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Abstract

Background: A widely applied approach to extract knowledge from high-throughput genomic data is clustering of
gene expression profiles followed by functional enrichment analysis. This type of analysis, when done manually, is
highly subjective and has limited reproducibility. Moreover, this pipeline can be very time-consuming and
resource-demanding as enrichment analysis is done for tens to hundreds of clusters at a time. Thus, the task often
needs programming skills to form a pipeline of different software tools or R packages to enable an automated
approach. Furthermore, visualising the results can be challenging.

Results: We developed a web tool, funcExplorer, which automatically combines hierarchical clustering and
enrichment analysis to detect functionally related gene clusters. The functional characterisation is achieved using
structured knowledge from data sources such as Gene Ontology, KEGG and Reactome pathways, Human Protein
Atlas, and Human Phenotype Ontology. funcExplorer includes various measures for finding biologically meaningful
clusters, provides a modern graphical user interface, and has wide-ranging data export and sharing options as well as
software transparency by open-source code. The results are presented in a visually compact and interactive format,
enabling users to explore the biological essence of the data. We compared our results with previously published gene
clusters to demonstrate that funcExplorer can perform the data characterisation equally well, but without requiring
labour-intensive manual interference.

Conclusions: The open-source web tool funcExplorer enables scientists with high-throughput genomic data to
obtain a preliminary interactive overview of the expression patterns, gene names, and shared functionalities in their
dataset in a visually pleasing format. funcExplorer is publicly available at https://biit.cs.ut.ee/funcexplorer

Keywords: funcExplorer, Gene expression, RNA-seq, Microarray, Protoarray, Hierarchical clustering, Functional
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Background
The amount of high-dimensional biological data pro-
duced by next-generation sequencing and microarrays is
continuously increasing. Clustering is one of the most
popular analysis approaches to get a quick overview of
patterns present in data. Well-known clustering algo-
rithms, such as the hierarchical clustering [1], self-
organising maps (SOM) [2] and k-means [3] approaches
are mostly applied to group together genes with similar
expression profiles [4, 5]. Once the clusters are known, the
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prior knowledge of Gene Ontology (GO) [6], and other
functional databases, such as KEGG and Reactome [7, 8],
is utilised to interpret how and why the genes in a clus-
ter are related to each other and to interpret these results
in the context of previous knowledge. For this purpose,
functional enrichment analysis is used to identify which of
the known annotations are over- or under-represented in
a cluster [9]. The output of such analysis is a list of enrich-
ment p-values for each biological annotation. Finally, the
results are gathered and represented visually to convey the
obtained information at a glance.
This pipeline is often conducted manually. For exam-

ple, the hierarchical clustering of breast tumor expression
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profiles revealed a large cluster of distant metastasis-
free survival-associated genes with known immunologi-
cal functions identified by GO enrichment analysis [10].
A similar approach was used by Yang et al. to show
that diurnal genes in the prefrontal cortex of mice
fall into eight temporal categories with distinct func-
tional attributes [11]. The gene expression patterns of
200 lymph node-negative breast cancer patients were
hierarchically clustered and the identified co-regulated
gene clusters were shown to be related to the biolog-
ical process of proliferation, steroid hormone receptor
expression, as well as B-cell and T-cell infiltration by
Schmidt et al. [12].
However, the common analysis pipeline presented

above has several pitfalls. For example, most of the stan-
dard clustering methods depend on preselected param-
eters like the number of clusters in k-means or the size
and architecture of the SOM map. The height to cut the
dendrogram, a tree-like arrangement where every node
denotes a gene cluster [13], in hierarchical clustering
needs to be set to extract the clusters. The latter is often
evaluated by visual observation or by trial and error. A
key limitation of these approaches is that they rely heavily
on the researcher’s prior knowledge or assumptions and
judgment, and thus are biased [14–17]. This undermines
the reproducibility of scientific discoveries. In addition, as
clustering often results in multiple gene groups and there
exists a bulk of different annotation sources to compare
against, the number of computations required is poten-
tially very large [17]. Therefore, manual selection of inter-
esting clusters followed by functional enrichment analysis
on each of these clusters is very time-consuming and often
impractical. Due to the lack of complete pipelines from
clustering to visualisation, several tools need to be applied
successively to obtain the desired analysis and this may
be an obstacle to a biologist without programming skills.
Furthermore, we can assume that researchers perform
this pipeline many times with various parameters and
choose to present the results of their preference without
acknowledging all the preceding attempts.
Multiple tools have been developed to integrate cluster-

ing and functional enrichment analysis, but all of them
have key limitations (Additional file 1: Figure S1). For
example, desktop applications such as Expander, AMEN
and HCE [18–20] require additional installations and
expensive local computations and disk space. An R pack-
age CLEAN [21] combines biological knowledge with the
results of a cluster analysis, but it requires additional
tools for interactive visualisation and provides a limited
selection of biological data sources. An R package clus-
terProfiler [22] automates the process of biological clas-
sification and the enrichment analysis of gene clusters,
but does not cluster the dataset itself and requires pro-
gramming skills. Clustergrammer [23] offers web-based

interactive heatmap visualisation together with clustering
and functional enrichment analysis opportunities. How-
ever, the enrichment is calculated to provide only one
cluster and data source at a time. In addition, the tool facil-
itates cherry-picking of clusters as there is no automatic
approach for cluster selection. Krushevskaya et al. intro-
duced an enrichment-driven pruning method for hierar-
chical clustering of gene expression data together with a
visualisation interface called VisHiC [24]. The idea was
to detect clusters from a dendrogram based on signifi-
cant enrichments, revealing the interesting clusters in the
clustering tree while hiding less relevant parts from the
output.
Here we present funcExplorer, a much improved and

