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Abstract

Arginine methylation of histone and non-histone proteins is involved in transcription regulation and many other cellular
processes. Nevertheless, whether such protein modification plays a regulatory role during apoptosis remains largely
unknown. Here we report that the Caenorhabditis elegans homolog of mammalian type II arginine methyltransferase PRMT5
negatively regulates DNA damage-induced apoptosis. We show that inactivation of C. elegans prmt-5 leads to excessive
apoptosis in germline following ionizing irradiation, which is due to a CEP-1/p53–dependent up-regulation of the cell death
initiator EGL-1. Moreover, we provide evidence that CBP-1, the worm ortholog of human p300/CBP, functions as a cofactor
of CEP-1. PRMT-5 forms a complex with both CEP-1 and CBP-1 and can methylate the latter. Importantly, down-regulation of
cbp-1 significantly suppresses DNA damage-induced egl-1 expression and apoptosis in prmt-5 mutant worms. These
findings suggest that PRMT-5 likely represses CEP-1 transcriptional activity through CBP-1, which represents a novel
regulatory mechanism of p53-dependent apoptosis.
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Introduction

Appropriate cellular response to DNA damage is critical for the

maintenance of genome stability that is fundamental to the

survival and development of organisms. In response to DNA

damage, eukaryotic cells can activate checkpoint signaling

pathways that are orchestrated by DNA damage sensors,

mediators, transducers and effectors. In mammals, the damaged

DNA is cooperatively recognized by the phosphoinositide 3-

kinases ATM or ATR and the protein complexes Rad9-Rad1-

Hus1 (9-1-1) and RFC-Rad17 [1]. ATM and ATR initiate a

phosphorylation cascade that eventually leads to the stabilization

of the tumor suppressor p53. By selectively activating cell cycle

controlling genes such as p21 and proapoptotic genes such as Bax,

Puma and Noxa, p53 can induce either cell cycle arrest that allows

the repair of damaged DNA, or apoptosis that eliminates those

over-damaged cells in which DNA lesions are irreparable [1,2]. In

addition to phosphorylation, the activation of p53 also involves

other protein modifications including methylation and acetylation

that are implicated in increasing p53 protein stability [3].

Moreover, the activity of p53 is also regulated by transcription

coactivators such as histone acetyltransferases p300 and CBP

which are recruited by p53 to form transcription initiation

complex to facilitate the transcription of p53 target genes [4–6].

DNA damage sensing and signaling pathways are evolutionarily

conserved across diverse species ranging from C. elegans to humans.

In C. elegans, the p53 homolog CEP-1 acts as a key effector to

mediate germ cell apoptosis triggered by ionizing irradiation [7,8].

Following DNA damage, CEP-1/p53 transcriptionally activates

the cell death initiator EGL-1, a C. elegans BH3-only protein

analogous to the mammalian p53 targets Puma and Noxa, leading

to the activation of the core cell death pathway that is essentially

controlled by several evolutionarily conserved apoptotic factors,

including the Bcl-2-like antiapoptotic protein CED-9, the C. elegans

Apaf-1 homolog CED-4, and the caspase CED-3 [9,10]. In

addition, inactivation of components in the checkpoint signaling

pathways also gives rise to abnormal apoptosis of germ cells

following DNA damage. For example, mutations in mrt-2, hus-1

and clk-2, which encode the C. elegans homologs of mammalian

Rad1, Hus1 and Rad5, respectively, suppress cell cycle arrest and

germ cell apoptosis induced by c-irradiation [9,11,12]. Similarly,

inactivation of atm-1 and atl-1, the C. elegans homologs of

mammalian ATM and ATR, respectively, suppresses both DNA

damage-induced cell cycle arrest and apoptosis in C. elegans

germline [13]. These facts indicate that the DNA damage

signaling pathway leading to apoptosis in C. elegans is essentially

similar to that in mammals, which makes C. elegans an excellent

model organism for identifying novel components involved in

cellular response to DNA damage.

Protein arginine methyltransferases (PRMTs) are a family of

proteins that catalyze the addition of one or two methyl groups to

the guanidine nitrogen atoms of arginine, a process of posttrans-
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lational modification termed protein arginine methylation [14,15].

PRMTs have been found in diverse species and 11 members are

identified in mammals [14,15]. Depending on the methylated

forms of arginine residues of their substrates, mammalian PRMTs

are classified into two types. The type I PRMTs, including

PRMT1, 3, 4, 6 and 8, catalyze asymmetric dimethylation of

arginine residues (aDMA). In comparison, the type II PRMTs,

including PRMT5, 7 and 9, catalyze symmetric dimethylation of

arginine residues (sDMA) [15]. In recent years, a growing body of

evidence indicates that protein arginine methylation plays

important roles in regulating multiple cellular processes such as

transcriptional regulation, signal transduction, DNA repair as well

as RNA processing [14]. The regulation of transcription by

PRMTs generally involves the recruitment of these proteins to

promoters by transcription factors and methylation of histone tails

[14], or methylation of transcription coactivators such as p300/

CBP [16,17] and transcription elongation factors such as SPT5

[18]. Recent studies have also shown that protein arginine

methylation is likely involved in cellular response to DNA damage.

For example, it has been reported that PRMT1, CARM1/

PRMT4 and p300 function cooperatively to promote p53

transcriptional activity on the cell cycle controlling gene GADD45

[19]. In addition, it was found that PRMT2 promotes apoptosis by

negatively regulating NF-kB independently of its methylation

activity, which is also implicated in DNA damage-induced

apoptosis [20]. Nevertheless, whether other PRMTs are involved

in cellular response to DNA damage, especially in p53-dependent

apoptosis, still remains largely unknown. Moreover, aberrant

expression of PRMTs are found to associate with a wide variety of

human diseases including many cancers, but the underlying

mechanisms still need to be further elucidated [14].

To better understand the signaling mechanisms underlying

cellular response to DNA damage, we took advantage of the

genetic tractable model organism C. elegans to determine whether

PRMTs and protein arginine methylation are involved in p53-

dependent apoptosis. We found that inactivation of prmt-5, which

encodes the C. elegans homolog of mammalian PRMT5, signifi-

cantly increased germ cell apoptosis following ionizing radiation.

Our genetic analyses indicate that prmt-5-mediated apoptosis is

dependent on cep-1/p53 and requires the core cell death pathway.

Furthermore, we provide evidence that CBP-1, the C. elegans

homolog of mammalian p300/CBP, acts as a transcription

coactivator of CEP-1 and can be methylated by PRMT-5. The

formation of a tripartite complex among PRMT-5, CEP-1 and

CBP-1 and the methylation of CBP-1 by PRMT-5 likely repress

the transcriptional activation of the cell death initiator EGL-1 in

response to DNA damage. Our findings not only demonstrate that

PRMT-5 is a novel component critical for DNA damage-induced

apoptosis in C. elegans, but also suggest a negative regulatory

mechanism underlying p53-dependent apoptosis.

Results

Inactivation of C. elegans prmt-5 Leads to Excessive Germ
Cell Apoptosis following DNA Damage

To identify putative protein arginine methyltransferases in C.

elegans, we used the sequences of individual mammalian PRMTs to

search the C. elegans genome database. 6 putative open reading

frames either containing conserved motifs of arginine methyl-

transferase or sharing other homology with mammalian PRMTs

were obtained. Based on their sequence similarity to mammalian

PRMTs, we designated these genes prmt-1, -2, -3, -4, -5, and -6,

respectively (prmt represents protein arginine methyl transferase)

(Figure S1A, S1B). Next, we examined whether these prmt genes

are involved in C. elegans programmed cell death using RNA

interference (RNAi) to knock down their expressions. Our time-

course analyses of both embryonic and germ cell corpses indicated

that inactivation of these genes did not obviously affect the cell

death profiles, which suggests that protein arginine methylation

may not be involved in developmental cell deaths in C. elegans (data

not shown). However, when irradiated with c-ray, animals pre-

treated with prmt-5 RNAi showed an obvious increase of germ cell

corpses compared with control RNAi-treated worms, suggesting

that prmt-5 is likely involved in DNA damage-induced apoptosis

(Figure S1C).

