and Conditions Applications Ref. 
Graphene–Polymer Nanocomposites 

Three-dimensional gra-
phene-based polymer 
nanocomposite 

Three methods were used; 
• Three-dimensional gra-

phene-based template 
• Polymer particle/foam 

template 

- 

• Energy storage and con-
version 

• Electromagnetic interfer-
ence shielding 

• Oil/water separation 

[74] 

Figure 4. Fabrication of a polymer-based (polyaniline) graphene nanocomposite [61].



Polymers 2021, 13, 3266 5 of 26

Most researchers have used a solution intercalation method, in which the chemical
structure of a polymer matrix changed as the amount of graphene/GO increased [62].
This was attributed to the occurrence of mild chemical reactions, primarily physical in-
teractions between biopolymers and graphene/GO [60]. Characteristically, this method
involves shear mixing of colloidal graphene/GO suspensions with polymers, followed
by solvent evaporation. As a result, the adsorbed polymer reassembled, forming a sand-
wich between the polymer and graphene/GO [63]. Furthermore, polymer–graphene/GO
matrices were used in solution-based methods with non-water-soluble polymers via the
chemical modification of GO [64]. Poly(methyl methacrylate) and polyurethanes are two
examples of non-soluble polymers that have been used in this method [65]. Another
interesting method of preparing graphene/GO bio-nanocomposites is in situ polymeriza-
tion, which uses solvents to lower the dispersions’ viscosity [66]. For example, GO has
prepared nanocomposites with enhanced properties by intercalative polymerization of
poly(methylmethacrylate) [67] and epoxy resins [68]. Furthermore, polyethylene [69] and
polypropylene matrix GO nanocomposites [70] have been successfully prepared via in
situ polymerization.

Poly(methylmethacrylate) chains were grafted onto GO to make the filler compatible
with the polymeric matrix [71]. The melt-blending method has been used to disperse ther-
mally reduced GO into polymers as well as into a renewable polylactide [72]. Satisfactory
distribution rates are attainable through this process. However, it increases polymer melt
viscosity, which complicates the process. The preparation of polymer composites, such as
graphite, into polypropylene has been done by solid-state shear dispersion using a modi-
fied twin-screw extruder [73]. Table 1 entails the synthesis of graphene nanocomposites,
comprising polymeric and other matrices, for an enormous number of applications.

Table 1. Summary of the graphene nanocomposites with inorganic and polymeric materials.

Counterparts Manufacturing Methods Parameters and Conditions Applications Ref.

Graphene–Polymer Nanocomposites

Three-dimensional
graphene-based polymer
nanocomposite

Three methods were used;

• Three-dimensional
graphene-based template

• Polymer particle/foam template
• Organic-molecule-cross-linked

graphene

-

• Energy storage and conversion
• Electromagnetic interference

shielding
• Oil/water separation
• Sensors

[74]

Polyaniline/GO
nanocomposite Electrospinning technique • Detection limit: 0.01 mg/g • Determination of nicotine [75]

Polyaniline/GO
nanocomposite Chemical exfoliation

• Detection limit: 0.1 µg/L
• Quantification limit: 0.4

µg/L

• As adsorbent in the presence of
chelating dithizone ligand to
measure cadmium (II) ions in
aqueous media

[76]

Hydrogels of conjugate
polymer polypyrrole
(PPy)/rGO composite

-
• Surface area: 21.48 m2/g

• As heavy metal sensors for
simultaneous detection of Cd2+,

Pb2+, Cu2+ and Hg2+
[77]

Polylactic acid (PLA)/GO
nanocomposite Solution blending and coagulation

• PLA/GO 1 wt.% • Enhanced mechanical properties
[78]

Polyurethane–GO
nanocomposite -

• Thermal stability increased
to 217 ◦C

• Good electrical conductivity:
1.39 × 10−9 Scm−1

• Sensing material for
optical fibers [79]

Polyaniline
nanofibers/functionalized
rGO composite films

Hybrid suspension of GO and in situ
polymerized polyaniline nanofibers

were filtered, followed by
hydrothermal treatment

-

• Composite films were uniform,
flexible and stable

• High specific capacity: 692 F/g
at 1 A/g

• As electrodes
• High capacitance of 324.4 F/g at

1 A/g
• Energy density: 16.3 Wh/kg at

power density of 300 W/kg

[80]

Bacterial cellu-
lose/graphene/polyaniline
nanocomposite

Two-step strategy
• Electrical conductivity:

1.7 ± 0.1 S/cm
• Electromagnetic shielding
• Flexible electrodes [81]
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Table 1. Cont.

Counterparts Manufacturing Methods Parameters and Conditions Applications Ref.