updated implementation of VisHiC. The present tool is a
complete rewrite of its predecessor. The analysis pipeline,
methods and measures are thoroughly updated in func-
Explorer. The whole interface of the web application is
modernised to offer a better user experience and more
opportunities to explore data. The funcExplorer anal-
ysis incorporates automatic hierarchical clustering and
functional enrichment analysis to find data-driven gene
clusters from data. We have utilised the g:Cocoa tool in
the widely used and regularly updated g:Profiler toolset
[25] to deliver up-to-date information from numerous
public databases such as Gene Ontology, KEGG, Reac-
tome, Transfac [26] and Human Protein Atlas [27]. The
results have been combined into a compact heatmap den-
drogram that highlights the most biologically relevant
clusters and hides poorly annotated expression profiles.
This visualisation is presented in a user-friendly graph-
ical interface to give a fast comprehensive overview of
the functional essence of the data and provide a means
to interactively explore the data in detail without the
need to download any additional software. The user can
adjust the visualisation by modifying the parameters for
clustering, thresholds for enrichment p-values and dif-
ferent annotation categories of interest. A short URL
that redirects to obtained results can be generated to
share them with colleagues or provide them as a ref-
erence in a publication for other researchers to explore
and interpret.
With the increasing availability of data and advance-

ments in technology and visualisation, making sense of
biological data without bioinformatic skills is problem-
atic. Our goal is to enable biologists to perform a basic
analysis pipeline without the help of bioinformaticians
or the needs for high-end programming skills and get
results that can be readily interpreted. At the same time,
the tool is also beneficial to bioinformaticians to obtain
a quick overview of data before conducting a thorough
analysis. The tool can be accessed at https://biit.cs.ut.ee/
funcexplorer and the source code is freely available from
https://gl.cs.ut.ee/biit/funcexplorer_public.

https://biit.cs.ut.ee/funcexplorer
https://biit.cs.ut.ee/funcexplorer
https://gl.cs.ut.ee/biit/funcexplorer_public
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Implementation
We have revived the original ideas of VisHiC by devel-
oping funcExplorer to obtain fast data-driven functional
characteristics of high-throughput gene expression data
without requiring extensive code writing from the user.
funcExplorer automatically carries out the first steps
in experimental data analysis and thereby saves scien-
tists valuable time and resources. This is accomplished
through an easy-to-use web interface that performs
automatic functional clustering analysis resulting in inter-
active visualisations, summary statistics and functionali-
ties that facilitate the analysis of the underlying biology of
data (see Fig. 1).

Revisions to the methods and measures include:
• A new clustering algorithm: Hybrid hierarchical

clustering [28].
• Better integration with g:Profiler and thereby an

increased number of available functional categories
and gene identifiers.

• Revised initial strategy measures for detecting
clusters.

• Inclusion of new measures with a clear description of
expected outcomes: F1 measure and first annotation.

• Exclusion of size-weighted annotation score.
• New data upload system developed with enhanced

possibilities such as RNA-seq normalisation, missing

Fig. 1 Global overview of the Humoral dataset GSE11121 in the user interface of funcExplorer.a The main output shows a compact dendrogram
with a heatmap aside. Clusters, indicated as rectangles, are size-scaled and color-coded according to significant functions from enrichment analysis.
b Additional information in the form of tables is shown in tabs ‘Summary’, ‘Unique annotations’ and ‘Genes’. c Search field allows searching for
interesting genes or functions. The results will be reported next to the field and are highlighted in the main view by dimming unrelated clusters. d
Bottom of the page shows a report of output (number of clusters, gene coverage) and selected parameters (not shown in the figure). Clicking on a
specific cluster or cluster-link redirects the user to a single cluster view. e Hovering over a cluster shows a tooltip with the most relevant information.
fWordcloud in the single cluster view shows functional topics; g Expression profiles characterise the behavior of the cluster across samples. The
results of this figure are available for more detailed exploration at https://biit.cs.ut.ee/funcexplorer/link/22ebb

https://biit.cs.ut.ee/funcexplorer/link/22ebb
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value imputation, background selection for
enrichment analysis, sample annotations and many
more.

• Modern GUI provided with extensive improvements
in functionality and content.

• More thorough cluster descriptions achieved with
eigengene profiles and functional topic wordclouds.

• Increased maintainability due to the new
modularised implementation realised using Linux
containers via Docker.

• Software transparency achieved by open-source code.

In the following sections we present the capabilities of
funcExplorer in further detail.

Overview of funcExplorer workflow
The input of funcExplorer can be any high-throughput
gene/protein activity data. For example, it supports
expression data from RNA-seq or microarray experi-
ments, or autoantibody activities from ProtoArray. The
input format is a standard data matrix where gene/protein
identifiers fill the rows, samples fill the columns and
corresponding activity levels fill the cells. The analysis
is not restricted to expression values only. In principle,
any numerical activity measure of genes across a num-
ber of conditions is admissible. The accepted file formats
include custom delimited files as well as SOFT formatted
files from the Gene Expression Omnibus (GEO) reposi-
tory [29]. A successful upload automatically launches the
analysis pipeline in the back end.
A personal URL of form https://biit.cs.ut.ee/

funcexplorer/user/83dfcffcba4067a43dc53025dbb1620a,
where 83dfcffcba4067a43dc53025dbb1620a denotes the
user or dataset-specific random hexadecimal key, is
returned to the user after being uploaded. The specific
results are accessible from the URL after the calculations
are finished. This allows everyone with the link to go
to the page and explore the results for themselves or
change the visual parameters and analyse the dataset
further. This can be a useful supplement to a research
publication that is based on ideas that emerged from the
data in funcExplorer. We keep the results for 365 days by
default, but on request we are able to keep the data for an
extended period of time. For example, if the dataset link
accompanies a scientific publication, we are willing to
keep the dataset indefinitely.
It is recommended, but not mandatory, to provide an e-

mail address when uploading data. If an e-mail is given,
the URL will not be disclosed on the web page for secu-
rity reasons. The user will receive an e-mail notification
with the relevant URL when the results are ready. More-
over, providing an e-mail enables the user to access all
previously uploaded experiments from a single page later

on. At the same time, the URL system does not impose
another password to be remembered.
In addition, it is possible to directly explore the results

by selecting publicly available datasets obtained from
the ArrayExpress database [30], which can be identified
by their accession numbers (for example, E-TABM-53,
E-GEOD-10691). These have been preloaded and prepro-
cessed for the tool MEM [31], and shared to funcExplorer.
Altogether there are already more than 230 experimental
datasets from 15 different species available for explo-
ration. The dimensions of the available datasets vary from
5 to 685 samples and include over 54,000 transcript identi-
fiers. In this way we also facilitate and encourage the reuse
of public scientific data to increase the value and inter-
pretability of already available data. (See Additional file 2
for a more detailed description of input data.)
At its core, funcExplorer performs a series of com-

mon analysis steps on the input data. The basic pipeline
comprises four main parts (Fig. 2): (1) selecting or upload-
ing the input data; (2) preparing the dataset for analy-
sis by hierarchical clustering and functional enrichment
analysis; (3) detecting the informative and uninforma-
tive clusters based on the functional annotations and
(4) visualising the results in a compressed manner with
interactive components.

