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Rapidly expanding aging populations and a concomitant increase in the prevalence of age-
related diseases are global health problems today. Over the past three decades, a large
body of work has led to the identification of genes and regulatory networks that affect
longevity and health span, often benefiting from the tremendous power of genetics in
vertebrate and invertebrate model organisms. Interestingly, many of these factors appear
linked to lipids, important molecules that participate in cellular signaling, energy metab-
olism, and structural compartmentalization. Despite the putative link between lipids and
longevity, the role of lipids in aging remains poorly understood. Emerging data from the
model organism Caenorhabditis elegans suggest that lipid composition may change during
aging, as several pathways that influence aging also regulate lipid metabolism enzymes;
moreover, some of these enzymes apparently play key roles in the pathways that affect the
rate of aging. By understanding how lipid biology is regulated during C. elegans aging, and
how it impacts molecular, cellular, and organismal function, we may gain insight into novel
ways to delay aging using genetic or pharmacological interventions. In the present review
we discuss recent insights into the roles of lipids in C. elegans aging, including regulatory
roles played by lipids themselves, the regulation of lipid metabolic enzymes, and the roles
of lipid metabolism genes in the pathways that affect aging.
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INTRODUCTION
One of the most desirable goals in biomedical research is to under-
stand the molecular mechanisms that promote healthy aging.
Identifying the processes that lead to extended longevity in lab-
oratory settings may allow the exploitation of that knowledge
to generate pharmacological treatment regimens that delay the
onset and/or reduce the severity of age-associated diseases, or even
extend life span per se. In model organisms, several genetic and
nutritional conditions have been identified that not only extend
mean and/or maximal life span but also postpone the onset of phe-
notypes associated with aging, such as a loss of mobility, a decline
in cognitive ability, and others.

It has been almost 30 years since single gene mutations were
first found to affect aging in the nematode Caenorhabditis elegans
(reviewed in Kenyon, 2010a). Since then, C. elegans has become a
powerhouse for studies on the mechanisms that affect longevity.
Numerous labs are identifying an ever-increasing number of genes,
molecules, and regulatory networks that influence aging. Several
excellent reviews summarize recent progress in this field and the
reader is referred to these (Fontana et al., 2010; Gallo and Riddle,
2010; Kenyon, 2010b; Zhou et al., 2011).

Despite the identification of several discrete pathways that
affect longevity, the molecular mechanisms that actually result
in life span extension remain obscure. Of note, many pro-

longevity signaling pathways affect lipid biology and/or nutri-
ent sensing/signaling. For example, insulin/insulin-like growth
factor (IGF) signaling (IIS), which affects aging in many model
organisms, integrates nutritional cues, and regulates fat storage in
many animals (Fontana et al., 2010; Kenyon, 2010b). Other path-
ways known to influence aging and lipid biology and/or nutrient
sensing include dietary restriction mechanisms including inter-
mittent fasting paradigms; the electron transport chain (ETC) of
the mitochondria; signaling following genetic or physical germline
removal; target of rapamycin (TOR) signaling, which governs
nutrient sensing and is linked to dietary restriction; and transla-
tion inhibition, which interacts with TOR and dietary restriction
in yet poorly understood ways.

One simple explanation would be that all longevity-controlling
pathways equivalently affect storage lipid levels, thus evoking sim-
ilar overall changes in energy balance to extend life span. This is
clearly not the case, as mutants in various aging pathways differ-
entially alter overall fat storage. Thus, some C. elegans mutants are
long-lived and exhibit increased levels of triacylglycerides (TAGs,
i.e., stored fat); these include worms carrying a mutation in the
daf-2 gene, which encodes the C. elegans insulin/IGF-1 recep-
tor (Kenyon et al., 1993; Ashrafi et al., 2003), germline-less glp-1
mutants (Arantes-Oliveira, 2002; O’Rourke et al., 2009), and tub-1
mutants (Mukhopadhyay et al., 2005). In contrast, eat-2 mutants,
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which experience dietary restriction due to mechanically reduced
pharyngeal pumping, are long-lived but have reduced fat storage
(Lakowski and Hekimi, 1998; Srinivasan et al., 2008; Brooks et al.,
2009). Thus, long-lived mutants can be high or low in fat. More-
over, in the tub-1 mutants, two genetically distinct pathways influ-
ence fat storage and aging (Mukhopadhyay et al., 2005). Therefore,
there is no strict link between aging and global fat storage, at least
when assessing fat deposition by techniques that monitor global
lipid stores in whole animals or whole animal extracts. Clearly, if
lipids indeed modulated longevity, their role must be more diverse
and complex than initially anticipated.

THE CENTRAL ROLES OF LIPIDS IN CELLULAR AND
MOLECULAR BIOLOGY
Lipids are broadly defined as hydrophobic or amphiphilic mol-
ecules formed in whole or in part by ketoacyl and/or isoprene
groups (Fahy et al., 2009; Subramaniam et al., 2011). Lipids play
a central role in metazoan physiology, as they affect cellular and
organismal functions in three principal, non-exclusive ways: (i) in
signaling cascades, both directly as signaling molecules (e.g., dia-
cylglycerol, fatty acids, phosphatidylinositols, sterols, ceramides,
and sphingolipids), and indirectly by reversibly and irreversibly
tethering signaling proteins to cellular membranes (e.g., via preny-
lation or palmitoylation); (ii) as structural elements in cellular
membranes, providing cellular, and subcellular compartmental-
ization; and (iii) as key molecules in energy metabolism. Lipids
are also integral components in lipophilic vitamins, which influ-
ence a large number of cellular processes, and it is conceivable that
vitamin bioavailability may influence longevity. In line with their
central role in physiology, lipids, or at least genes directly involved
in lipid metabolism, have recently been mapped into several sig-
naling pathways that affect longevity; yet, the role of lipids in the
modulation of aging remains enigmatic (Ackerman and Gems,
2012). Here, we review recent reports that suggest important roles
for lipids and lipid metabolizing enzymes in aging.