Graphene/Activated Carbon Nanocomposites

AG/PMB/GS/GCE

Ag nanocrystals were electrodeposited
on different polymer dyes, poly

(methylene blue) or poly
(4-(2-Pyridylazo)-Resorcinol)

(PAR)-modified graphene carbon
spheres (GS) hybrids

• Detection limit: 0.15 µM
• Sensitivity:

400 µAm/Mcm2
• Sensor for H2O2 detection

[82]

rGO/activated carbon
nanosheet composite -

• Specific capacitance of the
electrode material by 58.2%

• High-performance electrode
material for supercapacitor [83]

Glucose-treated
rGO–activated carbon
(rGO/AC) composites

Hydrothermal technique

• Detection of glucose in
range of 0.002 to 10 mM

• Sensitivity:
61.06 µA/mMcm2

• Response time: 4 s
• Low detection limit: 2 µM

• Biosensor [84]

Graphene/Metal Oxide Nanocomposites

HBcAG/gold
nanoparticles–rGO–enAu
nanocomposite

-
• Lowest detection limit:

3.8 ng/mL at 3 σ/m • Anti-hepatitis antigen detection [85]

Fe-doped SnO2/rGO
nanocomposite

Fe-doped SnO2 was hybridized with
different iron concentrations and

rGOHydrothermal method
- • Photocatalysis [86]

ZnO–graphene composite Hydrothermal method
• Band gap energy: 2.84 eV
• Photoluminescence lifetime:

21.60 ns
[87]

TiO2/rGO nanocomposite -
• Good catalytic activity
• Cooking oil converted into

biodiesel at a rate of 98%

• Heterogeneous catalyst for
transesterification of waste
cooking oil into biodiesel [88]

GO–Cu2O nanocomposite -

• Agglomerated Cu
nanoparticles were
distributed uniformly over
rGO sheets at 400 ◦C

• Electrical conductivity
similar to GO
monolayer sheets

• Supercapacitor [89]

2D MnO2/rGO
nanocomposite

Wet chemical method at
low temperature

• Discharged specific capacity
maintains at 242 mAh/g
after 60 cycles at 0.1 C

• Cathode material of lithium-ion
batteries (LIBs) [90]

rGO/silver nanowires
(AgNWs)/Ga-doped zinc
oxide (GZO) composite
thin films

-

• Excellent electrical
conductivity

• Superior stability to a
mono/bilayer of electrodes

• Resistance increased to less
than 5% when exposed to
atmosphere for 60 days

• Composite electrode [91]

rGO/CuO nanocomposite
Impregnation of microsized malachite

spheres on GO sheets followed by
calcination at 300–500 ◦C for 5 h

• Efficient nanocatalysts
compared to CuO
nanoparticles

• Catalyst [92]

3D NiO hollow
sphere/rGO composite

Coordinating etching and precipitating
process by using Cu2O

nanosphere/GO composite as
a template

• Sensitivity:
2.04 mA mM−1cm−2

• Response time: 5 s
• Good stability

• Glucose sensor [93]

Fe2O3/rGO composite Hydrothermal method

• Specific discharge battery:
1366 mAh/g at 0.1 A/g
(LIBs) and 318.9 F/g at
0.1 A/g

• Electrode material
for supercapacitor

• Anode material for LIBs
[94]

Graphene/Metal Nanocomposites

rGO/Co9S8 composites -

• High discharge capacity:
551 mAh/g at 0.1 A/g

• Good rate capability at
10 A/g

• Advanced sodium-ion
battery anode

• Na3V2(PO4)3krGO/Co9S8
full cells

[95]

Three-dimensional
porous-laser-induced
graphene–silver
nanocomposite

-
• High uniform

electrical conductivity
• Low detection limit: 5 µM

• Glucose sensor
[96]
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Table 1. Cont.

Counterparts Manufacturing Methods Parameters and Conditions Applications Ref.

Nitrogen-doped
graphene–copper
nanocomposite

• Electrical resistivity: 0.16 µΩ cm
at room temperature

• Thermal conductivity:
538 W/mK at 25 ◦C

• High thermal conductivity
[97]

SH-β-CD-rGO/Cu
nanospheres nanocomposite

Chemical deposition of Cu
nanospheres on SH-β-CD-rGO

• Good sensitivity
• Low detection limit: 20 nM

• Used for rapid and sensitive
electrochemical method to
determine trace 4-NP in water

[98]

Chitin and Chitosan Graphene Bio-Nanocomposites

GO is an oxidized and hydrophilic form of graphene which greatly enhances func-
tionalities of polymeric matrices [99]. Both graphene and GO are commonly utilized as a
nanofiller in polymeric nanocomposites. Chemical modification of graphene has resulted in
high-performance nanocomposites with enriched characteristics [100]. Several techniques
have been employed to evenly disseminate graphene or GO into chitosan matrices by
developing physical/chemical linkages [101].