C. elegans prmt-5 gene is defined by the open reading frame

C34E10.5 located on the linkage group III, which encodes a

protein of 734 amino acids. The predicted worm PRMT-5 protein

shows the highest sequence similarity to human type II protein

arginine methyltransferase PRMT5 (34% sequence identity and

48% similarity, respectively). The sequence similarity is particu-

larly strong between the residues 105 to 730 of C. elegans PRMT-5

and residues 58 to 633 of human PRMT5. C. elegans PRMT-5 also

shares homology with yeast Skb1 and Drosophila Dart1 (Figure

S2). Previously, a genome-wide RNAi screen showed that

inactivation of prmt-5/C34E10.5 could cause increased level of

spontaneous mutation in C. elegans, suggesting that prmt-5 is

important for genome stability [21]. However, it is not known

whether prmt-5 also plays a role in DNA damage-induced

apoptosis. To further determine this, we analyzed a mutant strain

prmt-5(gk357) containing a deletion of 522 bp that removes a small

region of the exon 1 and the whole exons 2 and 3 of prmt-5

genomic locus (Figure 1A). Using an antibody generated against

recombinant PRMT-5, we detected the expression of PRMT-5 in

wild type but not in prmt-5(gk357) mutants, indicating that prmt-

5(gk357) is likely a strong loss-of-function allele (Figure 1A). prmt-

5(gk357) animals display no obvious developmental defects except

that the growth rate is slightly lower than that of wild-type animals.

Similar to prmt-5(RNAi) worms, prmt-5(gk357) animals do not show

discernible defects in developmental cell deaths (data not shown).

However, when exposed to c-irradiation (IR), prmt-5(gk357)

Author Summary

Protein arginine methylation is an important posttransla-
tional modification. Aberrant expression of protein argi-
nine methyltransferases (PRMTs) are found in a wide
variety of human diseases, especially in many cancers.
Given that deregulation of apoptosis is usually related to
tumorigenesis, it is not known whether PRMT–mediated
protein arginine methylation plays a role in apoptosis.
Here we employ the genetic tractable model organism C.
elegans to explore the potential regulatory roles of PRMTs
in apoptosis. We find that C. elegans PRMTs do not affect
developmental cell deaths. However, genetic inactivation
of the C. elegans homolog of the mammalian type II
protein arginine methyltransferase PRMT5 causes exces-
sive germ cell apoptosis in response to DNA damage. Our
genetic analyses indicate that prmt-5–mediated apoptosis
is dependent on the C. elegans p53 homolog CEP-1 and
requires the core cell death pathway. We further demon-
strate that loss of prmt-5 leads to a specific up-regulation
of the cell death initiator EGL-1 following DNA damage.
Finally, we identify CBP-1, the C. elegans homolog of
human p300/CBP, as a CEP-1 cofactor in C. elegans, and we
provide genetic and biochemical evidence that PRMT-5
likely functions through CBP-1 to affect CEP-1/p53
transcriptional activity, thereby negatively regulating
CEP-1/p53-dependent apoptosis.

PRMT-5 Regulates CEP-1/p53
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mutants exhibited a strong increase of germ cell apoptosis

compared with that in wild-type animals. The IR-induced

apoptosis in prmt-5(gk357) animals occurred mostly in the germline

meiotic region containing pachytene-stage cells and the apoptotic

cells displayed disc-like structures which were morphologically

indistinguishable from those in wild-type worms (Figure 1B(a–b)).

A further staining of irradiated animals with acridine orange (AO),

a fluorescence dye that preferentially stains cell corpses internal-

ized in engulfing cells, also indicated that prmt-5(gk357) worms

contained significantly more AO-positive germ cell corpses than

wild-type animals (Figure 1B(c–f)). Collectively, these data indicate

that prmt-5 loss-of-function mutation leads to excessive germ cell

apoptosis following c-irradiation.

We evaluated the dosage effect of IR on germ cell apoptosis in

prmt-5(gk357) animals by exposing them to different doses of c-

irradiation. In both wild-type and prmt-5(gk357) animals, IR

induced an increase of germ cell apoptosis in a dose-dependent

manner, but the number of germ cell corpses in prmt-5(gk357)

worms was significantly higher than in wild-type animals at all

tested irradiation doses (Figure 1C). The appearance of germ cell

corpses in prmt-5(gk357) mutants reached a peak 36 h post

irradiation of 120 Gy, which was about 2 times of that in wild-

type animals (Figure 1C and 1D). To determine whether other

DNA-damage agents can also induce excessive germ cell apoptosis

in prmt-5(gk357) mutants, we treated prmt-5(gk357) animals with

ethylnitrosourea (ENU), a DNA–alkylating agent that can cause a

broad spectrum of DNA lesions. Our results indicate that ENU

induced elevated germline apoptosis in both wild-type and prmt-

5(gk357) animals in a concentration-dependent manner. More-

over, significantly more germ cell corpses were observed in the

prmt-5(gk357) mutants than in wild-type animals at all tested ENU

concentrations (Figure 1E). Importantly, the excessive germ cell

apoptosis observed in the prmt-5(gk357) mutants following c-

irradiation was strongly reduced when a GFP::PRMT-5 fusion

protein was overexpressed under the control of the pie-1 promoter

(Ppie-1) which specifically drives gene expression in germ cells [22],

indicating that germline-specific expression of PRMT-5 rescued

the germ cell apoptosis phenotype in the prmt-5(gk357) mutants

(Figure 1F). Taken together, these findings suggest that prmt-5

likely antagonizes DNA damage-induced apoptosis in C. elegans.

prmt-5 Acts through the Core Cell Death Pathway and
Requires Checkpoint Signaling

Several lines of evidence have shown that germ cell apoptosis

induced by DNA damage requires the core cell death pathway

because mutations of genes essential for programmed cell death,

including ced-3, ced-4, ced-9 and egl-1, block such cell death. To

determine whether the strong increase of IR-induced germ cell

apoptosis in prmt-5(gk357) mutants is dependent on the core cell

death pathway, we generated prmt-5(gk357);ced-3(n717) and prmt-

5(gk357);egl-1(n1084 n3082) double mutants and found that germ

cell apoptosis was barely induced by IR in these worms (Figure 2A).

Moreover, in prmt-5 RNAi-treated ced-4(n1162) loss-of-function

and ced-9(n1950) gain-of-function mutants, IR-induced germ cell

apoptosis was either abrogated or strongly suppressed as compared

with that in prmt-5 RNAi-treated wild-type animals (Figure 2B).

These results suggest that prmt-5 acts through the core cell death

pathway to regulate DNA damage-induced apoptosis.

It was reported previously that mutations in mrt-2, hus-1 and clk-

2, which encode C. elegans homologs of mammalian checkpoint

signaling components Rad1, Hus1 and Rad5, respectively, inhibit

both DNA damage-induced cell cycle arrest and apoptosis in C.

elegans [9,11,12]. The progeny of checkpoint mutants are also

hypersensitive to IR treatment owing to defects in DNA repair

[12,23]. Although prmt-5(gk357) animals laid fewer eggs than wild-

type worms after irradiation, which was potentially resulted from

excessive germline apoptosis, the survival of prmt-5(gk357) progeny

was comparable to that of wild-type animals (Text S1, Table S1).

