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Abstract

Background: Pulmonary hypertension and left ventricular diastolic dysfunction are complications of sickle cell disease.
Pulmonary hypertension is associated with hemolysis and hypoxia, but other unidentified factors are likely involved in
pathogenesis as well.

Design and Methods: Plasma concentrations of three angiogenic markers (fibroblast growth factor, platelet derived growth
factor–BB [PDGF-BB], vascular endothelial growth factor [VEGF]) and seven inflammatory markers implicated in pulmonary
hypertension in other settings were determined by Bio-Plex suspension array in 237 children and adolescents with sickle cell
disease at steady state and 43 controls. Tricuspid regurgitation velocity (which reflects systolic pulmonary artery pressure),
mitral valve E/Edti ratio (which reflects left ventricular diastolic dysfunction), and a hemolytic component derived from four
markers of hemolysis and hemoglobin oxygen saturation were also determined.

Results: Plasma concentrations of interleukin-8, interleukin-10 and VEGF were elevated in the patients with sickle cell
disease compared to controls (P#0.003). By logistic regression, greater values for PDGF-BB (P = 0.009), interleukin-6
(P = 0.019) and the hemolytic component (P = 0.026) were independently associated with increased odds of elevated
tricuspid regurgitation velocity while higher VEGF concentrations were associated with decreased odds (P = 0.005) among
the patients with sickle cell disease. These findings, which are consistent with reports that PDGF-BB stimulates and VEGF
inhibits vascular smooth muscle cell proliferation, did not apply to E/Etdi.

Conclusions: Circulating concentrations of angiogenic and pro-Inflammatory markers are altered in sickle cell disease
children and adolescents with elevated tricuspid regurgitation velocity, a subgroup that may be at risk for developing
worsening pulmonary hypertension. Further studies to understand the molecular changes in these children are indicated.
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Introduction

Pulmonary hypertension and left ventricular diastolic dysfunction

are found in up to 32% and 18% of adults with sickle cell disease,

respectively, and are associated with reduced exercise tolerance and

high mortality [1,2,3]. Elevated estimated systolic pulmonary artery

pressures [4,5,6] and left ventricular stiffness [7] are recognized to

develop in children with sickle cell disease but the clinical importance

is not clear [7,8]. Echocardiography can be employed to non-

invasively estimate systolic pulmonary artery pressure and left

ventricular diastolic function. Tricuspid regurgitation velocity reflects

systolic pulmonary artery pressure [1] and the ratio of early diastolic

mitral inflow velocity to early diastolic tissue Doppler imaging annular

velocity (E/Etdi) reflects left ventricular diastolic function [9,10].

The Pulmonary Hypertension and Hypoxic Response in

Sickle Cell Disease (PUSH) Study is an on-going multicenter
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observational study that was designed to identify factors in pre-

symptomatic children with sickle cell disease that are predictors

of cardiopulmonary complications and that therefore are

potential mechanistic targets for early preventive intervention.

Using a conservative definition of $2.6 m/sec, we recently

reported that 11% of 310 children and adolescents with sickle

cell disease had elevated tricuspid regurgitation velocity at steady

state and that elevated velocity had independent associations

with degree of hemolysis and with lower hemoglobin oxygen

saturation [6]. We also reported that 5% had elevated E/Etdi

[6]. Although a functional deficit was not found in the children

with elevated tricuspid regurgitation velocity as measured by the

six-minute walk test, there was a statistically significant decrease

in oxygenation during the test. This observation indicates that

the children with elevation of tricuspid regurgitation velocity are

biologically different with respect to pulmonary vascular

function compared to those with lower velocities. Thus, albeit

pending the results of long term studies, elevated tricuspid

regurgitation velocity may be an early marker of disease that

identifies a subset of sickle cell disease patients at risk for

developing pulmonary hypertension later in life and that could

be used to discover the early underlying mechanisms of

pulmonary hypertension.