Chitosan is a green, sustainable and low-cost material. Chitosan-derived nanocom-
posites have captivated the interest of many researchers due to their exceptional chemical
and physical properties [102]. Advances in nanotechnology has led to nanoparticles being
deposited on the surface of chitosan. Apart from being used as a pure matrix biomaterial,
other nanoparticles have been embedded in bulk materials. Due to chitosan’s hydroxyl
(OH) and amine (NH2) surface groups, it encourages several inter- and intramolecular
hydrogen bond formations [103]. It allows the usage of inorganic and organic fillers, which
improves functionalization [104].

Some researchers have doped graphene/GO bio-nanocomposites with starch, chi-
tosan, cellulose and poly(hydroxyalkanoates) [105]. New techniques, such as emulsion
droplet coalescence, sieving and spray drying have been applied for the fabrication of
chitosan-based products, which are primarily used in medical and pharmaceutical ap-
plications [106,107]. The development of new nanocomposite materials continues to be
hampered for agricultural applications; however, it is feasible if the source material is
equally inexpensive and compatible. Nonetheless, due to chitosan’s properties, it has been
used in the fabrication of suitable nanocomposites [108].

Ionic gelation and spray drying are regarded as the best protocols for large-scale CNM
production [109]. The ionic gelation method involves the interaction of positively charged
chitosan amino groups with negatively charged tripolyphosphate (TTP). TTP is an anionic
crosslinker that forms nanoparticles by interacting with chitosan molecules. It is non-toxic
and devoid of any innate biological activity. As a result, it is widely used in the production
of CNMs [110]. The resulting nanocomposites have been used for foliar applications.

According to a study on the chitosan–rGO nanocomposite, rGO was incorporated
into the chitosan crystalline network to improve the adsorption and dye attraction prop-
erties of fabricated nanocomposites [111]. At 6 wt.% of rGO nanocomposite, tensile
strength, Young’s modulus, elongation at break and conductivity values were increased.
However, aggregation occurred at 7 wt.% of rGO, and nanocomposite film conductivity
was decreased [112].

Another study on the chitosan-GO nanocomposite reported the existence of a strong
interaction between GO and chitosan [113]. An FTIR analysis revealed two peaks, one of
which was the amine stretch of chitosan, and the other belonged to the OH group of GO.
The fabricated nanocomposites showed properties that were identical to chitosan and GO.
Peaks associated with the C=C bonds of GO moved to lower wavenumbers. It occurred
due to hydrogen bonding between GO and the chitosan network [114]. In the XRD study,
GO was completely exfoliated when the diffraction angles of the chitosan-GO composite
were similar to those of the chitosan film. Furthermore, the presence of GO in the composite
resulted in lower crystallinity due to a longer combination period [115]. Figure 5 represents
the fabrication of the chitosan/GO nanocomposite through ultrasonication for 30 and
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120 min, followed by AFM morphological analysis. The cross-linkage between chitosan
and GO has been evaluated along with their physical properties [116].
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compacted hydrophilic properties [116].

Cobos et al. prepared free-standing chitosan–GO nanocomposite films [117]. During
the process, GO was dispersed homogenously in chitosan due to the amide linkage forma-
tion between carboxylic acid groups of GO and amine groups of chitosan. As compared
to pure chitosan, the glass transition temperature of the chitosan–graphene nanocom-
posite was increased from 118 ◦C to 158 ◦C [118]. Furthermore, the tensile strength and
Young’s modulus of synthesized nanocomposite was increased by 2.5 and 4.6 times, re-
spectively [119]. In a very recent study, Zhang et al. have synthesized functionalized GO
(fGO), by combining chitosan and ionic liquid, for use as an electrochemical sensor, which
is displayed in Figure 6. This novel electrochemical senor has been successfully utilized for
amaranth detection in commercial beverages, with excellent results [120].
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4. Energetic Applications of Chitin and Chitosan

The enhanced properties of polymeric materials with metal oxide nanoparticles into
composite electrodes have been optimized through the long, linear backbones of chitin and
chitosan for electronic devices [121]. This type of synthesis has been conducted to create a
hierarchical assembly which connects nanoscopic metal oxide particles to the macro-scale
structure of chitosan through electrochemical deposition [122]. Further studies are focused
on the MW of chitin and chitosan, which has effected the capacitive behavior and cyclic
stability on electrodeposited thin films [19,123].

Chitin and chitosan have emerged as significant polymers for the production of soft
materials. This is due to the combination of physicochemical characteristics of biopoly-
mers that enables the hierarchical assembly of nano-sized components at different length
scales [124]. The characteristics of chitin and chitosan are influenced by the amount of
glucosamine repeating units, crystallinity and degree of DA [125].

4.1. Electrical Devices

The development of high-performance composite materials has been expedited by
incorporating inorganic “nano-fillers” into polymers. Conventionally, the uses of polymer–
inorganic nanocomposites include mechanical, optical, catalytic, magnetic, thermal, electri-
cal and electrochemical applications [126,127]. It is highly desired to attain cost-effective
and high-tech functionalized electronic devices for commercial uses. Hence, metal-filled
polymer composites are seen as a viable option to meet the requirements of future dielectric
technologies [128].