In addition, prmt-5(gk357) worms displayed similar cell cycle arrest

in germline mitotic region to that in wild type following IR

treatment (data not shown). Together, these data suggest that prmt-

5 does not act as a checkpoint gene to affect cell cycle progression;

instead, its effect is likely specific to apoptosis in response to DNA

damage. We thus asked whether checkpoint signaling affects prmt-

5-mediated apoptosis upon DNA damage. To test that, we used

RNAi to inactivate prmt-5 in hus-1(op241), mrt-2(e2663) and clk-

2(mn159) mutants and induced germ cell apoptosis with c-

irradiation of 120 Gy. Our data indicate that mutations in hus-1,

mrt-2 and clk-2 significantly inhibited IR-induced germline

apoptosis in prmt-5(RNAi) worms (Figure 2C). Furthermore, the

number of germ cell corpses was strongly reduced, but not entirely

suppressed, in hus-1(op241);prmt-5(gk357) double mutants com-

pared with that in prmt-5(gk357) single mutants after IR treatment

(Figure 2D). These findings suggest that checkpoint signaling is

important for prmt-5-mediated apoptosis, and prmt-5 likely acts in

parallel to, or downstream of, checkpoint genes to regulate

apoptosis in response to DNA damage.

prmt-5(gk357) Affects CEP-1/p53 Transcriptional Activity
Previous studies have shown that CEP-1 transcriptionally

activates egl-1 in response to DNA damage [9,10,24]. Because

egl-1 loss of function blocked IR-induced apoptosis in prmt-5(gk357)

animals (Figure 2A), we asked further whether CEP-1 activity is

required for IR-induced excessive apoptosis in prmt-5(gk357)

worms. To answer this, we constructed double mutants of prmt-

5(gk357) with the cep-1 deletion allele gk138. In cep-1(gk138);prmt-

5(gk357) double mutants, no germ cell apoptosis was observed

after c-irradiation of 120 Gy (Figure 3A), suggesting that prmt-5

functions upstream or at the level of cep-1. Further analyses did not

reveal any obvious changes in mRNA or protein levels of cep-1 in

Figure 1. prmt-5 mutation causes excessive germ cell apoptosis in response to DNA damage. (A) prmt-5(gk357) is likely a null allele. The
top panel shows the schematic representation of prmt-5(gk357) deletion mutation. Solid boxes indicate exons and waved lines indicate introns. The
fragment below the gene indicates the deletion region and size. The bottom panel shows the endogenous expression of PRMT-5 in N2 and prmt-
5(gk357) animals detected by using anti-PRMT-5 antibody. a-tubulin indicates the loading control of the samples. (B) c-irradiation induces excessive
germ cell apoptosis in prmt-5(gk357) animals. Young adult worms were treated with c-irradiation of 120 Gy. 36 h later, germ cell corpses were
examined under DIC optics and representative images of cell corpses are shown for N2 (a) and prmt-5(gk357) animals (b), respectively. Irradiated
worms were also stained with acridine orange (AO) and both DIC and AO-positive germ cell corpses were shown for N2 (c, e) and prmt-5(gk357)
mutants (d, f). Germ cell corpses are indicated by arrows (a, c–f) or fragmented circle (b). (C, D) Quantitative analysis of germ cell apoptosis induced by
c-irradiation. Germ cell corpses from one gonad arm of each animal were scored 36 h post irradiation of indicated doses (C), or at indicated time
points post irradiation of 120 Gy (D). At least 20 worms were scored at each radiation dose or time point. Error bars represent standard error of the
mean (SEM). (E) ENU induces excessive germ cell apoptosis in prmt-5(gk357) mutants. Young adult worms were treated with ENU at indicated
concentrations for 4 h and germ cell corpses from one gonad arm of each animal were scored 24 h post ENU treatment. At least 20 worms were
scored at each concentration point. (F) Rescuing activity of Ppie-1gfp::prmt-5 in prmt-5(gk357) germline. Worms were irradiated with c-ray of 120 Gy
and germ cell corpses were scored as above 36 h after irradiation.
doi:10.1371/journal.pgen.1000514.g001
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prmt-5(gk357) animals after irradiation (data not shown), indicating

that prmt-5 mutation likely does not affect either the transcription

or mRNA stability or protein stability of cep-1.

To understand how cep-1 and egl-1 might be involved in IR-

induced excessive apoptosis observed in prmt-5(gk357) animals, we

examined whether the mRNA level of egl-1 was affected in prmt-

5(gk357) animals after being exposed to c-irradiation. Using

Northern blot analysis, we found that IR-induced egl-1 mRNA

level was significantly enhanced in prmt-5(gk357) mutants com-

pared with that in wild type (Figure 3B). For example, in three

independent Northern blot analyses, the average egl-1 mRNA level

was induced by about 4-fold in wild-type animals 24 h after

irradiation (Figure 3C). In prmt-5(gk357) animals, the basal level of

egl-1 mRNA appeared slightly higher than in wild-type worms

though it might not be sufficient for triggering excessive apoptosis

under physiological condition, and egl-1 expression was further

increased by about 8-fold after irradiation as compared with that

in non-irradiated wild-type animals (Figure 3B and 3C). When

comparison was made between IR-treated wild-type and prmt-

5(gk357) animals, we constantly observed a further increase of egl-1

mRNA by 1.5- to 2.5-fold in prmt-5(gk357) mutants (Figure 3B and

3C). In contrast, in cep-1(gk138);prmt-5(gk357) double mutants, IR-

induced egl-1 expression was completely abrogated (Figure 3B and

3C), indicating that cep-1 activity is absolutely required for IR-

induced over up-regulation of egl-1 mRNA caused by loss of prmt-5

function.

ced-13, which encodes another BH3-only protein in C. elegans,

was also reported to be transcriptionally activated by CEP-1

following DNA damage [25]. However, we found that ced-

13(tm536) deletion, which likely represents a strong loss-of-

function mutation of ced-13 [25], did not suppress the IR-induced

excessive germ cell apoptosis in prmt-5(gk357) animals (Figure 3D).

By Northern blot analysis, we were not able to detect obvious

expression of ced-13 following c-irradiation in either wild type or

prmt-5(gk357) animals, which is likely due to a very low expression

level of ced-13. Thus we used the more sensitive semi-quantitative

RT-PCR assay to examine ced-13 expression in response to DNA

damage. As reported before [25], our results indicate that ced-13

Figure 2. Epitasis analysis of prmt-5-mediated apoptosis. (A) Quantification of IR-induced germ cell apoptosis in N2, prmt-5(gk357), ced-3(n717),
egl-1(n1084 n3082) single mutants and prmt-5(gk357);ced-3(n717) as well as prmt-5(gk357);egl-1(n1084 n3082) double mutants. Young adult animals were
irradiated with c-ray of 120 Gy and analyzed 36 h post irradiation. Germ cell corpses from one gonad arm of each animal were scored for at least 20
animals. Error bars represent SEM. (B) Quantification of germ cell apoptosis in control RNAi- and prmt-5 RNAi-treated N2, ced-4(n1162) and ced-9(n1950gf)
mutants following c-irradiation. Worms were irradiated and germ cell corpses were scored and analyzed as in (A). (C) Quantification of IR-induced germ
cell apoptosis in control RNAi- and prmt-5 RNAi-treated N2, hus-1(op241), mrt-2(e2663) and clk-2(mn159) animals. Worm treatment and germ cell corpse
analysis were performed as in (A). (D) Quantification of IR-induced germ cell apoptosis in N2, prmt-5(gk357), hus-1(op241) single mutants and hus-
1(op241);prmt-5(gk357) double mutants. Worm treatment and germ cell corpse analysis were performed as in (A).
doi:10.1371/journal.pgen.1000514.g002
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Figure 3. prmt-5(gk357) affects CEP-1 transcriptional activity in response to DNA damage. (A) Quantification of IR-induced germ cell
apoptosis in N2, prmt-5(gk357), cep-1(gk138) single mutants and cep-1(gk138);prmt-5(gk357) double mutants. Young adult animals were irradiated
with c-ray of 120 Gy and analyzed 36 h post irradiation. Germ cell corpses from one gonad arm of each animal were scored for at least 20 animals.
Error bars represent SEM. (B) Northern blot analysis of egl-1 mRNA in N2, prmt-5(gk357) and cep-1(gk138);prmt-5(gk357) worms treated with c-
irradiation. Young adult worms were treated with c-irradiation of 120 Gy and total RNA were prepared 24 h post irradiation. egl-1 expression was
detected by using egl-1 cDNA as probe. a-actin mRNA was probed as loading control of samples. Three independent Northern blot analyses were
performed and the representative images are shown. (C) Relative fold induction of egl-1 mRNA in indicated animals 24 h after c-irradiation of 120 Gy.
egl-1 fold induction was averaged from three independent Northern blot analyses, which was quantified by using the software ImageQuant 5.2 and
normalized with a-actin mRNA. (D) Quantification of IR-induced germ cell apoptosis in N2, prmt-5(gk357), ced-13(tm536) single mutants and prmt-
5(gk357);ced-13(tm536)double mutants. Worm treatment and germ cell corpse analysis were performed as in (A). (E) ced-13 expression in N2 and
prmt-5(gk357) mutants after c-irradiation. Worms were treated as in (B) and ced-13 expression was detected by using semi-quantitative RT-PCR; a-
actin mRNA was used as internal control of PCR.
doi:10.1371/journal.pgen.1000514.g003
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expression was increased in both wild type and prmt-5(gk357)