The factors that lead to the development of cardiopulmonary

complications in the setting of sickle cell disease have not been

fully identified. Studies in both adults [1] and children [5,6]

with sickle cell disease have found correlations between

hemolysis and pulmonary hypertension. Intravascular hemolysis

contributes to a hemolytic vasculopathy in part through

scavenging nitric oxide, a key modulator of microvascular

function [11], and through limiting availability of arginine, the

substrate for nitric oxide synthase [12]. Hemolysis does not fully

explain the finding of pulmonary hypertension in this setting,

for pulmonary hypertension develops in patients with hemoglo-

bin SC or Sb+-thalassemia, conditions with markedly less

hemolysis than hemoglobin SS [1,13]. In addition and possibly

related to the hemolytic process, hypoxia may be a contributing

factor [6]. Humans exposed to chronic hypoxia have a tendency

to develop pulmonary hypertension [14], and patients with

sickle cell disease may experience hypoxia due to anemia,

chronic hemoglobin oxygen desaturation, upper airway ob-

struction and repeated episodes of vasoocclusive pain crisis and/

or acute chest syndrome [15,16,17,18,19,20]. Hypercoagulabil-

ity [21], platelet activation [22] and up-regulation of the

inflammatory response [21] have also been proposed as

contributing to the development of pulmonary hypertension in

sickle cell disease. Although a number of biological pathways

have been implicated in sickle cell disease, few molecular targets

have been identified.

Altered expression of inflammatory molecules and angiogenic

growth factors have been observed in primary pulmonary

hypertension and/or non-sickle cell disease-related forms of

secondary pulmonary hypertension. These markers include

interleukin-6 [23,24], interleukin-8 [25], interleukin-10 [26],

tumor necrosis factor-a [27], monocyte chemoattractant protein-

1 [25], RANTES [28], vascular endothelial growth factor (VEGF)

[29], platelet-derived growth factor (PDGF) [30] and fibroblast

growth factor [31]. Likewise, increased exposure to inflammatory

cytokines such as interleukin-6 and tumor necrosis factor-a [32,33]

and angiogenic factors such as PDGF and VEGF [34,35] has been

associated with altered cardiac function in settings other than

sickle cell disease. Our hypothesis is that inflammatory and

angiogenic factors contribute to the pathogenesis of cardiopulmo-

nary complications in sickle cell disease. We therefore measured

circulating concentrations of inflammatory and angiogenic

markers and correlated them with cardiopulmonary findings in a

subgroup of children and adolescents with sickle cell disease

enrolled in the PUSH Study.

Methods

Study Participants
This report includes a subset of children and adolescents with

sickle cell disease from 3 to 20 years of age and control participants

who were evaluated at steady state as previously described [6].

Controls were matched by age, sex and ethnicity to every sixth

patient with sickle cell disease enrolled in the study and included

individuals with hemoglobin AA, hemoglobin AS or hemoglobin

AC. This report includes 237 patients and 43 controls who were

enrolled in the study as of early 2008. Patients had hemoglobin SS,

SC, Sb-thalassemia or other major sickling phenotypes as

determined by hemoglobin electrophoresis or HPLC and

confirmed by molecular genetic testing (see below). Hemoglobins

S and C are mutated forms of hemoglobin while hemoglobin A is

the normal form. b-thalassemia refers to mutations in which there

is reduced or absent production of b-globin. Two copies of

mutated forms indicate hemolytic anemia such as hemoglobin SS

disease (sickle cell anemia), hemoglobin SC disease or sickle-b-

thalassemia. Patients had to be at least three weeks out from

hospitalization or emergency room visit for acute pain, vasoocclu-

sion or infection and controls had to be at least three weeks out

from acute infections or other illnesses. Participants were recruited

at three centers: Howard University and Children’s National

Medical Center in Washington, DC and the University of

Michigan in Ann Arbor, Michigan. The research was approved

by the IRBs of each participating institution and written consent

was obtained for all participants. Hemoglobin oxygen saturation

was measured by pulse oximetry. Reticulocyte count, lactate

dehydrogenase, aspartate aminotransaminase and total bilirubin

were analyzed by automated methodology at each institution and

used to develop the hemolytic component described in the

Statistical analysis section below. Among the patients with sickle

cell disease 11 (4.7%) had mitral valve E/Etdi $9.22, 46 (21.1%)

had tricuspid regurgitation velocity $2.5 m/sec, and 21 (9.6%)

had regurgitation velocity $2.6 m/sec. Tricuspid regurgitation

velocity elevations of this magnitude predict only mild elevations in

systolic pulmonary artery pressure and their functional significance

has not been determined in children and adolescents with sickle

cell disease. Among adults with sickle cell disease, such elevations

are associated with high mortality during two years of follow-up

[1].