Nanoparticles are engineered to sustain high electron mobility in order to achieve
fast field responses with extraordinary dielectric constants and minimal losses in high-
frequency applications [129]. The engineered bio-nanocomposite dielectrics have higher
dielectric constants at elevated frequencies and can process polymers at low temperatures as
compared to other conventional materials (Figure 7) [130]. Chitosan is preferred in current
research prospects due to its ease of accessibility, low cost, environmental friendliness and
outstanding mechanical characteristics [131].
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In recent years, CNMs such as carbon nanotubes (CNTs) and graphite have been
tremendously used among several electronic devices [133]. Metal oxides, such as ZnO,
SiO, NiO and TiO2, are typically doped as inorganic nano-fillers for electrical and electro-
chemical purposes [134]. The dielectric characteristics of NiO have been utilized in the
form of nano-fillers for a handful of studies. NiO is a Mott-Hubbard insulator with an
extremely low conductivity at ambient temperatures, and has a cubic lattice parameter of
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0.4177 nm [135]. However, when the size is lowered to nanoscale, the conductivity of NiO
increases significantly due to hole hopping associated with Ni2+ vacancies. By incorpo-
rating these fillers into non-conducting polymers, they have transformed into conductive
polymers while preserving their polymeric properties [136].

Nasrollahzadeh et al. studied in great depth the possibilities of chitin and chitosan
as length-scale interconnects. Among the linear carbon backbone of biopolymers, chi-
tosan has provided a location for nanocomponents/fillers linkage within the range of
100–101 nm [137]. The biopolymer exhibits self-organizing properties contributed from
the chitosan’s stimuli-responsive film and gel-forming characteristics at microscale levels.
Therefore, assembly at greater length scales, i.e., 103 nm, is enabled [138]. Furthermore, lo-
calized electrical stimulation promotes the formation of chitin- and chitosan-based films and
gels. As a result, both the length scale and nanoscale components of chitosan were linked
to electrical equipment. Finally, the metal binding capabilities of chitosan enabled linkages
through chelation processes [139]. Kamran et al. have discovered acetic-mediated chitosan-
based porous CNMs, which resulted in the capture of CO2. They also demonstrated an
enhanced surface area (4168 m2 g−1) and highly effective CO2 adsorption performance of
fabricated nanomaterials [140]. Currently, there are minimal studies in the literature on the
electrochemical behavior and energy production of such novel bio-nanocomposites.

4.2. Biosensors

Recently, there has been remarkable use of cost-effective and economic biosensors
in energy-related applications [141]. High-quality immobilization of biological recogni-
tion components is required to generate dependable biosensors. Chitosan and its bio-
nanocomposites have been introduced as effective immobilization matrix materials. Thus,
development of novel devices for early-stage illness diagnosis and biomarker detection
were possible through these chitosan-bio-nanocomposites-based biosensors (Figure 8) [142].
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Fartas et al. have employed graphene/gold nanoparticle/chitosan (GAuCS) nanocom-
posite films for glucose biosensing. The sensor was designed to immobilize glucose oxidase
in thin films of GAuCS nanocomposites at gold electrodes [144]. Likewise, Casteleijn et al.
used a simple spin-coating method to modify chitin-based biosensors on Au nanoparticles
and polystyrene (PS). Due to chitin’s solubility, this method opened a new domain of
future possibilities [145]. The substantial binding of chitin has encouraged strong func-
tionalization for the fabrication of biosensors. Hence, scientists have developed a novel
Co2+-metal-ion-based plasmon resonance surface sensor through chitin composites for
enhanced sensitivity detection [146].

Besides, Ali et al. created a low-temperature H2S gas sensor using a conductive
chitosan–CuO hybrid nanocomposite at different concentrations ranging from 1–9% vol-
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ume/volume (v/v). The chitosan bio-nanocomposite resulted in a sufficiently flexible and
transparent semiconductor. The detecting mechanism of the sensor occurs from proton
transfer between the gas molecules and amino groups in the chitosan molecule. The
presence of glycerol, i.e., OH groups, enhanced the formation of H-bonding [147].

Borgohain et al. have created a pollution sensor that helped to detect Zn2+ and Cu2+

ions at different concentrations in water. The co-precipitation method was utilized to make
chitosan-ZnS quantum dot (QD) sensors. The formation of chitosan-ZnS QD tiny clusters
was dependent on the concentration of metal ions in water, with a directly proportional
relationship. As a result of the aggregated clusters, the absorption maxima occurred at
longer wavelengths, and resulted in reduced energy [148].