animals after c-irradiation. However, ced-13 mRNA level was not

significantly increased in prmt-5(gk357) mutants compared with

that in wild-type animals (Figure 3E), which is consistent with that

ced-13(tm536) deletion did not suppress IR-induced excessive germ

cell apoptosis in prmt-5(gk357) animals (Figure 3D). In addition,

our Northern blot analysis showed that the transcripts of ced-3, ced-

4 and ced-9 were not changed in prmt-5(gk357) mutants after DNA

damage (data not shown). Taken together, these findings suggest

that prmt-5 mutation results in a specific over up-regulation of egl-1

which leads to excessive germ cell apoptosis following DNA

damage.

PRMT-5 Interacts with CEP-1
Since our genetic data indicate that cep-1 is required for the IR-

induced over up-regulation of egl-1 and the excessive germ cell

apoptosis caused by loss of prmt-5 function, we next investigated

how PRMT-5 may regulate CEP-1 transcriptional activity. In

mammals, PRMT5 was found to regulate transcription by

methylating symmetrically the arginine 3 residue of histone H4

(H4R3) and the arginine 8 residue of histone H3 (H3R8) [26]. We

wondered whether C. elegans PRMT-5 could also methylate histone

H4 or H3. Thus we prepared recombinant PRMT-5 and

incubated it with core histones and the donor of methyl group,
3H-S-AdoMet (3H-SAM). Our results indicate that PRMT-5

methylated histone H4 but not H3 in vitro (Figure S3A), suggesting

that histone H3 is less likely a substrate of PRMT-5 in C. elegans.

We therefore examined whether PRMT-5 is important for H4R3

symmetric dimethylation (H4R3sMe2) in vivo as is mammalian

PRMT5. Using an antibody that specifically recognizes

H4R3sMe2, however, we did not detect significant difference in

H4R3 symmetric dimethylation in germline between wild-type

and prmt-5(gk357) animals (Figure S3B). Thus, worm PRMT-5

seems not to control the general status of H4R3sMe2 to regulate

CEP-1 transcriptional activity.

We then determined whether PRMT-5 was able to enter

nucleus by examining the subcellular localization of a translational

fusion protein GFP::PRMT-5 driven by the promoter of the

germline-specific gene pie-1 (Ppie-1gfp::rmt-5). About 20% worms

from an integrated transgenic line carrying Ppie-1gfp::prmt-5

displayed GFP signals, which were enriched in germline nuclei,

suggesting that GFP::PRMT-5 was able to localize to nucleus

(Figure 4A). Therefore we tested whether PRMT-5 could interact

with CEP-1 by co-expressing Flag-tagged CEP-1 and Myc-tagged

PRMT-5 in HEK293 cells and performing immunoprecipitation.

Our results indicate that Myc-PRMT-5 was co-immunoprecipi-

tated with Flag-CEP-1 (Figure 4B), suggesting that these two

proteins can interact in mammalian cells. Furthermore, we used in

vitro GST pull-down assay to determine if they could directly

interact with one another. We found that the GST-CEP-1 fusion

protein immobilized on glutathione sepharose beads, but not

GST, interacted with purified PRMT-5His6 protein (Figure 4C).

Reciprocally, GST-PRMT-5 interacted with the full-length CEP-1

(Figure 4D and 4E). Furthermore, 35S-labeled CEP-1(421–644),

but not CEP-1(1–420) or CEP-1(221–420), interacted with GST-

PRMT-5, indicating that the C-terminal region of CEP-1 was

necessary and sufficient for its binding to PRMT-5 (Figure 4D and

4E). These data indicate that PRMT-5 and CEP-1 can directly

and specifically interact with each other.

The direct interaction between PRMT-5 and CEP-1 promoted

us to examine whether PRMT-5 could methylate CEP-1. In vitro,

when incubated with the full-length GST-CEP-1 fusion protein or

various truncations of GST-CEP-1 in the presence of 3H-SAM,

PRMT-5 did not methylate the full-length CEP-1 or its truncated

fragments (Figure S3C), suggesting that PRMT-5 may act by other

mechanisms to regulate CEP-1 transcriptional activity rather than

directly methylates CEP-1. For example, PRMT-5 might function

through other factors in complex with CEP-1 to affect its

transcriptional activity.

CBP-1 Forms Complex with CEP-1 and Can Be Methylated
by PRMT-5

To determine whether PRMT-5 acts through other CEP-1

cofactors, we sought to identify proteins that likely function

together with CEP-1. In mammals, p300/CBP was found to act as

a transcription coactivator of p53, and the acetylation of p53 by

p300 plays an important role in p53 stabilization in response to

DNA damage [4–6]. In addition, p300-mediated histone acetyla-

tion also contributes to the transcription of p53 target genes [27].

In C. elegans, the p300/CBP homolog CBP-1 was shown to

regulate the differentiation of some embryonic cell types [28,29],

and CBP-1 may function in concert with the transcription factor

LIN-1 to negatively regulate vulva cell specification [30].

However, it is not known whether CBP-1 could act together with

CEP-1 to control gene expression in response to DNA damage.

We explored this possibility first by checking if CEP-1 could

interact with CBP-1. Using GST pull-down assay, we found that

GST-CEP-1 fusion protein interacted with 35S-labeled CBP-

1(771–1285) and CBP-1(1286–1770), which are within the HAT

domain of CBP-1 (Figure 5A and 5B), indicating that CBP-1 and

CEP-1 directly interact with one another. Moreover, partial

inactivation of cbp-1 by RNAi significantly suppressed DNA

damage-induced apoptosis and egl-1 expression in wild-type

animals (Figure 6, see below and Materials and Methods),

suggesting that CBP-1 is important for CEP-1 transcriptional

activity. All together, these findings suggest that CBP-1 likely acts

as a cofactor of CEP-1 in C. elegans.

Because both PRMT-5 and CBP-1 can interact with CEP-1, we

wondered whether PRMT-5 and CBP-1 could directly interact

with one another. Using GST pull-down assay, we found that

GST-PRMT-5 interacted with 35S-labeled N-terminal fragment

(1–320) and a fragment within the HAT domain (1286–1770) of

CBP-1 (Figure 5C), indicating that PRMT-5 binds to at least two

sites in CBP-1. These findings suggest that PRMT-5, CEP-1 and

CBP-1 likely form a complex. To further prove this, we tested

whether these proteins could interact in HEK293 cells by co-

expressing Myc-PRMT-5, Myc-CEP-1 and Flag-CBP-1(1–1620)

in different combinations and performing immunoprecipitation.