Hybrid hierarchical clustering and functional enrichment
analysis
The amount of data from genome-scale measurements
of gene expression levels introduces several computa-
tional challenges including the duration of the hierarchical
clustering and functional enrichment analysis in funcEx-
plorer. The calculation of pairwise distances from a high-
dimensional data such as gene expression data is a known
computational bottleneck in hierarchical clustering.
An approximate agglomerative hierarchical clustering

of a gene expression matrix is performed using the
Hybrid Hierarchical Clustering algorithm [28]. The hybrid
approach combines the advantages of the partitioning and
agglomerative hierarchical clustering algorithms. The idea
of hybrid approach is to partition the data using the k-
means clustering algorithm [3] in order to avoid the full
distance matrix computation. Average-linkage hierarchi-
cal clustering is thereupon applied to the partitions and
to the objects within them. The linkage determines the
distance between clusters as a mean value of the pair-
wise distances between genes in the clusters. As a result
we obtain a dendrogram where leaf nodes represent sin-
gle genes, all inner nodes consist of two smaller clusters
and the root node contains all the genes in the dataset.
The hybrid approach was shown to produce hierarchi-
cal trees similar to those of exact hierarchical algorithms
[28]. Furthermore, it was demonstrated that the method is
much faster, reasonably accurate and applicable to much

https://biit.cs.ut.ee/funcexplorer/user/83dfcffcba4067a43dc53025dbb1620a
https://biit.cs.ut.ee/funcexplorer/user/83dfcffcba4067a43dc53025dbb1620a
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Fig. 2 General pipeline of funcExplorer. Rectangles represent processes and cylinders represent data collections. The arrows indicate the direction
of data flow while dashed arrows denote the optional path. The input dataset is gene expression data in a standard tab-separated form. Data
preparation and analysis are carried out automatically and lead to a user-friendly interactive visualisation in the web browser, available for
self-discovery

larger datasets such as those encountered in functional
genomics. In funcExplorer, we employ Pearson correla-
tion distance as a similarity measure in hybrid hierarchical
clustering as in the case of gene expression data we are
often more interested in the shape of the profiles than the
difference in magnitudes.
The hierarchical clustering is followed by mapping

the discovered gene groups (i.e. all the nodes in the
dendrogram) onto functional information based on a
bulk of existing annotation sources. In funcExplorer,
the functional enrichment analysis is carried out using
g:Profiler software [25]. g:Profiler, likemany other gene set

enrichment tools, applies a cumulative hypergeometric
test to evaluate whether a particular functionally defined
group of genes is represented more than expected by
chance within a gene cluster. The functional enrichment
analysis could be performed on all possible gene clus-
ters, i.e all nodes in a dendrogram. However, in order
to reduce the computation time, we exclude very small
(< 5 genes) and large (> 1000 genes) clusters from the
enrichment analysis. A function is considered to show sig-
nificant over-representation in a gene cluster if it has a
p-value ≤ 0.05 after multiple comparison correction. The
user can choose to further narrow the range of cluster
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sizes and tested annotation sources or set a more strin-
gent p-value threshold for annotations. (See Additional
file 2 for details about statistical testing and the correction
methods discussed here.)
Depending on the source availability of the organism,

we profile gene clusters for GO functions [6], pathways
from Reactome [8] and KEGG [7], regulatory motifs from
Transfac [26] and microRNA target sites from miRBase
[32], CORUM protein complexes [33], protein expression
data from Human Protein Atlas (HPA) [27], and Human
Phenotype Ontology (HPO) [34]. These are all the func-
tional sources provided by the g:Profiler tool. The sources
are regularly updated in g:Profiler and thereupon also in
funcExplorer.
As an example, the aforementioned preprocessing of

a data matrix with 22,283 rows and 75 columns takes
approximately one hour to complete in funcExplorer. This
includes two-way clustering of the data and annotating
the clusters in parallel using g:Profiler. In order to han-
dle the computation time in an user-friendly manner, we
resolve the tasks of data preparation and visualisation
separately. This means that the uploaded data are first
prepared in the background and the user then receives
an e-mail notification, if the email has been provided,
when the dataset is ready for interactive exploration in
funcExplorer.

Detecting biologically relevant clusters
We do not want to restrict the user with a list of sin-
gle clusters, but want instead to emphasise that the whole
dataset is interrelated. For this purpose, we apply hierar-
chical clustering and harness the nested structure of the
resulting dendrogram in the process of cluster detection.
Our goal is to determine the collection of biologically rel-
evant clusters of the gene expression dataset that reveals
the functional essence of the data. Therefore, as a better
alternative to the standard strategy of cutting the den-
drogram at a fixed level of similarity across the entire
dendrogram, we employ an approach that searches for the
optimal cutting point from among different levels of the
tree based on the functionality of gene groups measured
through functional enrichment analysis. The enrichment-
driven method was initially developed in the VisHiC web
tool [24].
The various cutting heights are detected by maximis-

ing a predefined enrichment score within every den-
drogram branch. That is, after the hybrid hierarchical
clustering and functional enrichment analysis, we assign
an enrichment analysis-based score to every node in the
dendrogram. The scores proposed in VisHiC included a
size-weighted annotation score, which summarises the
negative logarithms of enrichment p-values, and a best
annotation score, which assigns the best log p-value to
each cluster.