4.3. Batteries and Electrochemistry

LIBs have become important energy storage systems, especially in the usage of
portable electronic devices. Their excellent properties, such as high energy density and low
self-discharge rates, are repeatedly noticed [149]. As a result, comprehensive studies on
novel electrode materials which are compatible with LIB electrolytes are highly crucial in
the advancement of technologies [150].

Using a simple chitosan-assisted hydrothermal and subsequent calcination methods,
Ma et al. have developed ultrathin MoS2/graphene hetero-structures with high specific
surface areas and efficient electrochemical characteristics [151]. Similarly, Chen et al. have
introduced a N-doped carbon composite as a cathode material and CNT/chitosan as an
amplified separator for innovative lithium–sulfur batteries (LSBs). This simple and effective
method is expected to represent a watershed moment for the large-scale manufacturing of
hetero-structures with a wide range of applications in batteries [152]. Moreover, Kim et al.
have utilized a rGO/chitosan-based binder which has allowed significant improvement in
the cycle stability and capacity of LSBs [153].

Other noteworthy and novel fabricated materials with high electrochemical properties
among very recent works include a chitosan-solution-based Si@SiO2@N-Carbon anode for
LIBs [154], flexible chitosan-based carbon membranes as anodes for potassium- and sodium-
ion batteries (KIBs/SIBs) [155], a chitosan-based N-doped carbon/Li2ZnTi3O8/TiO2 com-
posite as an anode for LIBs [156], a chitosan-based C@V2O5 cathode for Zn-ion batter-
ies (ZIBs) [157], a chitosan-based N-doped rGO/C@Si composite for LIBs as shown in
Figure 9 [158] and novel S/Se/C supported by a chitosan-based interconnect with CNTs
for novel lithium-chalcogenide batteries (NCBs) [159].

4.4. Fuel Cells

Fuel cells modified with membranes via proton exchange have been displayed as a
promising alternative in eco-friendly energy-related fields. The development of a highly
conductive proton membrane is the most important aspect that determines the perfor-
mance and efficiency of fuel cells [160]. To degrade chitin anaerobically, Li et al. created a
microbial fuel cell using Aeromonas hydrophila. It was observed that the constructed fuel
cell resulted in a seven times faster rate of chitin breakdown as compared to a conventional
fermentation system [161]. Yang et al. introduced a low-cost Fe–N–C catalyst, resulting
from an Fe(III)-chitosan hydrogel, to improve power generation in microbial fuel cells [162].
Thus, increased power generation was ensured. This approach allowed for the effective
breakdown of resistant biomass in order to recover energy [163]. Researchers have re-
ported a chitosan/rGO/polyaniline bio-nanocomposite to be a paradigm bio-anode for
glucose-derived fuel cells. It exhibited excellent electrochemical properties with consid-
erable stability [164]. Gorgieva et al. examined an effective chitosan-based N-doped rGO
composite membrane for alkaline fuel cells. In this work, chitosan- and graphene-based
homogenous materials were engineered using a variety of self-induced methods [165].

Furthermore, a cost-effective method was applied to assemble chitosan/montmorillonite
nanocomposite using a ceramic support as an effective membrane for microbial fuel
cells [166]. In another study, chitosan was cross-linked to poly(aminoanthraquinone)
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nanocomposite which was a nitrogen-precursor-based Fe-N-C oxygen reduction catalyst
for microbial fuel cells. The high-performance bio-anode in the fuel cell exhibited out-
standing shape and retention characteristics due to its synergistic effects between porous
structures [167]. This highly porous design along with anode materials have resulted in a
78-fold increase in maximum power density.
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Figure 9. Electrochemical evaluations of fabricated anodes. (a) Initial charge/discharge of nano-Si,
C@Si, rGO/Si and rGO/C@Si nanocomposites at a current density of 100 mA g−1, (b) consistent
current charge/discharge of nanocomposites and (c,d) rate performance and current/voltage profile
of GO/C@Si anode [158].

Vijayalekshmi et al. created a cross-linked, flexible, oxidative and thermally sta-
ble chitosan-based green polymer electrolyte using methane, sulfonic acid and sodium-
dodecylbenzene-sulfonic-acid-doped chitosan. At 100 ◦C, the polymer electrolyte had a
conductivity of 4.67× 10−4 S/cm and thermal stability at a maximum value of 260 ◦C [167].
In short, this low-cost and eco-friendly technique ensures superior methanol barrier perfor-
mance by reducing methanol absorption at higher methanol concentrations for fuel cells,
as displayed in Figure 10 [168].
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using a solvent-casting method in which chitosan, GO, Mg(OH)2 and benzyltrimethylammonium
chloride were used [169].