Molecular Genetic Testing
Hemoglobin S, C genotyping was conducted at ARUP

Laboratories (Salt Lake City, UT) using loci-spanning probe –

PCR as described[36]. Genotyping was performed using the

LightCycler480 (LC480) Real-Time PCR System (Roche Applied

Science, Indianapolis, IN) using 100 ng DNA, 5 mL LightCycler

480 Probes Master (2x) mix (Roche Applied Sciences), 0.2 nM

PCR primers, 0.5 nM LSProbes (Idaho Technology, Salt Lake

City, UT) in a 10 mL PCR reaction. Cycling parameters were

modified from those previously described for the LC480 System.

The LC480 parameters were: denaturation at 94uC for 10

minutes, followed by 40 cycles of 95uC for 10 seconds, 63uC for

1 minute, and 75uC for 5 seconds. Loci-spanning probe melt

analysis was preformed by continuous signal acquisition between

38uC – 65uC at default ramp rate of 0.6uC/s and 5 acquisitions

per uC.

Biologic Markers in SCD
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Analysis of Biological Markers at Baseline
Plasma concentrations of ten biological markers were assayed in a

subgroup of patients and controls using the Bio-Plex suspension

array system (Bio-Rad, Hercules, CA): interleukins-6, 8 and 10,

interferon-c, tumor necrosis factor-a, monocyte chemoattractant

protein-1, basic fibroblast growth factor, PDGF (platelet-derived

growth factor)-BB, VEGF (vascular endothelial growth factor) and

RANTES (Regulated upon Activation, Normal T-cell Expressed,

and Secreted). The system allows simultaneous identification of

cytokines in a 96 well filter plate. In brief, the appropriate cytokine

standards and samples diluted in plasma diluents were added to a 96

well filter plate. The samples were incubated at room temperature

for 30 minutes with antibodies chemically attached to fluorescent-

labeled micro beads. After three filter washes, premixed detection

antibodies were added to each well and incubated for 30 min.

Following three washes, premixed streptavidin-phycoerythrin was

added to each well and incubated for 10 minutes followed by three

more washes. Then beads were re-suspended with 125 ml of assay

buffer and the reaction mixture was quantified using the Bio-Plex

protein array reader. Data were automatically processed and

analyzed by Bio-Plex Manager Software 4.1 using the standard

curve produced from recombinant cytokine standard.

Echocardiographic Measurements of Cardiopulmonary
Status

Doppler echocardiography was employed to estimate systolic

pulmonary artery pressure through measurement of the tricuspid

regurgitation velocity and to evaluate left ventricular diastolic

function by determining the mitral valve E/Etdi ratio as previously

described [6]. Transthoracic echocardiography was performed

using the Philips Sono 5500/7500 or iE33, Acuson Sequoia, or

General Electric VIVID 7 or VIVID I instruments. Cardiac

images were obtained, measurements performed, and studies

interpreted centrally according to guidelines of the American

Society of Echocardiography. The tricuspid regurgitation velocity

was measurable in 92% of the patients studied, and patients with

unmeasurable velocity were excluded from analyses that involved

the velocity. Based on the mean +2SD in controls, an elevated

tricuspid regurgitation velocity of $2.60 m/sec and a mitral valve

E/Etdi ratio of $9.22 were considered to be elevated.

Statistical Analysis
For continuous variables that did not follow a normal

distribution, the best transformation to a normal distribution was

made for statistical analyses. Principal component was used to

derive a hemolytic component from reticulocyte count, lactate

dehydrogenase, aspartate transaminase and bilirubin. Principal

component analysis produces a number of components equal to

the number of variables in the analysis; each component

represents a normalized standard distribution with a mean value

of 0. Continuous variables were compared between two groups

with the student t-test or with analysis of variance. Relationships

among continuous variables were determined by bivariate linear

regression. Independent associations of tricuspid regurgitation

velocity of 2.60 m/sec or higher and mitral valve E/Etdi of 9.22 or

higher with hemolytic component, hemoglobin oxygen saturation

and biologic markers were assessed by logistic regression. The

most parsimonious models were developed that included only

variables with P,0.05 in the final model. Models were checked for

model assumption and fitness. Analyses were performed with

STATA 10 (StataCorp, College Station, TX). AMOS 17.0

software (SPSS, Chicago, IL) was used to develop a mechanistic

pathway analysis model of tricuspid regurgitation velocity based

on factors that were significant, independent predictors of elevated

tricuspid regurgitation velocity by logistic regression. The final

pathway model included only parameters and relationships that

were statistically significant (P,0.05). The effect of each

relationship was presented with a standardized coefficient.