We start detecting the clusters from the node that has
the highest enrichment score and compress it as a clus-
ter (cluster C1 in Fig. 3). We exclude the child and parent
nodes of this cluster from the further searches (clusters
C3 and C6 in Fig. 3). Then we search for highest score
from the remaining nodes (cluster C4 in Fig. 3) and again
exclude the corresponding child and parent nodes (cluster
C2 in Fig. 3). We continue these steps in the decreas-
ing order of the scores until there is no branch left with
a non-zero enrichment score. Then we traverse the den-
drogram recursively starting from the root, compressing
all the remaining nodes that have poor or no functional
enrichment (cluster C5 in Fig. 3). Corresponding profiles
are hidden from themain result of funcExplorer. However,
users can include them in the output under the option
“Display sparse clusters”. A full description of the algo-
rithm is given in the Additional file 2. In funcExplorer
we reimplemented the algorithm in Python, reconsidered
the enrichment scores and devised new measures. See
Additional file 2 for full details on calculation of enrich-
ment scores in funcExplorer.
We added a simple first annotation cutting strategy.

This method is based on the clustering hierarchy and will
deliver the largest clusters representing a broad overview
of functional features in the data (Fig. 4). The enrichment-
based clusters are detected from the pre-annotated den-
drogram by level order traversal of the tree starting from
the root and stopping in the first node of every branch that
has any significant enrichment. We define this node as a
relevant and informative cluster and continue the search
in neighboring branches.
The best annotation strategy from VisHiC remains the

same in funcExplorer. In order to find clusters charac-
terised by the “best” annotation, we evaluate the enrich-
ment of a cluster based on a maximum of negative log
p-value scores calculated over all significant annotation
terms of the cluster. As the analysis in the following
section shows, the resulting clusters are medium-sized
(Fig. 4).
While reviewing the strategies, we observed that due to

the discrete nature of hypergeometric distribution used
for enrichment analysis, the size of a gene cluster impacts
the absolute enrichment p-values. This makes it diffi-
cult to directly compare clusters of various sizes. In this
setting we achieve the maximum possible negative log
p-value score of a cluster only if the cluster coincides with
a functional class. Corresponding behavior of theoretical
best log p-values for various cluster sizes across differ-
ent functional class sizes is shown in the Additional file 1:
Figure S2. Therefore, a small gene cluster cannot achieve
as high of a score as amuch larger cluster due to the higher
statistical power of the latter. Consequently, the best anno-
tation strategy score prefers larger clusters related to more
general functional terms.
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Fig. 3 Compressing the dendrogram. The output of funcExplorer is compressed by showing only informative clusters (C1 (highlighted with green
rectangle), C4) with colorful size-scaled rectangles. The colors denote the domains of significantly enriched functions (p-value ≤ 0.05) in the cluster
and are proportional to the number of annotations. The gray bar represents the proportion of annotated genes in the cluster. The enrichment
scores used in the cluster detection algorithm are shown for every node below the cluster ID. If the ‘Show sparse clusters’ is selected, the clusters
with no significant enrichment are shown with beige rectangles (C5), otherwise they are completely collapsed from the output

Based on these observations, we implemented an
approach to measuring enrichment in a cluster that
adapted the F1 score [35] for each cluster-function combi-
nation as a stand-in for the effect size measure. In general,
the F1 score is used to assess the quality of the overall
clustering result, and not only for individual clusters. Here
we adapt this measure to our setting and employ it as
an enrichment measure by calculating the F1 scores of a
cluster with respect to each of its significantly enriched
functions. This gives us an intuitive way to measure the
enrichment of a cluster within a fixed range of values
(from 0 to 1). An analogous F1 score has previously been
applied to each cluster-pathway combination by Uygun
et al. to assess whether cluster membership can serve to
predict pathway membership [36].
Similar to the best annotation strategy, for every cluster

in a dendrogram we assign a score which is the maxi-
mum value of F1 scores over all significant annotations
in the cluster. In funcExplorer we call this approach the
F1 strategy. We are interested in functional coherence of
clusters and, intuitively, this approach looks for clusters

that are “complete”, i.e. have most genes from a functional
category in a subtree and a large proportion of a sub-
tree belongs to that category. We achieve the perfect F1
score with the value 1, if a cluster coincides with a func-
tional annotation class. Our analysis revealed that this
method results in small clusters characterised by specific
functions (Fig. 4). This was the expected result as a major-
ity of classes in the annotation databases are rather small
and therefore the occurrence of complete overlap is more
probable in smaller clusters.

funcExplorer web interface
Once the set of relevant clusters from the input data is
detected, funcExplorer visualises them in a dendrogram
plot together with a heatmap. Parts of the dendrogram
that have poor or no functional enrichments are hidden
from the output. The detected clusters are highlighted
with color-coded rectangles that carry the information of
the significant functions in the cluster. The proportion
of annotated genes is shown next to each cluster. This
way we present a lot of information that is compressed
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d

Fig. 4 Properties of funcExplorer clusters in the example of CLEANsmall (left) and CLEANtotal (right) data analysis. a,b Cluster sizes after applying
three cutting strategies to function-size-filtered (< 700 genes) data. The number shows the total number of informative clusters detected. c,d The
distribution of significant function sizes in the clusters with error bars (one standard deviation from average)

into a compact view demonstrated in a simplified form
in Fig. 3. Color-coding is also used in annotation tracks
above the heatmap to describe the samples. All the visu-
alisation components on the page are highly interactive
to enable instant information retrieval from the output.
In addition, the output can be easily imported to a PNG
image.
The web interface provides several new options for the

user to choose from. For example, the user-selected func-
tional categories enable the user to narrow the analysis to
only molecular functions from GO or choose to combine
the knowledge from Reactome pathways and GO. The
option to limit the size of functional categories subjected
to enrichment analysis is also available. This might be
beneficial when searching for highly specific annotation
terms.
We have added the possibility to recursively zoom-in on

the data up to the gene level through clickable elements
on the dendrogram. funcExplorer has increased search

that enhance the exploration of data. In addition to
searching genes, we also enable users to search for func-
tions of interest. The search results are clearly highlighted
in the funcExplorer output.
To simplify cluster characterisation and comparison, a