Tohidian et al. applied a simple sol–gel technique to prepare chitosan-surface-modified
CNT bio-nanocomposites. Additional benefits of chitosan-coated CNTs include a reduced
danger of electronic short-circuiting and improved interaction between CNTs and chi-
tosan, resulting in uniform dispersion [170]. Compared to pure chitosan membranes,
bio-nanocomposites showed better thermal stability, proton conductivity and mechanical
characteristics. Due to the electrostatic and hydrogen bonding between molecules, bio-
nanocomposites achieved a power density of 98.5 mW cm−2 at 70 ◦C [171]. Conversely,
the reduced conductivity of protons was caused by the amino functional group, which led
to less water uptake.

4.5. Supercapacitors

Supercapacitors are a superior type of energy storage device. They exude higher
capacitance, power density, durability cycle and stability. Many studies have been devoted
to presenting novel nanomaterials as electrode materials from sustainable resources, due to
their impressive electrochemical performance [122,172]. Recent research has been dedicated
to produce chitosan-based bio-nanocomposites with remarkable properties, such as high
power, an outstanding life cycle and an eco-friendly nature as compared to expensive
nanoparticles [173,174].

A three-step technique which included the aerogel synthesis, aerogel carbonization
and nitrogen self-doping processes was used to create chitosan-based supercapacitors for
elevated enactment. This bio-nanocomposite showed a specific capacitance of 331 F g−1

in 6 mol L−1 using a KOH electrolyte at 1 A g−1, with excellent stability of 90% after
10,000 cycles [175]. Major and noteworthy performance values were reached by prepar-
ing chitosan-based supercapacitors, which showed specific energy and power density
at maximum recorded values of 10.46 Wh kg−1 and 500.08 W kg−1, respectively [176].
Similarly, Lin et al. have created a chitosan-based hydrogel using an ultrafast hydrogelation
technique in which carboxylation of chitosan was carried out at 6, 8 and 10 values, thus
producing a supramolecular electrolyte hydrogel with excellent specific capacitance of
chitosan, chitosan-6, chitosan-8 and chitosan-10 supercapacitors at 35 F·g−1, 72.5 F·g−1,
49.2 F·g−1 and 40.5 F·g−1, respectively [177]. It was a facile and simple technology which
has shown great potential for developing future bio-based supercapacitors.
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4.6. Solar Cells

Following cellulose, chitosan is the most abundant biomass-containing amino-polysac
charide on earth. The ability of chitosan to produce a transparent film while maintaining
its properties has influenced scientists’ interest in designing solar cells [178]. The amine
groups on the main chain of chitosan make it a viable option for cathode interlayers, while
additional functionalization is added due to the hydroxyl and amino groups throughout
the main chain [179].

Praveen et al. produced organic solar cells with a power conversion efficiency of 5.83%
by utilizing layer-by-layer and self-assembled chitosan with a uniform and controllable
nanoscale thickness [180]. The engineered solar cells exhibited higher efficiency due to
their organized structural form, which produced both interfacial and molecule dipoles.
The dipoles reduced the work function of electrodes, which has led to their promising and
highly compatible utilization [181]. The self-assembled chitosan has improved performance
up from 100 to 200% as compared to spin-coated chitosan interlayers and fuel cells. It
was observed without any cathode interlayer, in terms of power conversion and efficacy,
respectively (Figure 11) [182].
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Figure 11. (a) Photocatalytic degradation of various nanomaterials via sunlight irradiation after
90 min, (b) efficiency of degradation comparing catalysts such as chitosan-grafted polypyrrole
(Ch-g-PPy), polyrrole-based carbon dot (PPy@CD) and chiton-grafted polypyrrole carbon dot (Ch-g-
PPy@CD) nanocomposites [183].

Moreover, Zulkifli et al. used a chitosan-based polymer electrolyte to create a high-
performance plasmonic dye-sensitized solar cell [184]. Polyethene oxide (PEO) was placed
between the TiO2/dye photoelectrode and the Pt counter electrode in a chitosan-based
solar cell. A simple solution-casting approach was used to add the ion donor NH4I salt.
The mixing of chitosan with PEO was performed, which enhanced the flexibility of the
electrolyte, the mobility of ions and the conductivity [185]. Thus, the 16.5 wt.% of chitosan
and 38.5 wt.% of PEO:NH4I exhibited a significant increase in conductivity, respectively.
The dye-sensitized solar cells (DSSC) recorded a 19-fold improvement of overall efficiency
from 0.06% to 1.13% by incorporating TiO2 particles into the cell system [186]. Table 2
summarizes chitosan/chitin-based nanomaterials, their mode of fabrication and utilization
in energy-related applications.
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Table 2. Tabulation of chitin/chitosan-based nanomaterials and their energetic applications.

Composite Materials Manufacturing Routes Applications Outcomes Ref.