As shown in Figure 5D, PRMT-5 and CEP-1 were associated with

CBP-1 in HEK293 cells when they were individually co-expressed

with CBP-1(1–1620). Furthermore, when these three proteins were

co-expressed, both PRMT-5 and CEP-1 were pulled down by

CBP-1 as well (Figure 5D), providing further evidence that these

three proteins can form a complex.

We next examined whether CBP-1 could be modified by

PRMT-5. When incubated with the recombinant PRMT-5 in the

presence of 3H-SAM, the CBP-1 N-terminal fragment containing

amino acids 1–320 was strongly methylated. Another fragment

(amino acids 1603–1770) in the HAT domain was weakly

methylated (Figure 5E(a)). Moreover, we found that a point

mutation, R234A, completely abolished the N-terminal methyla-

tion of CBP-1 by PRMT-5 (Figure 5E(b)), indicating that R234 is

the major residue for PRMT-5-mediated CBP-1 methylation.

Importantly, the residue R234 is located in a GRG motif which is

also present in the N-termini of human p300 and CBP

(Figure 5E(c)), implying that mammalian PRMT5 can also modify

CBP/p300 to affect their functions.
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Reduction of cbp-1 Activity Suppresses IR-Induced
Apoptosis in prmt-5(gk357) Animals

Our biochemical data suggest that PRMT-5 likely regulates

CEP-1 transcriptional activity through the CEP-1 cofactor CBP-1.

To further determine this, we investigated the cellular effect of cbp-

1 on prmt-5-mediated apoptosis in response to DNA damage by

performing cbp-1 RNAi and examining whether it affects IR-

induced apoptosis in prmt-5(gk357) animals. Because cbp-1 RNAi

treatment of early larvae (L1–L2 stage) gave rise to cell cycle arrest

in adult germlines, we performed cbp-1 RNAi in L4-stage animals

to partially inactivate cbp-1 (Figure 6A, Text S1, Figure S4A). Such

cbp-1 RNAi treatment did not obviously change the numbers of

mitotic nuclei in germlines of wild-type, prmt-5(gk357) or ced-

1(e1735) animals as compared with control RNAi (Figure S4B). In

addition, cbp-1 RNAi performed in L4-stage animals did not affect

the number of germ cell corpses in ced-1(e1735) worms (Figure

S4C). These data indicate that cbp-1 RNAi treatment of L4-stage

animals does not affect either germline development or physio-

logical germ cell death. Thus cbp-1 RNAi was carried out in L4-

stage animals in our following experiments. Compared with

control RNAi treatment, cbp-1 RNAi caused a strong reduction of

germ cell corpses in wild type when exposed to different doses of c-

irradiation (Figure 6C). Similarly, at different time points post c-

irradiation of 120 Gy, cbp-1(RNAi) animals also displayed

significantly fewer cell corpses than control RNAi-treated wild-

type animals (Figure 6D). In agreement with this, the induction of

egl-1 expression by c-irradiation of 120 Gy in cbp-1(RNAi) animals

was decreased by about 40% compared to that in control RNAi-

treated wild-type worms (Figure 6E (lanes 1–2) and Figure 6F),

suggesting that CBP-1 functions to promote CEP-1 transcriptional

activity. In prmt-5(gk357) animals, c-irradiation induced excessive

germ cell apoptosis in a dose-dependent manner, but it was

strongly suppressed by cbp-1 RNAi (Figure 6B–6D). Consistently,

the IR-induced over up-regulation of egl-1 in prmt-5(gk357) animals

was significantly decreased by cbp-1 RNAi treatment (Figure 6E

(lanes 3–4) and Figure 6F). These findings suggest that cbp-1

functions downstream of prmt-5, providing further evidence that

PRMT-5 likely acts through CBP-1 to regulate CEP-1 transcrip-

tional activity (Figure 7).

Discussion

Aberrant expression of PRMT5 is associated with many cancer

types such as lymphoma, leukemia, gastric carcinoma and

testicular tumors [26,31,32]. It has been shown that overexpres-

Figure 4. PRMT-5 interacts with CEP-1. (A) GFP::PRMT-5 localizes to nucleus in germline. The GFP::PRMT-5 fusion protein was expressed in germ
cells under the control of the pie-1 promoter (Ppie-1gfp::prmt-5). Images of DIC (a), GFP (b), Hoechst 33342 staining (c) and the merged picture of GFP
and Hoechst 33342 staining (d) are shown. (B) PRMT-5 and CEP-1 interact with each other in mammalian cells. Flag-CEP-1 and Myc-PRMT-5 were co-
expressed in HEK293 cells and immunoprecipitated (IP) by using anti-Flag antibody. The precipitated proteins were detected by immuno-blotting (IB)
with indicated antibodies. (C) PRMT-5 and CEP-1 directly interact in vitro. Purified PRMT-5His6 was incubated with GST-CEP-1 immobilized on
glutathione sepharose beads for more than 2 h. After extensive wash, the bound PRMT-5His6 was detected by immuno-blotting with anti-PRMT-5
antibody. Lane 1 indicates 10% of input PRMT-5His6 protein. (D, E) PRMT-5 binds to the C-terminal region of CEP-1. The full-length or truncated CEP-1
proteins as indicated in (D) were in vitro translated and labeled with 35S and incubated with GST or GST-PRMT-5 immobilized on glutathione
sepharose beads for more than 2 h. After extensive wash, the bound proteins were resolved by SDS-PAGE and detected by autoradiography (E). ‘‘+’’
indicates the existence of interaction between CEP-1 and PRMT-5 and ‘‘2’’ indicates no interaction in (D). In lanes l, 4, 7, 10 and 13 in (E), 10% of the in
vitro translated proteins used for interaction were loaded. Arrow indicates the full-length CEP-1.
doi:10.1371/journal.pgen.1000514.g004
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Figure 5. CBP-1 forms complex with CEP-1 and PRMT-5 and can be methylated by PRMT-5. (A) The schematic representation of CBP-1
full-length protein and truncation mutants. Specific motifs and domains are noted and shown in grey. (B) CBP-1 interacts with CEP-1 in vitro. GST pull-
down assay was performed as in Figure 4E. In lanes l, 4, 7, 10 and 13, 10% of the in vitro translated proteins used for interaction were loaded. (C)
PRMT-5 interacts with CBP-1 in vitro. Interactions between GST-RMT-5 and truncated CBP-1 proteins as indicated in (A) were detected as in (B). (D)
PRMT-5, CBP-1 and CEP-1 form complex in mammalian cells. Flag-CBP-1(1–1620), Myc-PRMT-5 and Myc-CEP-1 were co-expressed in combinations as
indicated in HEK293 cells. Immunoprecipitations (IP) were performed using anti-Flag antibody and precipitated proteins were resolved on SDS-PAGE
and detected by immuno-blotting (IB) with indicated antibodies. (E) CBP-1 is methylated by PRMT-5. (a) Recombinant CBP-1(1–320) and CBP-1(1603–
1770) were incubated with PRMT-5 and 3H-SAM for 1 h and resolved on SDS-PAGE (left panel). The methylation signals were detected by
autoradiography (right panel). (b) R234A mutation abrogates the methylation of CBP-1(1–320) by PRMT-5. Wild-type and mutant CBP-1(1–320)
proteins were tested for methylation as in (a). The top panel indicates the methylation of wild-type and mutant CBP-1(1–320) proteins, and the
bottom panel indicates the coomassie-blue staining of these proteins. (c) The conserved arginine methylation sites in human CBP, p300 and C.
elegans CBP-1 are shown.
doi:10.1371/journal.pgen.1000514.g005
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sion of PRMT5 in lymphoma is correlated to a global increase of

H4R3 and H3R8 symmetric dimethylation, which likely suppress-

es the expression of the tumor suppressor gene ST7 to affect

tumorigenesis [26]. However, whether and how PRMT5 controls

the expression of apoptosis-related genes to affect cell proliferation,

apoptosis, as well as tumorigenesis remains poorly understood.