Results

Biologic Markers in Sickle Cell Disease Patients and
Controls

The median age of the 237 patients with sickle cell disease was

12 years and 46% were males. The median age of the 43 controls

was 13 years and 51% were males. Seventy-five percent of the

patients had the severe sickling genotypes of hemoglobin SS

(n = 174), hemoglobin Sb0-thalassemia (n = 3) or hemoglobin

SDLA (n = 1), 38% were receiving hydroxyurea and 13% were

on a chronic transfusion program. The median tricuspid

regurgitation velocity was 2.3 m/sec in patients compared to

2.1 m/sec in controls (P = 0.0004 by the student t-test). The

median mitral valve E/Etdi ratio was 6.4 in patients compared to

6.3 in controls (P = 0.5). After adjustment for hydroxyurea therapy

by analysis of variance, patients with sickle cell disease had higher

plasma interleukin-8, interleukin-10, and VEGF concentrations

compared to the control participants and lower plasma RANTES

concentrations (Table 1). Concentrations of tumor necrosis factor-

a, interferon-c, VEGF and fibroblast growth factor were

significantly higher in patients with severe sickling phenotype

than those with mild sickling phenotype (data not shown).

Relationships Among the Biologic Markers in the Patients
with Sickle Cell Disease

Of the inflammatory markers, relationships were observed

among interleukin-6, interleukin-8, interleukin-10, interferon-c
and tumor necrosis factor-a with Pearson’s correlation coefficients

of 0.55 to 0.75 (P,0.0001). Monocyte chemoattractant protein-1

associated with interleukin-6 and interferon-c with correlation

coefficients of 0.55 and 0.56. Similarly, relationships were observed

among all three angiogenic markers, VEGF, PDGF-BB and basic

fibroblast growth factor, with Pearson’s correlation coefficients of

0.57 to 0.82. There were also relationships between the inflamma-

tory markers and angiogenic markers. Interleukin-8 and interferon-

c associated with all three angiogenic markers with correlation

coefficients of 0.50 to 0.73. Interleukin-6, interleukin-10 and tumor

necrosis factor-a associated with VEGF and fibroblast growth factor

with correlation coefficients of 0.58 to 0.78.

Relationship of Biologic Markers to Hydroxyurea Therapy
and Chronic Transfusion Program in Patients with Sickle
Cell Disease

Plasma concentrations of PDGF-BB (medians of 0.3 ng/ml

versus 0.4 ng/ml, P = 0.0007) but not the other markers were

lower in 89 patients receiving hydroxyurea compared to 148

patients not receiving the medication. Plasma concentrations of

PDGF (medians of 0.8 ng/ml versus 0.3 ng/ml, P,0.0001) were

higher in 32 patients on a chronic transfusion program compared

to 201 patients not receiving chronic transfusions.

Relationship of Biologic Markers with the Hemolytic
Component, Hemoglobin Oxygen Saturation and
Hemoglobin Concentration in Patients with Sickle Cell
Disease

We recently reported independent associations of higher

hemolytic component and lower hemoglobin oxygen saturation

Biologic Markers in SCD
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with elevated tricuspid regurgitation velocity in this cohort of

patients with sickle cell disease [6]. We assessed the relationships

of the biologic markers measured in this study with the hemolytic

component, with hemoglobin oxygen saturation, and with

hemoglobin concentration. Plasma concentrations of interleu-

kin-8 correlated directly with the hemolytic component. Plasma

concentrations of interleukin-8 and fibroblast growth factor

correlated inversely with hemoglobin oxygen saturation. Plasma

concentrations of interferon-c, tumor necrosis factor-a, fibroblast

growth factor and VEGF correlated inversely with the hemo-

globin concentration (Table 2).

Bivariate Analysis of the Relationship of Biologic Markers
with Cardiopulmonary Findings in Participants with
Sickle Cell Disease (Table 3)

Interleukin 6, interleukin 8, interferon-c, tumor necrosis factor-

a, RANTES and PDGF-BB correlated positively with tricuspid

regurgitation velocity. Similar results were obtained when the

patients were stratified according to whether or not they were

being treated with hydroxyurea, although the associations were

not always statistically significant in these sub-analyses (data not

shown). None of biological markers correlated significantly with

the E/Etdi ratio by bivariate analysis.

Table 2. Bivariate relationships of biologic markers with hemolytic component and hemoglobin oxygen saturation in patients
with sickle cell disease [Pearson correlation].