Semiconducting chitosan film Casting method H2S gas sensor
• Average min. response time of

14.9 ± 3.7 s with a 15 ppm
detection limit

[147,187]

Fe3O4/chitosan Chemical modification Biosensor for gallic acid
(GA) detection

• Detection limit of 12.1 nM
• Dynamic range of 0.5–300.0 µm [188]

Ti–6Al–4V alloy coated with
fumed sil-
ica/chitosan/poly(vinylpyrrolidone)
composite

Artificial saliva solution Coating for
electrochemical corrosion

• Inhibition efficiency of 99.85% [189]

Fe/chitosan-coated
carbon electrode Co-electrodeposition Sensor for As(III) detection

• Recorded detection limits of
1.12 ppb and 1.01 ppb for mining
wastewater and soil, respectively

[190]

Ag nanoparticles/chitosan-
thiourea-formaldehyde Polymeric metal complexation Biosensor for non-enzymatic

glucose detection
• Detection limit of 0.046 mM with

35.22 mA mM−1 cm−2 sensitivity [191]

F-rGO @ CNTs/chitosan Freeze-drying and dip-coating Piezoresistive pressure sensor

• Response time of 170 ms and
sensitivities of 4.97 kPa−1 and
0.05 kPa−1 in 0–3 kPa and
40–80 kPa, respectively

[192]

Chitosan/zinc
oxide/single-walled CNTs Solution casting Chemiresistive

humidity sensor
• Range of humidity detection of

11–97% [193]

Copper ferrite
nanoparticles/chitosan Ultra-sonication High-performance

electrochemical
• Range of detection limit between

0.025–697.175 µM [194]

Localized surface plasmon
resonance (LSPR)-based optical
fiber/chitosan-capped gold
nanoparticles on BSA

Chemical modification Optical fiber sensor for
Hg(II) detection

• Limits of detection for water and
seawater were 0.1 and
0.2 ppb, respectively

[195]

Graphene QDs/chitosan Ultrasound dispersion Humidity sensor
• High response sensitivity and

short response/recovery time,
i.e., 36 s/3 s

[196]

Polypyrrole/chitin
nanofibers/carbon nanotubes Vacuum filtration with freeze-drying Supercapacitors

• 2 Ag−1 records an 86.6%
retention rate after 5000 cycles
and 362 F g−1 specific capacity at
5 mVs−1 in 1 molL−1

[197]

Chitin/GO/zinc
oxide/polyaniline Co-polymerisation Chitin-based polyaniline

electrode for Cu(II) detection

• Response time of 240 s and
detection limit of 13.77 ppm [198]

Chitosan/cellulose
acetate/PVA gel Phase inversion and polymerisation Supercapacitors

• Retention rate of 71.2% after
1000 cycles

• Specific capacitance of
5.5 mFcm−1 at 20 mVs−1

[199]

MOF-5/chitosan Chemical modification High-performance
supercapacitors

• Specific capacitance and
capability rate records values of
199.9 F g−1 and 75.6%,
respectively

[200]

Polyionic liquid/carboxymethyl
chitosan Direct carbonization Supercapacitors

• At 0.1 Ag−1, specific capacitance
of 633 F g−1 and stability after
10,000 cycles

[201]

Chitosan/graphene/ionic
liquid/ferrocene
nanocomposite

Chemical modification
and drop-coating

Electrochemical
immunosensor

• Highly selective and sensitive to
prostate-specific antigen and
detection limit of
4.8 × 10−8 ng mL−1

[202]

Polyaniline-grafted
chitosan/GO-CNT/Fe3O4
nanocomposite

Solution mixing evaporation Electrode material
for supercapacitors

• Life cycle of 99.8%
• Specific capacitance at 100 Ag−1 [203]

Nano-cobalt/chitosan
composite coating Implantation Electrochemical and

H2 evolution

• Resistance value of
1150.77 kΩ cm2

• Nanocomposite coating up to
99.01%

[204]

Chitin from prawn
shell/sodium
dihydrogen citrate

Chemical extraction and drying in
vacuum conditions Batteries

• The stable discharge capacity of
roughly 157 mAh g−1 surpassing
15 cycles

[205]

Chitin fiber
non-woven separator Centrifugal jet spinning Fuel cells • Current discharge at ±200 µA [206]

Sulfonated chitosan/GO Casting Direct methanol fuel cells
• Conductivity of

4.86 × 10−3 Scm−1 at (25 ◦C),
• Selectivity of 1.89 × 105 Scm−3 s

[207]
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Table 2. Cont.

Composite Materials Manufacturing Routes Applications Outcomes Ref.