Here we have shown that the C. elegans arginine methyltransferase

PRMT-5 plays an important role in DNA damage-induced

apoptosis. prmt-5 loss-of-function mutation does not affect

developmental cell deaths but leads to excessive germ cell

apoptosis in response to DNA damage, suggesting that prmt-5

negatively regulates DNA damage-induced apoptosis in C. elegans.

Our further genetic analyses indicate that mutations of cep-1/p53

and genes in the core cell death pathway suppress IR-induced

excessive germ cell apoptosis in prmt-5(gk357) mutants, indicating

that prmt-5-mediated apoptosis following DNA damage is

dependent on cep-1/p53 and requires the core cell death pathway

(Figure 7A). Meanwhile, we found that mutations in checkpoint

genes significantly inhibited IR-induced excessive germ cell death

in prmt-5(gk357) mutants, suggesting that checkpoint signaling

pathways are important for prmt-5-mediated apoptosis (Figure 7A).

Importantly, loss of prmt-5 function causes a specific over up-

regulation of the cell death initiator EGL-1 in response to DNA

damage, which is directly responsible for the excessive germ cell

apoptosis observed in prmt-5(gk357) mutants. Collectively, these

findings demonstrate that PRMT-5 is a negative regulator of CEP-

1/p53-dependent cell death pathway in C. elegans.

Our results have suggested a novel mechanism underlying cep-

1/p53-dependent cellular response to DNA damage in C. elegans.

In C. elegans germ cells, it seems that PRMT-5 does not affect the

symmetric dimethylation of H4R3 although mammalian and plant

PRMT5 has been reported to do so [26,33]. Presently we can not

exclude the possibility that PRMT-5 methylates other arginine

residues on histone H4 to regulate CEP-1/p53-dependent gene

expression, but it seems less likely that PRMT-5 modifies H3R8 to

affect transcription in C. elegans since PRMT-5 does not methylate

histone H3 in vitro (Figure S3A). Regardless of histone arginine

methylation, our results have revealed a novel regulatory

mechanism underlying DNA damage-induced egl-1 expression.

The fact that PRMT-5 interacts with but does not methylate CEP-

Figure 6. cbp-1 RNAi inhibits DNA damage-induced excessive apoptosis in prmt-5(gk357) mutants. (A) cbp-1 RNAi performed in L4-stage
animals decreases the mRNA level of cbp-1. Indicated animals at L4 stage were treated with cbp-1 RNAi. RNA was prepared 36 h later and cbp-1
expression level was detected by using semi-quantitative RT-PCR. Actin mRNA was used as internal control. (B) cbp-1 RNAi performed in L4-stage
animals suppresses the excessive germ cell apoptosis induced by c-irradiation in prmt-5(gk357) animals. Representative images of germ cell corpses
36 h post irradiation of 120 Gy in control RNAi- and cbp-1 RNAi-treated prmt-5(gk357) worms are shown. Germ cell corpses are indicated with
fragmented circles (top panel) and an arrow (bottom panel). (C, D) Quantitative analyses of cbp-1 RNAi on DNA damage-induced germ cell apoptosis
in N2 and prmt-5(gk357) worms. cbp-1 RNAi was performed as above. Indicated animals were treated with different doses of c-irradiation and germ
cell corpses were scored 36 h post irradiation (C), or animals were irradiated with c-ray of 120 Gy and germ cell corpses were scored at different time
points post irradiation (D). Error bars represents SEM. Indicated comparisons were performed by using unpaired t-test. Double asterisks indicate
p,0.001. (E) cbp-1 RNAi suppresses egl-1 expression induced by c-irradiation. cbp-1 RNAi was performed in L4-stage animals. Indicated worms at
young adult stage were irradiated with c-ray of 120 Gy and total RNA were prepared 24 h post irradiation. egl-1 expression was detected by using
egl-1 cDNA as probe. a-actin mRNA was probed as loading control of samples. Three independent Northern blot analyses were performed and the
representative images are shown. (F) Relative fold induction of egl-1 mRNA by c-irradiation in cbp-1 RNAi-treated animals. egl-1 fold induction was
averaged from three independent Northern blot analyses, which was quantified by using the software ImageQuant 5.2 and normalized with a-actin
mRNA. Error bars represent SEM. Comparisons were made between control RNAi and cbp-1 RNAi treatment. Double asterisks indicate p,0.001.
doi:10.1371/journal.pgen.1000514.g006
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1 implies that PRMT-5 likely regulates CEP-1 transcriptional

activity by affecting a CEP-1 cofactor(s). In support of this, we

have identified CBP-1 as a cofactor of CEP-1/p53, which is

supported by two lines of evidence: firstly, CBP-1 and CEP-1

physically interact with one another both in vitro and in

mammalian cells; secondly, reducing cbp-1 expression significantly

suppressed cep-1-dependent germ cell apoptosis and egl-1 tran-

scription in response to DNA damage. Moreover, we found that

PRMT-5 can form complex with CEP-1 and CBP-1, and PRMT-

5 can methylate the residue R234 in the N-terminus of CBP-1.

Therefore PRMT-5 likely affects CEP-1 transcriptional activity

through its effect on CBP-1 despite that it may not be the sole

target of PRMT-5. In agreement with this notion, we found that

partial inactivation of cbp-1 by RNAi significantly suppressed the

excessive germ cell apoptosis in prmt-5(gk357) animals following

DNA damage. Consistently, cbp-1 RNAi significantly reduced egl-1

expression in prmt-5(gk357) mutants. Based on these experimental

findings, we propose a possible model for PRMT-5 functioning

through CBP-1 and CEP-1 to negatively regulate DNA damage-

induced apoptosis in C. elegans: In wild-type animals, PRMT-5 and

CBP-1 are likely recruited by CEP-1 to form a complex so that

CBP-1 is methylated by PRMT-5, which represses the capacity of

CBP-1 for enhancing CEP-1-dependent transcription of egl-1. In

this case, egl-1 expression is maintained at a proper level to avoid

excessive germ cell apoptosis after DNA damage (Figure 7B). In

prmt-5(gk357) animals, the repression on CBP-1 by PRMT-5 is

removed, thus CBP-1 promotes the transcriptional activity of

CEP-1 by mechanisms yet to be uncovered, leading to high

expression level of egl-1 following DNA damage, which in turn

causes excessive germ cell apoptosis (Figure 7B).

Although ced-13 was reported to be a transcription target of

CEP-1, we found that IR-induced ced-13 expression is indistin-

guishable between wild type and prmt-5(gk357) mutants and ced-13

loss of function does not suppress IR-induced apoptosis in prmt-

5(gk357) animals. These results suggest that the regulatory effect of

PRMT-5 on IR-induced CEP-1 transcriptional activity is likely

specific to egl-1 transcription. It was found recently that IR-

induced ced-13 expression is only detected in somatic tissues but

not in germline where DNA damage-induced apoptosis takes place

[24], suggesting that ced-13 may play a role in DNA damage

response in soma while egl-1 is the major CEP-1 target responsible

for initiating germ cell apoptosis after DNA damage. In addition,

although PRMT-5 is implicated in maintaining genome stability

[21], our results indicate PRMT-5 likely acts mainly in germline to

regulate DNA damage response since the survival of prmt-5(gk357)

embryos was comparable to that of wild-type animals after IR

treatment (Table S1), which also suggests that prmt-5 probably

does not obviously affect the repair of DNA lesions caused by c-

irradiation. As prmt-5(gk357) worms also displayed similar cell cycle

arrest in germline mitotic region to that in wild-type animals upon

DNA damage (data not shown), it seems that prmt-5 acts differently

in sensing DNA damage from checkpoint genes. Thus, apart from

a role in regulating DNA damage-induced germ cell apoptosis, it

remains to be elucidated how prmt-5 inactivation causes increased

accumulation of mutation observed previously [21].