Hemolytic component
(N = 225)

Hemoglobin O2 saturation
(N = 233)

Hemoglobin concentration
(N = 237)

R P R P R P

Inflammatory markers

Interleukin-6 (pg/ml, natural log) 0.07 0.3 20.10 0.1 20.08 0.2

Interleukin-8 (pg/ml, natural log) 0.21 0.001* 20.20 0.002* 20.12 0.1

Interferon-c (pg/ml, natural log) 0.15 0.021 20.14 0.034 20.22 0.0006*

Monocyte chemoattractant protein-1 (pg/ml, natural log) 20.07 0.3 0.01 0.9 20.05 0.4

Tumor necrosis factor-a (pg/ml, natural log) 0.17 0.012 20.13 0.049 20.19 0.004*

Interleukin-10 (pg/ml, natural log) 0.15 0.026 20.18 0.006 20.14 0.021

RANTES (ng/ml, natural log) 20.03 0.7 0.04 0.6 0.17 0.007

Angiogenic markers

Fibroblast growth factor (basic) (pg/ml, sq. root) 0.15 0.022 20.19 0.004* 20.24 0.0001*

PDGF- BB (ng/ml, square root) 0.15 0.028 20.15 0.025 20.08 0.2

VEGF (pg/ml, natural log) 0.17 0.012 20.16 0.016 20.19 0.003*

*Statistically significant after adjustment for multiple comparisons.
doi:10.1371/journal.pone.0007956.t002

Table 1. Plasma concentrations of biologic markers in patients with sickle cell disease and control participants; results in median
(interquartile range).

Sickle cell disease patients (N = 237) Controls (N = 43) P1

Inflammatory markers

Interleukin-6 (pg/ml) 0.8 (0.3–1.6) 0.4 (0.2–1.3) 0.031

Interleukin-8 (pg/ml) 0.4 (0.2–1.1) 0.3 (0.05–0.7) 0.001*

Interferon-c (pg/ml) 40 (16–73) 34 (11–51) 0.2

Monocyte chemoattractant protein-1 (pg/ml) 7.0 (3.7–12.9) 8.1 (2.3–12.2) 0.4

Tumor necrosis factor-a (pg/ml) 25 (6–50) 10 (2–42) 0.1

Interleukin-10 (pg/ml) 1.6 (0.4–5.7) 1.1 (0.1–2.5) 0.003*

RANTES (ng/ml) 4.0 (2.4–5.8) 6.9 (3.5–1.5) 0.0002*

Angiogenic markers

Fibroblast growth factor (basic) (pg/ml) 13.5 (3.3–32.5) 7.2 (5.1–17.0) 0.009

PDGF- BB (ng/ml) 0.4 (0.2–0.6) 0.3 (0.2–0.4) 0.043

VEGF (pg/ml) 1.6 (0.3–6.0) 0.5 (0.1–2.3) 0.002*

1From ANOVA adjusted for hydroxyurea treatment and with best transformation of the variable.
*Statistically significant after Bonferroni adjustment for multiple comparisons.
doi:10.1371/journal.pone.0007956.t001
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Independent Associations of Biologic Markers with
Cardiopulmonary Findings by Logistic Regression
Analyses in Participants with Sickle Cell Disease

There are potential relationships among the expression of

angiogenic growth factors and the inflammatory response in sickle

cell disease [37], and we observed relationships among and

between the inflammatory and angiogenic markers in this study as

described above. Furthermore, we observed associations of some

of the biologic markers measured with the hemolytic index and/or

the hemoglobin oxygen saturation (Table 2), which we previously

showed to be associated with elevated tricuspid regurgitation

velocity [6]. It was therefore important to do analyses to search for

independent relationships of biologic markers with the cardiopul-

monary findings of interest in this study.

Tricuspid regurgitation velocity. We used logistic regression

to examine the independent relationships of biologic markers,

hemolytic component and hemoglobin oxygen saturation with

tricuspid regurgitation velocity dichotomized as $2.6 m/sec versus

,2.6 m/sec (Table 4). Greater values for PDGF-BB (P = 0.009),

interleukin-6 (P = 0.019) and the hemolytic component (P = 0.026)

were each independently associated with increased odds of elevated

tricuspid regurgitation velocity while higher VEGF concentrations

were associated with decreased odds (P = 0.005). We performed

separate analyses in patients with severe sickling phenotype and mild

sickling phenotype, and observed similar results to the overall

analysis in both subgroups. However, the relationships in the mild

sickling phenotype did not reach statistical significance because of

the small sample size.