Chitosan/GO on membrane
substrates of sulfonated
poly(vinylidenefluoride)

Sulfonation and alternate dipping High-temperature proton
exchange membrane fuel cells

• Conductivity values of
2.34 × 10−1 S/cm and
1.56 × 10−1 S/cm at 140 ◦C

• Methanol permeability was
(2.26–3.46) × 10−7 cm2/s

• Proton conductivity reached
2.34 × 10−1 S/cm at 140 ◦C
under anhydrous conditions

[208]

Chitosan/GO aerogel Hydrothermal method Microwave absorption
• Density value of 125 cm2/g and

specific shielding effectiveness of
~−556 dBcm3/g

[209]

Chitosan/hydroxyl
ethylcellulose/polyaniline
loaded with GO doped by
silver nanoparticles
bio-nanocomposite as
a hydrogel

Hydrothermal method Efficient semiconductor
material

• Hydrogels improved DC
conductivity by about 25 times
from 3.37 × 10−3 to
8.53 × 10−2 S/cm

[210]

Chitosan/ammonium
thiocyanate Solution-casting technique Electric double-layer

capacitor
• High ionic conductivity of

8.57 × 10−4 S/cm was obtained [211]

5. Limitations and Challenges

The applications and merits of novel and promising biopolymers, i.e., chitin- and
chitosan-based bio-nanocomposites are apparent to mitigate future global issues. Despite
having outstanding biological and physiochemical characteristics, the molecule’s flaws
offer major hurdles and limits to its applicability in a variety of key industries. Therefore,
several outlined disadvantages and problems must be addressed to ensure the modification
of chitosan-based bio-nanocomposites. There are major thoughtful drawbacks which must
be highlighted (Figure 12), and are outlined below:

• The current limitations in the medicinal fields are caused by low solubility and pH,
which have led to instable physiological changes among nanocomposites.

• The hygiene and safety of synthesized bio-nanocomposites remain uncertain as the
European Food Safety Authority (EFSA) denies them, despite possessing an approval
for food contact from the Food Development Authority (FDA).

• Low colloidal stability makes chitin- and chitosan-based bio-nanocomposites unsuit-
able for large-scale drug delivery.

• Elevated elasticity of chitosan-based bio-nanocomposites restricts their use and applications.
• Despite showing satisfactory effectiveness in several medicinal applications, there are

numerous issues such as drug release, loading efficacy and capacity, rate of degrada-
tion, and functionalization.

• Finally, industrial processing centers continue to face financial challenges in establish-
ing a solid commercial viability of sustainable biopolymers in the real world.

Future Recommendations

The importance of chitosan-based nanocomposites is skyrocketing owing to their
plentiful advantages. However, it does have some difficulties that must be overcome. The
following section narrates some elements and suggestions for future study and research:

• Nanotechnology has great potential in agro-economics to improve agricultural areas.
In this regard, nano-chitin or nano-chitosan might be powerful tools for delivering
environmentally benign nano-chemicals or nano-agro-fertilizers.

• Their components can be used to grow crops, manage pests, increase fish output,
produce meat, preserve seeds, improve the immune system of crops and develop
crops with high drought and salinity resistance, among other elements.

• There are very few in vivo studies demonstrating the formulation and conjugation of
chitosan-based nano-carriers with antibodies as well as the assessment of long-term
toxicity of the nano-carriers. Thus, future research can be conducted on studies of
antibodies coupled with chitosan-based nano-carriers.
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• As metal oxides have shown unique semiconducting, optical and photocatalytic
characteristics, chitosan/metal oxide bio-nanocomposites could bring a remarkable
change for wound healing and other future regeneration studies.

• Chitin and chitosan can be an attractive future research choice as heterogeneous
bio-nanocatalysts and kinetic studies.

• Due to their physiological pH, chitosan-based bio-nanocomposites have limited solu-
bility. In this situation, researchers should concentrate on developing novel chitosan-
based bio-nanocomposite materials with improved solubility and aggregation.

• Conventional acid and alkali treatments should be replaced with novel biological
methods for chitosan extraction. In competitive industrial situations, eco-friendly and
cost-effective extraction methods must also be established.

• Crabs, shrimps, insects and fungi are acquiring enormous demand in many industrial
areas due to their remarkable characteristics. As these natural resources become more
popular, there is a growing worry that they will become extinct. The researchers’
mission should be focused on identifying alternate sources of energy in order to
restore ecological equilibrium.

• Researchers should concentrate on introducing nanomaterials with high degrees of
elasticity for novel electronic devices.
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6. Conclusions

To summarize, the hazardous impact of toxic and non-biodegradable materials has
caused adverse effects on human health and the environment. Consequently, it has indeed
seized the attention of researchers to introduce a variety of bio-nanocomposites. Currently,
chitin- and chitosan-derived bio-nanocomposites are the emerging alternates with outstand-
ing functional properties and compatibility. Herein, we have summarized their structural
analysis and fabrication into a large number of graphene-based bio-nanocomposites. It
was observed that several types of fabrication methods have been utilized which impart
different properties for their particular applications. In particular, progressive trends of
energetic applications have been elaborated with their impressive attributes towards elec-
tronic devices. Finally, we conclude that chitosan-derived graphene bio-nanocomposites
have a strong potential for unexplored applications, such as wastewater treatment and
environmental pollution, as well as within the oil and gas industry, such as for drilling
fluids, mechanical operations, kinetic and computational chemistry.
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