summary of gene expression profiles for each cluster is
shown with an eigengene profile. This profile is defined as
the first principal component of a given cluster. We imple-
mented the eigengene calculation based on the WGCNA
[37] R package. Additional wordclouds in the single clus-
ter views help to get a fast overview of the functional
topics of a cluster.
The results of funcExplorer analysis can be explored in

all modern web browsers. The GUI of funcExplorer pre-
dominantly uses D3.js [38] as its visualisation component
on the client’s side. It handles most of the rendering of
the data within the web browser using a combination of
standard HTML “div” and “canvas” elements. The data are
sent to the web browser as JSON objects.
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Results
Case study: Tissue-specific RNA-seq data from the GTEx
project
To demonstrate the utility of funcExplorer, we uploaded
RNA-seq data from 53 human tissue samples from the
Genotype-Tissue Expression (GTEx) project [39, 40].
We used the dataset that contains median Transcripts per
Million (TPM) values by tissue. The data matrix included
42,548 genes which includes pseudogenes and long
non-coding RNAs (lncRNAs). The dataset is available for
browsing from the funcExplorer page https://biit.cs.ut.ee/
funcexplorer/user/3b5a789fc221a3c08a4742caccf8aeaa.
The best annotation strategy with a significance

threshold p-value ≤ 10−8 detected 62 clusters from
the GTEx data which cover only 29.33% of the genes
in the dataset. This is an expected result as pseudo-
genes and lncRNAs mostly lack functional annotations,
and funcExplorer employs functional enrichment analysis
in the clustering process. In addition, the strict signifi-
cance threshold leaves out the groups of genes with low
functional signal.
Many of the clusters are self-explanatory and give

proof-of-principle validation. We highlighted some of
these in Figs. 5 and 6. For example, genes expressed
only in pancreatic tissue (cluster 763) are enriched in
the pancreatic secretion (KEGG:04972). Clusters where
genes are highly expressed in skin (both sun-exposed
and non-sun-exposed) are significantly enriched with the
epidermis development process (GO:0008544). Similarly,

genes expressed in skeletal muscle are functionally related
to the muscle system process (GO:0003012). A clus-
ter with a high expression in the adrenal gland is sig-
nificantly enriched with adrenal gland-related functions
(HPA:001010, HPA:001020).
In addition to tissue-specific clusters, we also observe

that in testis there are more highly expressed genes than
in other tissues. The prevalence of red color in the
testis column of the heatmap in Fig. 5 indicates this.
This knowledge should be taken into account in future
analyses as outlier tissues might start to dominate the
results. The same observation was also made by the GTEx
Consortium [40].
The analysis of the GTEx data was performed with-

out any programming or applying multiple bioinformatics
tools. Just by taking the available data matrix and upload-
ing it to the funcExplorer we got a quick bird’s-eye view
of the data. This included information on how well the
genes in the data were annotated in various functional
databases, whether the discovered clusters were consis-
tent with the experiment, what the leading biological
processes were, and from where potential further analysis
issues might emerge.

Comparison of the three strategies provided by
funcExplorer
In order to demonstrate the properties of different strate-
gies in funcExplorer, we analysed an integrated breast
cancer dataset that consists of four independent gene

Fig. 5 Tissue-specific clusters from GTEx data (I). Some examples of tissue-specific clusters detected by the funcExplorer best annotation strategy
are highlighted in the figure. The results of this figure are available for more detailed exploration at https://biit.cs.ut.ee/funcexplorer/link/6afa1

https://biit.cs.ut.ee/funcexplorer/user/3b5a789fc221a3c08a4742caccf8aeaa
https://biit.cs.ut.ee/funcexplorer/user/3b5a789fc221a3c08a4742caccf8aeaa
 https://biit.cs.ut.ee/funcexplorer/link/6afa1
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Fig. 6 Tissue-specific clusters from GTEx data (II). A downloadable summary report of selected tissue-specific clusters detected by funcExplorer. U is
an indicator of the presence of unique annotations in a cluster. The top functions of every domain are shown in the Domain Best Annotations table.
Up to 20 top functions are represented in the topic word cloud. Eigengene profile is a representative of the expression levels of a given cluster
across all the tissues. Clusters highly expressed in a specific tissue are significantly enriched with corresponding tissue-related functions. The results
of this figure are available for more detailed exploration at https://biit.cs.ut.ee/funcexplorer/link/6afa1

expression datasets with the GEO accession numbers
GSE1456, GSE3494, GSE7390 and GSE11121. The same
dataset was analysed as a showcase for a similar method
called CLEAN [21].
We analysed two versions of the dataset: one is the

preprocessed (filtered and standardised) data from the
CLEAN article [21], while we assembled the other one
ourselves using raw data from the GEO database. Here-
inafter we refer to these two versions as the CLEANsmall
and CLEANtotal dataset, respectively. The CLEANsmall
dataset consists of 1422 preselected genes and 808 sam-
ples. The CLEANtotal dataset has 13,351 genes and 808
samples. Note that the CLEANsmall dataset is a subset of
CLEANtotal.

To keep the analysis simple and comparable, we con-
sider only GO annotations in this comparison.We exclude
the electronic annotations as these relations are often
inferred from gene expression similarity and therefore the
information sources are not independent. In addition, we
filtered out GO functions that are annotated to more than
700 genes as this excludes the top 5% of more general
functions that characterise the dataset rather than specific
clusters.
First, the datasets were analysed using the funcEx-

plorer approach. This means that after the datasets were
clustered using hybrid hierarchical clustering, all clusters
ranging between 5 to 1,000 genes were extracted from the
dendrogram (703 clusters altogether in CLEANsmall and

https://biit.cs.ut.ee/funcexplorer/link/6afa1
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5,573 in CLEANtotal) and all these clusters were anno-
tated with GO terms using g:Profiler with default correc-
tion method for multiple testing and all known annotated
genes as a background in functional enrichment calcula-
tions (N = 17, 105, without electronic annotations). We
investigated all the strategies available in funcExplorer and
thus obtained three different partitions of both datasets.
The distribution of obtained cluster sizes is shown in

Fig. 4a. Comparing the different strategies reveals the
properties of the approaches. The first annotation strat-
egy leads to large general clusters (3 altogether), while the
best annotation strategy (12 clusters) is somewhere in
between and F1 strategy returns many small clusters (57
clusters). Similar patterns appear also in the CLEANtotal
data (Fig. 4b).
However, there is no notable difference in the distribu-

tion of the sizes of significant functions in the detected
clusters across the three strategies (Fig. 4c, d). This shows
that even though the clusters are selected based on only
one function, the accompanying functions will not van-
ish from the results. For example, if a user is interested
in small, specific clusters resulting from the F1 strategy,
we will also report the general functions that appear to be
significant in those clusters.