Because strong loss of function of cbp-1 causes lethality [29], we

could only analyze the role of cbp-1 in prmt-5-mediated germ cell

apoptosis in response to DNA damage by using the partial loss-of-

function mutation of cbp-1 (cbp-1 RNAi), which suppressed IR-

induced germ cell apoptosis in prmt-5(gk357) mutant worms to a

less extent than suppressed by the strong loss of function of cep-1.

Therefore we can not conclude that PRMT-5 acts solely through

CBP-1 based on the cbp-1 RNAi results. Nevertheless, in

agreement with our findings that PRMT-5 likely regulates CEP-

1 activity through CBP-1 in C. elegans, a recent study also identified

human PRMT5 as a negative regulator of p53-mediated apoptosis

involving p300/CBP in mammalian cells. Jansson et al. reported

that PRMT5 is associated with the CBP-binding protein Strap. As

a result, PRMT5 is recruited to p53 to methylate the latter on the

arginine residues in an RGRER motif [34]. Similar to that in C.

Figure 7. A proposed model for PRMT-5 to regulate DNA damage-induced apoptosis in C. elegans. (A) The genetic pathway for prmt-5 to
regulate DNA damage-induced apoptosis. (B) A proposed molecular model that PRMT-5 functions together with CEP-1 and CBP-1 to regulate egl-1
expression in response to DNA damage.
doi:10.1371/journal.pgen.1000514.g007
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elegans, inactivation of PRMT5 by siRNA significantly enhanced

DNA damage-induced apoptosis of mammalian cells [34]. Unlike

human PRMT5, however, we did not find that C. elegans PRMT-5

modify CEP-1, which is consistent with that CEP-1 does not

contain an RGRER motif as human p53 [34]. Thus our findings

suggest a possibility that human PRMT5 may affect p53 activity

through additional mechanisms except for p53 arginine methyl-

ation. For example, it is likely that human PRMT5 can function

similarly to its C. elegans counterpart to regulate p300/CBP activity

by arginine methylation. Previously, it has been shown that the

coactivator-associated arginine methyltransferase 1 (CARM1/

PRMT4) can methylate p300/CBP in the KIX domain to disable

the interaction between the p300/CBP KIX domain and the

kinase inducible domain (KID) of CREB, which blocks CREB-

dependent transcription of genes such as Bcl-2 [16]. On the other

hand, CARM1-mediated methylation of p300/CBP enhances

nuclear hormone receptor (NR)-dependent gene transcription

[16,17]. These findings indicate that the arginine methylation of

p300/CBP is one of the mechanisms underlying transcription

regulation. In C. elegans, PRMT-5 methylates an arginine residue

located in the GRG motif in the N-terminus of CBP-1.

Interestingly, this GRG motif also exists in the N-termini of

mammalian p300 and CBP. Furthermore, it has been found that

PRMT5 is present in the p53 co-activator complex containing

p300/CBP in mammalian cells [34]. Thus, it will be very

important to determine whether human PRMT5 can methylate

p300/CBP on the same arginine residue to regulate its coactivator

activity in promoting apoptosis-related gene transcription. Further

in-depth mechanistic studies in both C. elegans and mammalian

cells will be needed to establish the role of the site-specific

methylation of p300/CBP by PRMT5 in regulating p53-

dependent apoptosis.

Material and Methods

C. elegans Strains and Genetics
prmt-5(gk357) and cep-1(gk138) deletion strains were generated by

Dr. Donald Moerman (C. elegans Reverse Genetics Core Facility,

Vancouver, B.C., Canada) and provided by C. elegans Genetic

Center (CGC). ced-13(tm536) deletion strain was provided by Dr.

Shohei Mitani. Worms were cultured and maintained by using

standard procedures [35]. The Bristol N2 strain was used as wild

type. Deletion strains were outcrossed with N2 strain for 6 times.

Double mutants were constructed with standard protocol [35].

Molecular Biology
To make RNAi constructs of prmt genes, the exons 1 and 2 of

prmt-1 (nucleotide +10–954), exon 3 of prmt-2 (nucleotide +372–

755), exon 8 of prmt-3 (nucleotide +5135–5487) and exons 4 and 5

of prmt-5 (nucleotide +805–1536) were amplified by PCR and

cloned into pPD129.36, respectively. RNAi constructs for prmt-4, -

6 and cbp-1 were obtained from an RNAi library (Geneservice

Ltd). For bacterial and mammalian expression of PRMT-5 and

CEP-1, the cDNAs of prmt-5 and cep-1 were cloned into the

bacterial expression vectors pET21a and pGEX4-T-2 and the

mammalian expression vectors pCMV-myc and pCMV-tag2B,

respectively. The full-length cDNA of cbp-1 was obtained by

ligating the cDNA fragments from the following yk cDNA clones:

yk1426d05, yk838d03, yk822d08, yk1753c05 and yk1403a01, and

verified by sequencing. Different cbp-1 cDNA fragments were

amplified from the full-length cDNA by PCR and cloned into

bacterial and mammalian expression vectors as above. His6-

tagged and GST-fusion proteins were expressed and purified as

described previously [36].

RNA Interference
RNA interference was performed by using the feeding assay.

Briefly, The L1 larvae were grown on RNAi plates seeded with

bacteria HT115(DE3) expressing dsRNA of individual prmt genes.

The progeny maintained on the RNAi plates were synchronized to

young adult stage and treated with different doses of c-irradiation

as described below. For cbp-1 RNAi treatment, worms at early L4

stage were cultured on RNAi plates seeded with bacteria

HT115(DE3) expressing dsRNA of cbp-1. After reaching young

adult stage, cbp-1(RNAi) worms were irradiated with c-ray and

germ cell corpse phenotype and Northern blot assays were

analyzed 36 h or 24 h post irradiation, respectively.

Germ Cell Apoptosis Assays
Synchronized young adult animals were irradiated with c-ray

by using a 60Co source located in the Peking University Health

Science Center. Irradiated animals were put back to culture at

20uC to different time points. Worms with normal germline

morphology were scored for germ cell corpses by using Nomarski

optics. For acridine orange (AO) staining of germ cell corpses,

irradiated worms were incubated in M9 medium containing AO

(50 mg/ml) and bacteria OP50 in dark for 2 h. Worms were

recovered on NGM plates for another 2 h and examined with

epifluorescence microscopy. To induce germline apoptosis with

ENU, young adult animals were incubated in M9 medium

containing OP50 bacteria and ENU of different concentrations (0,

1.0, 2.5 and 5.0 mM) for 4 h. Worms were then recovered on

NGM plates for 24 h and germ cell corpses were scored with DIC

microscopy.

Northern Blot Analysis
Worms synchronized to young adult stage were irradiated with

c-ray of 120 Gy as described above. 24 h later, irradiated worms

were harvested and total RNA was extracted using the Trizol

reagent (Invitrogen). 20 mg of total RNA was denatured and

resolved on 1.2% agarose-formaldehyde gel in MOPS buffer

(20 mM 3-Morpholinopropam sulfonsaure, 2 mM Sodium ace-

tate, 1 mM EDTA) and further blotted onto a nylon membrane.

For hybridization, the membrane was incubated with 32P-labeled

probes prepared from egl-1 cDNA in a buffer containing 7% SDS,

1% BSA, 1 mM EDTA, 250 mM NanPO4 (pH7.2). The

membrane was extensively washed and exposed to a phosphor

imager screen (Amersham). To examine the equal loading of total

RNA samples, the membrane was striped and re-probed with 32P-

labeled probes of a-actin. Relative fold induction of egl-1 mRNA

was quantified with the ImageQuant 5.2 software and normalized

with a-actin mRNA.