Hemoglobin oxygen saturation did not have a significant

independent association with tricuspid regurgitation velocity after

adjustment for the hemolytic component, VEGF, PDGF and

interleukin-6 in the logistic regression model. Hydroxyurea

therapy and chronic transfusion program did not have significant

associations either.

Mitral valve E/Etdi ratio. None of the biologic markers had

a significant association with E/Etdi ratio of 9.22 or higher versus

less than 9.22.

Complex Relationship of VEGF with Other Biologic
Markers and with Tricuspid Regurgitation Velocity

Plasma VEGF concentration had significant positive relation-

ships with PDGF-BB (Figure 1a) and interleukin-6 (Figure 1b) but

not with tricuspid regurgitation velocity (Table 3) in bivariate

analyses. VEGF had a negative rather than positive independent

relationship with tricuspid regurgitation velocity in the multivar-

iate logistic regression analysis (Table 4). Figure 2a shows the

mean VEGF concentration was lower in children with tricuspid

regurgitation velocity $2.60 m/sec than those with velocity

,2.60 m/sec after adjustment for PDGF-BB, hemolytic index

and interleukin-6. In contrast, Figure 2b–d shows that the adjusted

Table 3. Bivariate relationships of biologic markers with cardiopulmonary outcomes in patients with sickle cell disease.

Tricuspid regurgitation velocity (N = 218) Mitral valve E/Etdi (N = 233)

R P R P

Inflammatory markers

Interleukin-6 (pg/ml, natural log) 0.20 0.004* 0.01 0.9

Interleukin-8 (pg/ml, natural log) 0.20 0.003* 0.07 0.3

Interferon-c (pg/ml, natural log) 0.24 ,0.001* 20.004 0.9

Monocyte chemoattractant protein-1 (pg/ml, natural log) 0.11 0.09 20.01 0.9

Tumor necrosis factor-a (pg/ml, nat. log) 0.22 0.001* 0.05 0.4

Interleukin-10 (pg/ml, natural log) 0.15 0.032 0.03 0.6

RANTES (ng/ml, natural log) 0.21 0.002* 20.04 0.6

Angiogenic markers

Fibroblast growth factor (basic) (pg/ml, sq. root) 0.10 0.16 0.07 0.3

PDGF- BB (ng/ml, square root) 0.20 0.003* 0.09 0.2

VEGF (pg/ml,natural log) 0.12 0.08 0.09 0.2

*Statistically significant after adjustment for multiple comparisons.
doi:10.1371/journal.pone.0007956.t003

Table 4. Independent predictors of tricuspid regurgitation velocity $2.60 m/sec by logistic regression.

Odds ratio (95% confidence interval) P

VEGF (pg/ml, natural log) 0.60 (0.42–0.86) 0.005

PDGF-BB (ng/ml, square root) 10.0 (1.77–56.29) 0.009

Interleukin-6 (pg/ml, natural log) 1.60 (1.08–2.38) 0.019

Hemolytic component (relative unit) 1.44 (1.05–1.98) 0.026

186 patients with tricuspid regurgitation velocity ,2.6 m/sec; 20 with velocity $2.6 m/sec. Variables entered into the analyses hemolytic component, hemoglobin
oxygen saturation, chronic transfusion program, hydroxyurea therapy, interleukin-6, interleukin-8, tumor necrosis factor-a, interferon-c, interleukin-10, RANTES, basic
fibroblast growth factor, PDGF-BB and VEGF.
doi:10.1371/journal.pone.0007956.t004
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mean values for PDGF, interleukin-6 and hemolytic index were

higher with tricuspid regurgitation velocity $2.60 m/sec. These

observations suggest that the relationship of VEGF with tricuspid

regurgitation velocity is modified by the degree of elevation of

other angiogenic and inflammatory molecules.

Pathway Analysis of Tricuspid Regugitation Velocity in
Patients with Sickle Cell Disease (Figure 3)

The model had a good fit to the data (Chi-square = 9.1, degrees

of freedom = 5, P = 0.11) and it was statistically significant (root

mean square error of approximation = 0.05; 90% confidence

interval of 0.0 to 0.1). According to this analysis, higher hemolytic

component was a direct predictor of increasing tricuspid

regurgitation velocity (beta = 0.38) and it also was associated with

lower hemoglobin concentration and higher interleukin-6 concen-

tration. Lower hemoglobin concentration was not a direct

predictor of higher regurgitation velocity, but it was associated

with higher VEGF concentration. Higher interleukin-6 concen-

tration was a direct predictor of increasing tricuspid regurgitation

velocity (beta = 0.22) and it also was associated with higher VEGF

and PDGF-BB concentrations. Higher PDGF-BB concentration

was a direct predictor of increasing regurgitation velocity

(beta = 0.25) while higher VEGF concentration was a direct

predictor of lower regurgitation velocity. The model predicted

22% of variation in tricuspid regurgitation velocity among

patients.