Fixed-height cutting versus various cutoff values
Unlike the traditional fixed-height cutting, funcExplorer
detects clusters from various levels of dendrogram. To
show the advantage of our approach we compared the
funcExplorer results with the clusters obtained from the
fixed height cutting of the CLEANsmall dendrogram. We
applied various cutoff values, from 0.3 to 2 with steps
of 0.05 (altogether 35 cuts). After cutting we selected
clusters between 5 and 1000 genes and measured their

enrichment (Additional file 1: Table S1). We observed a
substantial loss of information when applying fixed height
cutting. For example, F1 strategy detected 57 significantly
enriched clusters from the CLEANsmall data; however,
the maximum number of annotated clusters from the
fixed-cut method was 28 (cut at height 1.3; see Additional
file 1: Table S1). In addition, even though the cut at
height 1 (and height 1.15) extracted 35 clusters varying in
size between 5 and 1000 genes, only 22 of these clusters
are significantly enriched with any functional category. A
similar difference also appears at other heights.
We acknowledge that in funcExplorer, we maximise

for cluster enrichment which could lead to false pos-
itive results. However, at the same time, we also take
into account the expression correlations through the
nested structure of the dendrogram. Unlike the fixed-cut
method, funcExplorer does not assume that all the clus-
ters in the data have an equally strong correlation which
enables users to reveal possible hidden clusters ensconced
deep down in the tree.
An example of such a situation is illustrated in Fig. 7.

Here, we zoomed in on a single branch of the CLEANs-
mall dendrogram that was extracted as a cluster using the
fixed-cut method at the height leading to the largest num-
ber of annotated clusters (h = 1.3) (highlighted in Fig. 7
with red rectangle on the left). The top three significant
GO functions enriched in this cluster are lymphocyte acti-
vation (GO:0046649), T-cell activation (GO:0042110) and
leukocyte cell-cell adhesion (GO:0007159) (see Additional
file 3).
While the initial immune response related cluster is split

into five smaller ones with the F1 strategy, we still see
the major functional enrichment terms (T-cell and lym-
phocyte activation in the cluster 1178; leukocyte cell-cell

Fig. 7 Fixed-cut at h = 1.3 versus F1 strategy in CLEANsmall. The red rectangle on top of the dendrogram on the left highlights an example cluster
obtained from the fixed-cut approach at a height of 1.3 (blue line). The F1 strategy (on the right) detected five smaller clusters from the same branch
that come from various levels of tree height and cannot be detected together using one single cut. All these clusters are defined by a unique GO
term which indicates a functional difference between these gene groups. For example, cluster 1178 is enriched in the T-cell receptor signaling
pathway, whereas cluster 967 is enriched in the B-cell receptor signaling pathway
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adhesion in the clusters 1178 and 1053). But in addition
we can observe more specific clusters such as the clus-
ters 967 (B-cell receptor signaling pathway; GO:0050853),
466 (cellular response to interferon-gamma; GO:0071346)
and 653 (negative regulation of cellular extravasation;
GO:0002692). The three clusters reveal functions which
otherwise reside at the bottom of the enrichment list and
are likely to be overlooked. Moreover, these clusters are
characteristic to immune response subtypes, i.e. cellular
immunity that involves activation of the T-cells, antibody
based humoral immunity mediated by the B-cells, and
a component of innate immune system as many innate
immune cells are activated in response to interferon-
gamma.
These observations indicate that the approach of cut-

ting at variable heights of dendrogram branches can find
clusters and highlight functions that cannot be detected
using the fixed-cut method. The whole process of this
comparison demonstrates how difficult it is to convey the
reason of a cutting level selection. Moreover, the preced-
ing example illustrates the benefits of hierarchical clus-
tering to enable following the relations between the gene
clusters as the five clusters in Fig. 7 reside in the same
branch of the dendrogram and could be roughly described
as gene clusters related to lymphocyte activation and
immune response.

Comparing funcExplorer results with previous studies
To evaluate the automated analysis of funcExplorer in
its ability to produce biologically meaningful clusters, we
compared the funcExplorer clusters with the results of
alternative clustering methods. We used funcExplorer to
reanalyse four previously published datasets that are char-
acterised by clustering and functional annotations. These
datasets cover three different organisms and illustrate a
selection of typical gene clustering analysis. Thus, we have
compared the funcExplorer results with the outcome from
a common research approach.
In addition to the CLEANsmall dataset, we compared

with three different datasets whichwe refer to as Humoral,
Arabidopsis and Yeast. For each of them we calculated the
Rand index [41] to quantify the similarity between two
given clusterings. The Rand indexmeasures how often the
two genes are present or are not present in the same clus-
ter in both of the clusterings. The similarity score exists
in the range [ 0, 1], where 1 corresponds to identical clus-
terings. The adjusted Rand index adjusts for the expected
number of chance agreements and the value can be neg-
ative. As funcExplorer does not force genes into clusters,
we also calculated a filtered version of the Rand indexes
where we ignore all unclustered and scattered genes in
either partitions and define the filtered Rand index only
based on the intersection of clustered genes of the two
partitions. The results are available in Table 1.

funcExplorer reports all the biologically meaningful
clusters and does not provide any parameter to fix the
number of clusters beforehand. Therefore, we can find
data-driven subclusters that are clustered together in
previous studies, or the other way round. We cannot
achieve identical results with different number of clus-
ters. Another way to compare the clusterings is to search
the funcExplorer results for the corresponding biological
functions andmarker genes reported in the previous stud-
ies. This way we evaluate if funcExplorer is able to reveal
previously published results.
However, it is important to emphasise that none of the

compared clustering methods provide the ground truth
clusters as there is rarely a gold standard indicating which
genes should cluster together and which genes should be
in different clusters.