Germline Expression of GFP::PRMT-5
For expression of GFP::PRMT-5 fusion protein in germline, we

cloned the cDNA of prmt-5 into the germline expression vector

pTE5 in frame with GFP (Ppie-1 gfp::prmt-5). This PRMT-5-

expression vector was linearized with SacII and co-injected at the

concentration of 1 mg/ml into worm germline with the SacI-

digested N2 genomic DNA (60 mg/ml) and the SalI-linearized

injection marker pTG96 (1 mg/ml) which expresses Psur-5gfp only

in somatic tissues. The transgenic extrachromasomal arrays from

F2 and F3 generations were integrated into worm genome by c-

irradiation. Gonads of integrated transgenic worms were dissected

out and stained with Hoechst 33342 (4 mM) to examine the

localization of GFP::PRMT-5 with epifluorescence scope, and the

germline expression of GFP::PRMT-5 was further confirmed by

using Western blot assay.
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Mammalian Cell Culture, Transfection, and
Immunoprecipitation

Human embryonic kidney cells (HEK293) grown in Dulbecco’s

modified Eagle’s medium (HyClone) supplemented with 10% fetal

bovine serum (HyClone) were transfected with 2.0 mg of

mammalian vectors expressing worm proteins with different tags

(i.e., pCMV-myc-prmt-5, pCMV-tag2B-cep-1, pCMV-myc-cep-1,

pCMV-tag2B-cbp-1(1–1620)) by using the calcium phosphate-

mediated transfection assay. 36 h after transfection, cells were

harvested and lysed in a buffer containing 50 mM Tris (pH 8.0),

150 mM NaCl, 0.5% sodium deoxycholate, 1% Triton X-100,

1 mM phenylmethylsulfonyl fluoride (PMSF). The lysate was

incubated with anti-Flag antibody (M2)-conjugated agarose beads

(Sigma) for more than 2 h at 4uC. The beads were washed

extensively in a buffer containing 50 mM Tris (pH 8.0), 150 mM

NaCl, 1 mM PMSF and 1% NP-40 and bound proteins were

eluted with protein sample buffer. The eluted proteins were

resolved on SDS-PAGE and detected with Western blot assay.

GST Pull-Down Assay
For GST pull-down assay, purified GST or GST fusion proteins

were immobilized on glutathione-Sepharose beads and incubated

with [35S]methionine-labeled proteins at 4uC for more than 2 h.

The beads were washed extensively and bound proteins were

eluted and separated on 12% SDS-PAGE and exposed to X-ray

film or phosphor imager screen (Amersham) for autoradiography.

In Vitro Protein Methylation
PRMT-5His6 or GST-PRMT-5 was respectively incubated with

proteins including core histones, Myelin basic protein (MBP), full-

length and truncated GST-CEP-1 proteins, wild-type and mutant

CBP-1(1–320)His6 and CBP-1(1603–1770)His6 in the presence of

0.55 mCi of 3H-S-AdoMet in PRMT assay buffer (25 mM Tris,

pH 7.5, 1 mM EDTA, 1 mM EGTA, and 1 mM PMSF) for 1 h at

30uC in a final volume of 20 ml. Reactions were stopped by adding

SDS sample buffer and heated at 100uC for 10 min. Samples were

resolved on 12% SDS-PAGE and further stained with Coomassie

blue and dried to expose to X-ray film for autoradiography.

Supporting Information

Figure S1 Characterization of prmt genes and DNA damage-

induced apoptosis in worms treated with RNAi of prmt genes. (A)

Phylogenetic analysis of human PRMTs and C. elegans PRMTs.

Protein sequences are aligned by using Clustal W and phylogenetic

tree is built by using the software MEGA 4.1. (B) Comparison of

human PRMT1 and C. elegans PRMT proteins. Specific motifs for

protein arginine methyltransferase are: Motif I (VLD/

EVGxGxG), Post I (V/IxG/AxD/E), Motif II (F/I/VDI/L/K),

Motif III (LR/KxxG), and THW loop [4]. x represents any amino

acid residue. Motif I, Post I and the THW loop form part of the

AdoMet-binding pocket [5]. (C) Quantification of germ cell

apoptosis induced by c-irradiation in worms pre-treated with

RNAi of prmt genes. Young adult N2 worms grown on RNAi

plates were irradiated with c-ray of 120 Gy and germ cell corpses

from one gonad arm were scored 36 h post irradiation. At least 20

animals were scored. Error bars represent SEM. Comparisons

were performed between control RNAi and individual prmt gene

RNAi with unpaired t-test. Double asterisks indicate p,0.001.

Found at: doi:10.1371/journal.pgen.1000514.s001 (0.13 MB TIF)

Figure S2 Amino acid sequence alignment of human PRMT5

(H.s.PRMT5), yeast Skb1 (S.p.SKB1) and C. elegans PRMT-5

(C.e.PRMT-5). Identical residues are shaded in black and similar

residues are shaded in gray. Characteristic motifs for protein

arginine methyltransferase are boxed and indicated.

Found at: doi:10.1371/journal.pgen.1000514.s002 (0.38 MB TIF)

Figure S3 prmt-5(gk357) does not affect in vivo H4R3 symmetric

dimethylation and PRMT-5 does not methylate CEP-1. (A)

PRMT-5 methylates histone H4 but not H3 in vitro. Core histones

and myelin basic protein (MBP) were incubated with PRMT-5

and 3H-SAM for 1 h and resolved on SDS-PAGE (left panel).

Methylation signals were detected with autoradiography (right

panel). (B) prmt-5(gk357) does not affect histone H4 symmetric

dimethylation in vivo. Gonads from N2 and prmt-5(gk357) were

stained with anti-H4R3sMe2 antibody (shown in Red) and germ

cells at pachytene stage are shown. Nuclei are stained with DAPI

(49,6-diamidino-2-phenylindole) (shown in Green). (C) PRMT-5

does not methylate CEP-1 in vitro. Core histones, MBP, GST,

GST-CEP-1 proteins as indicated were incubated with PRMT-5

and 3H-SAM for 1 h, respectively, and resolved on SDS-PAGE.

Methylation signals were detected by autoradiography. Histone

H4 and MBP were indicated by arrows.

Found at: doi:10.1371/journal.pgen.1000514.s003 (3.61 MB TIF)

Figure S4 cbp-1 RNAi performed in L4-stage animals does not

affect germline proliferation and physiological germ cell death. (A)

cbp-1 RNAi performed in L4-stage animals decreases CBP-1

protein expression. Wild-type (N2) animals at L4 stage were

treated with cbp-1 RNAi. 36 h later, CBP-1 expression in germline

was detected by immunostaining using anti-CBP-1 antibody.

Nuclei were stained by DAPI. Images of CBP-1 (red), nuclei (blue)

and merged images of oocyte regions are shown for control RNAi-

and cbp-1 RNAi-treated worms. Arrows indicate the nuclear

localization of CBP-1. (B) cbp-1 RNAi performed in L4-stage

animals does not affect germline proliferation. Indicated animals at

L4 stage were treated with cbp-1 RNAi. 36 h later, germlines were

stained with DAPI and nuclei in germline mitotic regions were

counted. Error bars represent SEM. (C) cbp-1 RNAi performed in

L4-stage animals does not affect physiological germ cell death. ced-

1(e1735) animals at L4 stage were treated with cbp-1 RNAi, 36 h

later, germ cell corpses were scored and analyzed as described

previously. Error bars represent SEM.

Found at: doi:10.1371/journal.pgen.1000514.s004 (4.08 MB TIF)

Table S1 prmt-5(gk357) does not affect the survival of progeny

following exposure to c-irradiation.

Found at: doi:10.1371/journal.pgen.1000514.s005 (0.03 MB

DOC)

Text S1 Supporting material and methods.

Found at: doi:10.1371/journal.pgen.1000514.s006 (0.03 MB

DOC)
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