Discussion

Hemolysis and hypoxia have been identified as risk factors for

elevated tricuspid regurgitation velocity in children and adoles-

cents with sickle cell disease [6]. Here we investigated whether

markers of other biologic pathways implicated in pulmonary

hypertension in conditions other than sickle cell disease may be

associated with elevated tricuspid regurgitation velocity in sickle

cell disease as well. We also examined the relationship of these

markers to mitral valve E/Etdi, an indicator of left ventricular

diastolic function. In this process, we found that, in addition to a

composite marker of hemolysis, circulating angiogenic and

inflammatory markers were associated with elevated tricuspid

regurgitation velocity but not with elevated mitral valve E/Etdi

ratio in children and adolescents with sickle cell disease. In

multivariate analyses, higher levels of PDGF and lower levels of

VEGF were associated with elevated regurgitation velocity.

Pulmonary hypertension is characterized by abnormal prolifer-

ation of pericytes and smooth muscle cells in the pulmonary

microvasculature [38]. PDGF activates vascular smooth muscle

cells/pericytes in the process of angiogenesis [39] and promotes

the development of experimental and hypoxia-related pulmonary

hypertension by inducing the proliferation and migration of

smooth muscle cells and fibroblasts [40,41]. In the present study,

we found that greater plasma concentrations of PDGF correlated

significantly with higher values for tricuspid regurgitation velocity

in both bivariate and multivariate analyses among children and

adolescents with sickle cell disease. Other clinical and translational

studies also support a role for PDGF in promoting [40,41] the

development of pulmonary hypertension in settings other than

sickle cell disease. The pharmacologic agent, imatinib, serves as a

PDGF receptor antagonist and reverses vascular remodeling and

cor pulmonale in experimental pulmonary hypertension [42].

Recent studies indicate that PDGF receptor antagonists such as

imatinib and sunatinib are effective therapy for experimental

pulmonary hypertension [42,43], and case reports suggest that

imatinib has efficacy in human patients as well [44]. In addition,

activated platelets might be a source of increased plasma PDGF

levels in sickle cell disease [22].

In contrast to the stimulation of vascular smooth muscle cells by

PDGF, VEGF stimulates proliferation and migration of endothe-

lial cells in the process of angiogenesis [39] and has not consistently

been found to contribute to experimental pulmonary hypertension

[29,45,46]. VEGF expression is controlled by a number of

complex regulatory mechanisms [47]. Specifically during hypoxia

VEGF transcription is induced from the rapid stabilization of

hypoxia inducible factor-1 [48]. During hemolysis and subsequent

hypoxia in sickle cell disease, one would expect VEGF to be

induced, and the present data shows a strong inverse correlation of

circulating VEGF concentration with hemoglobin concentration.

Consistent with a recent study in adults [49], we did not observe a

significant relationship of plasma concentrations of VEGF with

tricuspid regurgitation velocity in bivariate analysis. However, we

found that greater VEGF concentrations were associated with

lower tricuspid regurgitation velocity in multivariate analysis. This

observation is noteworthy in the light of recent research by other

investigators indicating that PDGF and VEGF have dichotomous

roles in the regulation of vascular smooth muscle cells/pericytes:

PDGF mediates the growth of pericytes by a receptor-mediated

mechanism in a model of angiogenesis, and increased VEGF

prevents this effect of PDGF [39]. Another potential mechanism

whereby VEGF may associate with a lower regurgitation velocity

is through induction of nitric oxide: VEGF induces nitric oxide

synthesis by endothelial nitric oxide synthesis via an Akt-mediated

Figure 1. Bivariate relationships of VEGF with PDGF-BB and
interleukin-6 in patients with sickle cell disease.
doi:10.1371/journal.pone.0007956.g001
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pathway [50]. Other clinical and translational studies also support

a role for VEGF in inhibiting [29,45,46] the development of

pulmonary hypertension in settings other than sickle cell disease.

Thus, higher VEGF expression conceivably could protect from

elevation of pulmonary artery pressure in sickle cell disease by two

pathways, namely inhibition of pulmonary vascular smooth muscle

proliferation and increased production of nitric oxide by

endothelial cells.