CLEANsmall dataset
Freudenberg et al. reported 8 clusters in the CLEANsmall
dataset detected by the CLEAN method [21]. The best
annotation strategy with p-value ≤ 0.001 and no upper
limit to term size is the closest by detecting 7 clusters
from the CLEANsmall data. The funcExplorer clusters are
available at https://biit.cs.ut.ee/funcexplorer/link/c6bc4.
The Rand index for this comparison was 0.82, while the

adjusted Rand index was 0.49. The filtered Rand indexes
remained similar (0.81 and 0.5). Keeping in mind that
the funcExplorer clusters cover 93.95% of the genes and
the CLEAN method covered 100%, the results imply that
the two sets of clusters are similar. The results of corre-
sponding clusters obtained with the biological function
and gene search are available in Table 2.

Arabidopsis dataset
Chupeau et al. performed hierarchical clustering analy-
sis of 5,276 differentially expressed genes from transcript
profiling at various time points during the preparation and
culture of Arabidopsis thaliana protoplasts [42]. The val-
ues in the analysed datamatrix are not the gene expression
levels in different conditions but represent the changes in
transcript levels over time. The authors detected 8 main
clusters that cover 74% of the genes.
We analysed the same dataset in funcExplorer and com-

pared the clusters (see Table 1). All of the three strate-
gies in funcExplorer resulted in similar clusterings and
these clusters were well consistent with the ones reported
by Chupeau et al. [42]. In addition, funcExplorer clus-
ters cover more genes in the data which is a proof that
funcExplorer exploits the whole dataset and, instead of a
favorable subset, reports all the meaningful clusters.
Searching for the characteristic functions and marker

genes reported in the supplementary material of the initial
analysis [42], we aimed to find the corresponding clusters
from the results of the F1 strategy with a threshold for

https://biit.cs.ut.ee/funcexplorer/link/c6bc4
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Table 2 Comparison of funcExplorer results of CLEANsmall dataset

CLEAN clusters[21] Corresponding funcExplorer clusters

Cluster ID (size) Top GO terms BP, CC, MF

1. Nuclear part, RNA processing (126
genes)

ID: 117 (250 genes) Cell cycle, macromolecular complex, nucleic acid
binding

2. Mitochondrion (125 genes)

3. Mitosis, Cell cycle (73 genes) ID: 63 (71 genes) Mitotic cell cycle process, nuclear lumen, protein
binding

4. DNA replication, Cell cycle (42 genes)

5. Extracellular region, organ
development, cell adhesion (126
genes)

ID: 5 (657 genes) Multicellular organismal process, intrinsic component
of plasma membrane, receptor activity

6. Extracellular region , organ
development, cell adhesion (168 genes)

ID: 5 (657 genes) Multicellular organismal process, intrinsic component
of plasma membrane, receptor activity

ID: 91 (77 genes) Extracellular matrix organization, proteinaceous extra-
cellular matrix

7. Immune response, signal
transducer activity, receptor
activity, response to stress (288
genes)

ID: 8 (170 genes) Immune system process, plasmamembrane, receptor
activity

ID: 305 (105 genes) Immune system process, plasma membrane part,
receptor activity

8. System process, receptor activity,
plasmamembrane (474 genes)

ID: 5 (657 genes) Multicellular organismal process, intrinsic component
of plasma membrane, receptor activity

*Note: The best annotation strategy with p-value ≤ 0.001 and no upper limit for term size; cluster IDs ordered by the enrichment score; cluster sizes are given in the
brackets; the characteristic functions of CLEAN clusters that also appear significant in the corresponding funcExplorer clusters are highlighted in bold; TOP functions are from
GO biological process (BP), cellular component (CC) and molecular function (MF)

p-value ≤ 10−7 and no upper limit for the term size. We
were able to recover all the clusters with the exception of
cluster C7. This is an expected result as the cluster C7 has
been reported as a cluster with no significant enrichment
in GO and funcExplorer relies on the enrichment analy-
sis. The schematic representation of the seven clusters in
Fig. 8 shows that funcExplorer is capable to achieve almost
identical results with the previous study. In addition, we
found the cluster 301 which is enriched in the photosyn-
thesis (GO:0015979) and several other functions that are
not significantly enriched in any of the neighboring clus-
ters. The results of this analysis are available at https://biit.
cs.ut.ee/funcexplorer/link/36e71.

Humoral dataset
We reanalysed a breast cancer dataset with the GEO
accession no. GSE11121 first analysed by Schmidt and col-
leagues [12]. We refer to this dataset as Humoral. The
dataset consists of gene expression patterns of 200 tumors
of patients who were not treated by systemic therapy after
surgery. One part of the analysis process was hierarchical
clustering of a subset of the data (2579 preselected probe
sets) to identify coregulated gene groups.
The authors defined 11 gene clusters through man-

ual selection of branches of the dendrogram as sug-
gested by the occurrence of cluster regions within the

heatmap. However, this approach is highly subjective
and another scientist could have made a slightly differ-
ent choice depending on their research question. The
selection was followed by GO enrichment analysis of
the clusters.
With a threshold for p-value ≤ 0.001, the best anno-

tation strategy detected clusters most similar to the ones
reported in the previous analysis [12] (see Additional
file 1: Table S3 for cluster comparison and https://biit.cs.
ut.ee/funcexplorer/link/35872 for full details).