Although we previously observed significant, independent

associations of both higher hemolytic index and lower hemoglobin

oxygen saturation with elevated tricuspid regurgitation velocity in

this cohort of children and adolescents with sickle cell disease [6],

the present study indicated that the hemoglobin oxygen saturation

was not significantly associated after adjustment for VEGF,

PDGF-BB and interleukin-6. Our findings are therefore consistent

with the possibility that effects of hypoxia on systolic pulmonary

arterial pressure are at least in part mediated by changes in

angiogenic and inflammatory responses.

Sickle cell disease is characterized by chronic low-grade

inflammation and endothelial activation [51] as manifested by

leukocytosis and monocytosis [52,53] and increased soluble

vascular cell adhesion molecules [18,54,55]. There are differing

reports regarding the involvement of cytokines as mediators of

inflammation in sickle cell disease [56,57,58,59]. In the present

study, we observed higher plasma levels of interleukin-8 and

interleukin-10 in sickle cell disease patients compared to control

subjects. Among the patients with sickle cell disease, we observed

bivariate associations of higher interleukin-6, interleukin-8,

interferon-c, tumor necrosis factor-a and RANTES concentra-

tions with higher tricuspid regurgitation velocity, and an

independent association of increased interleukin-6 concentration

with elevated tricuspid regurgitation velocity. These observations

are compatible with the possibility that pro-inflammatory

processes contribute to pulmonary hypertension in sickle cell

disease as proposed by other investigators [21] and as observed in

other settings [23,24,25,26,60]. Our observation that the relation-

ship of VEGF with tricuspid regurgitation velocity is modified by

the degree of elevation of the inflammatory marker, interleukin-6,

is paralleled by a report from the literature that pulmonary

hypertension in tumor necrosis factor-a-over-expressing mice is

associated with decreased VEGF expression [61].

There are a number of limitations to our study. Thirty-eight

percent of the patients were being treated with hydroxyurea and

13% were on a chronic transfusion program. Although plasma

concentration of PDGF was lower in the patients receiving

hydroxyurea and higher in those on a chronic transfusion

Figure 2. Adjusted mean values VEGF, PDGF-BB, interleukin-6 and hemolytic component according to tricuspid regurgitation
velocity category. Presented are least square mean (6standard error) values from ANOVA with adjustment for the other variables depicted. TRV
indicates tricuspid regurgitation velocity.
doi:10.1371/journal.pone.0007956.g002
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program, these forms of treatment were not significant covariates

in examining the relationships of the biologic markers with

tricuspid regurgitation velocity or mitral valve E/Etdi. The

reliability of single echocardiographic measurements of tricuspid

regurgitation velocity and E/Etdi has not been established in

children with sickle cell disease. Other than a greater decline in

oxygen saturation during the six minute walk test in patients with

elevated tricuspid regurgitation velocity, we have not observed

functional impairment in patients with elevated tricuspid regur-

gitation velocity or mitral valve E/Etdi in children and adolescents

with sickle cell disease [6]. Other limitations to our study are that

circulating concentrations of biologic markers may not reflect the

levels to which cells of the pulmonary microvasculature are

exposed, that this was a cross-sectional rather than a longitudinal

study, and that multiple comparisons dilute the statistical

significance of individual observations. Furthermore, the negative

association of VEGF with tricuspid regurgitation velocity appears

only after adjustment for PDGF concentration. However, the

pathway analysis lends support to the finding of contrasting

associations of VEGF and PDGF with tricuspid regurgitation

velocity.

Although the clinical importance of elevated tricuspid regurgi-

tation velocity in children and adolescents with sickle cell disease

has not been clarified by long-term follow-up studies, it seems

possible that elevated velocity in this age group may identify

individuals at risk for developing pulmonary hypertension later in

life. From this standpoint, the PUSH cohort could have unique

research importance for studying the development of pulmonary

hypertension in sickle cell disease. Our observation of opposing

VEGF and PDGF profiles in normal versus elevated tricuspid

regurgitation velocity groups supports the idea that elevated

velocity associates with known factors involved in pulmonary

hypertension, and that this clinical measure may be useful for

dissecting the pathogenesis of the early stages of cardiopulmonary

complications of sickle cell disease. In general, our findings support

the idea that the etiology of pulmonary hypertension in sickle cell

disease is multi-factorial, and that pro-inflammatory and angio-

genic pathways may interact with the degree of hemolysis in

contributing to the development of pulmonary hypertension.
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