Yeast dataset
We conducted a similar comparison for the Yeast dataset
analysed by Jin et al.[43]. Jin et al. analysed the tran-
scriptome profiles of yeast exposed to transition metals
using the K-means clustering with K = 6 and functional
enrichment analysis.
We found that the F1 strategy reveals more specific

clusters (31 clusters that cover 28.96% of genes) with
similar functions and expression profiles as reported pre-
viously [43] (see https://biit.cs.ut.ee/funcexplorer/link/
cdeac for details). Because the 6 clusters from [43] had
easily distinguishable expression profiles, we used the
eigengene profiles to find the corresponding clusters from
the funcExplorer results. The comparison is available
in the Additional file 1: Table S4. In addition to gene

https://biit.cs.ut.ee/funcexplorer/link/36e71
https://biit.cs.ut.ee/funcexplorer/link/36e71
https://biit.cs.ut.ee/funcexplorer/link/35872
https://biit.cs.ut.ee/funcexplorer/link/35872
https://biit.cs.ut.ee/funcexplorer/link/cdeac
https://biit.cs.ut.ee/funcexplorer/link/cdeac
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Fig. 8 Comparison of clusters from the Arabidopsis data. The seven clusters from funcExplorer F1 strategy analysis that match with the clusters
reported in the previous study [42]. The funcExplorer cluster IDs with the equivalent cluster name from [42] (in the brackets) are shown on the left.
The eigengene profiles and significant functions that describe the clusters are consistent with the previous analysis

clustering, the sample clustering in funcExplorer was suc-
cessful in grouping the metals.
The goal of funcExplorer is to let the data speak for

itself without imposing any assumptions. As there is no
parameter in funcExplorer that allows to fix the number
of clusters prior to analysis, detecting comparable set of 6
clusters is a challenge. However, setting a limit on themin-
imum cluster size similar to the ones reported by Jin et al.
helps to get very similar results (e.g. the best annotation
strategy with minimum cluster size 30 detects 8 clusters;
https://biit.cs.ut.ee/funcexplorer/link/1a2c7).
To conclude, all the presented clustering results were

obtained automatically. Without having domain specific
knowledge we obtained similar biological results by sim-
ply uploading an expression dataset to funcExplorer.
All the presented results are readily available for inter-
pretation and further exploration at https://biit.cs.ut.ee/
funcexplorer/user/83dfcffcba4067a43dc53025dbb1620a.

Discussion
In this paper we have presented funcExplorer, a com-
pletely new tool that improves upon the idea of functional
cluster detection first introduced in VisHiC[24]. We have
introduced two novel approaches to extract functionally
relevant clusters from a dendrogram. To demonstrate the
utility of funcExplorer, we have reanalysed previously pub-
lished datasets that are characterised by clustering and
functional annotations. The showcases indicate that func-
Explorer is able to automatically perform the initial man-
ually conducted analysis of large-scale gene activity data,
and uncover additional information. In addition, we anal-
ysed RNA-seq data from the GTEx project and detected
tissue-specific clusters.

The tool is likely to be useful in the process of stat-
ing scientific hypotheses about the mechanisms that
drive the co-expressed genes. Furthermore, by providing
a quick functional overview for a selection of prepro-
cessed datasets from ArrayExpress, funcExplorer is also

https://biit.cs.ut.ee/funcexplorer/link/1a2c7
https://biit.cs.ut.ee/funcexplorer/user/83dfcffcba4067a43dc53025dbb1620a
https://biit.cs.ut.ee/funcexplorer/user/83dfcffcba4067a43dc53025dbb1620a
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beneficial when selecting a proper dataset for a specific
question from the wide range of available datasets col-
lected in public archives to be reanalysed. The utility of
existing data collections is thereby magnified.
However, one of the key limitations of funcExplorer is

that it does not provide an unambiguous solution for gene
clustering. We have proposed three different strategies,
but which approach is best remains unclear. This unclar-
ity is largely due to the lack of a gold standard for cluster
assessments in gene clustering.
Also, comparing novel gene clusters with previously

published ones would require a robust and standardised
approach that takes into account both the structure of
clusters and annotations for fair assessment. In this paper
we have used the Rand index and performed pairwise
annotation comparison by hand. Both of these approaches
have their shortcomings and further research is needed
to come up with more automatic approach. A method
that takes the relationships between annotations and clus-
ters into account and can operate without the domain
knowledge would be ideal.
To our knowledge, funcExplorer is the only functioning

publicly available web application that combines hierar-
chical clustering with functional enrichment analysis and
yields an informative visualisation for browsing at both a
global and local level. The comparisons and case studies
showed that funcExplorer is successful at emphasising the
biologically relevant functional aspects of a dataset which
are in accordance with previously conducted analyses. We
believe that funcExplorer is capable of refining existing
biological knowledge and revealing novel connections in a
data-driven manner.

Conclusions
In order to provide an initial comprehensive overview of
the functional essence of high-throughput genomic data,
funcExplorer carries out automated clustering and func-
tional enrichment analysis. The visually compact result
highlights the most relevant parts of the dataset at hand.
In addition, the user can easily explore their experi-
ment in more detail by using the interactive features
provided by our tool. Furthermore, it is our hope that
funcExplorer will advance scientific reproducibility by
providing online results that can easily be shared among
peers.

Availability and Requirements
Project name: funcExplorer
Project home page: https://biit.cs.ut.ee/funcexplorer
Operating system: Platform independent
Other requirements: Any browser with HTML5 support
Programming language: Python
License: GNU GPL3
Any restrictions to use by non-academics: None
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Additional file 1: Figure S1. Features of funcExplorer and other similar
tools. Figure S2. Theoretical maximum of -log10(p-value) score. The
maximum enrichment score is limited by the cluster size due to the
properties of hypergeometric distribution. The peak is achieved if the
cluster size is equivalent to the size of the functional class. Similar behavior
remains after multiple testing correction. Calculated for N = 17, 105.
Table S1. Fixed-cut clusters of CLEANsmall. The number of clusters of size
5 to 1000 genes obtained after cutting at given distance (#clusters). The
number of significantly enriched clusters is shown in the #annot. clusters
column. Table S2. The clusters and corresponding marker genes as
reported by Schmidt et al. [12]. Table S3. Comparison of funcExplorer
results of Humoral dataset [12]. Table S4. Comparison of funcExplorer
results of Yeast dataset [43]. (PDF 640 kb)

Additional file 2: Supplementary methods. Detailed descriptions of
funcExplorer data preparation and calculations. (PDF 219 kb)

Additional file 3: List of significantly enriched GO functions for the cluster
shown in Fig. 7. (XLSX 17 kb)
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