LIPID SIGNALING IN AGING: NUCLEAR HORMONE
RECEPTOR ACTION
Lipids and their derivatives can act in various signaling path-
ways to affect aging, including cell membrane receptor signaling
or Nuclear Hormone Receptor (NHR) signaling (Germain et al.,
2006). NHR signaling is intriguing, as lipids do not only mod-
ulate NHRs but some NHRs in turn affect lipid biology through
their downstream regulatory actions. NHRs are ligand-gated tran-
scription factors that are conserved in metazoans, and they play
important roles in the regulation of physiology and development
(Germain et al., 2006).

The C. elegans genome encodes a large family of 284 NHRs,
far exceeding the number of NHRs in the human, mouse, or
fly genomes (Taubert et al., 2011). The vast majority of these
NHRs appear to be derived from an ancestor related to Hepa-
tocyte Nuclear Receptor 4 (HNF4; Robinson-Rechavi et al., 2005),
which plays important functions in the development and function
of liver and pancreas in mammals (Maestro et al., 2007; Gonzalez,
2008), whereas fly HNF4 regulates lipid mobilization and fatty acid
β-oxidation (Palanker et al., 2009). Multiple studies suggest that
mammalian HNF4 can be modulated by interactions with fatty

acids and/or fatty acid derivates, suggesting that lipids act as lig-
ands for HNF4 (Hertz et al., 2003; Yuan et al., 2009). Although the
in vivo consequences of lipid-HNF4 interactions remain contro-
versial, it is possible that lipids may similarly bind and/or regulate
some C. elegans NHRs. However, no ligands have been identified
for any C. elegans NHRs save for DAF-12, an NHR unrelated to
HNF4. DAF-12 binds a steroid-like ligand with nanomolar affinity
(Motola et al., 2006), and regulates development and aging in C.
elegans (Antebi et al., 1998, 2000). Individual daf-12 alleles affect
aging in distinct ways,depending on whether they cause a complete
loss of daf-12 activity or abrogate only specific molecular func-
tions, e.g., the capacity to bind ligands (reviewed in Gáliková et al.,
2011). Notably, DAF-12 is required for the life span extension in
worms that lack the germline (see below); these worms are thought
to be long-lived due to a concomitant absence of germline-derived
signals that restrict life span (Arantes-Oliveira, 2002). Thus, lipid-
derived hormones play a key role in this pathway, albeit how
DAF-12 acts in this context is still poorly understood.

A ROLE FOR NHR SIGNALING AND FATTY ACID
DESATURASES IN AGING
Adding to the role for DAF-12 in longevity, a new study reports
a key role for another NHR and for one downstream target,
a fatty acid desaturase (Goudeau et al., 2011); this study thus
directly links NHRs, lipid metabolism, and long life span. Specifi-
cally, in germline-less glp-1 mutants, NHR-80 is upregulated, and
transgenic NHR-80 overexpression further extends animal life
span. One key regulatory target of NHR-80 turns out to be fat-
6, a stearoyl-CoA desaturase that converts stearic acid into oleic
acid; like nhr-80, fat-6 is required for the pro-longevity effect of
genetic germline ablation (Figure 1). In contrast to germline-
less mutants, nhr-80 is dispensable for the longevity of other
long-lived mutants, including IIS pathway mutants, mitochondr-
ial mutants, and worms grown under dietary restriction (Goudeau
et al., 2011). Thus, NHR-80, DAF-12, and FAT-6 constitute a lipid
signaling pathway that is essential for the long lifespan specifi-
cally in germline-less animals. However, the pathway is obviously
more complex, as oleic acid supplementation rescues the loss of
fat-6, but cannot complement for the loss of nhr-80. This sug-
gests that NHR-80 may regulate other (lipid biology) genes in
this context. Similarly, the specific role of oleic acid remains to
be determined; Brock et al. (2006) previously showed that nhr-80
mutants exhibit several changes in their fatty acid profile, likely
as a consequence of reduced oleic acid levels. Any of these fatty
acid species could in principle be relevant for lifespan extension in
germline-less animals.

The specificity of NHR-80 and FAT-6 in this particular path-
way is noteworthy. The ability of NHR-80 to drive fat-6 expression
is apparently restricted to germline-less animals, as nhr-80 single
mutants exhibit near wild-type levels of fat-6 (Brock et al., 2006).
In contrast, nhr-80 mutants show a significant decreased fat-5
and fat-7 expression (Brock et al., 2006), whereas in germline-less
worms, nhr-80 mutation does not affect fat-7 and only mildly
affects fat-5 expression (Goudeau et al., 2011). In line with a spe-
cific regulatory effect of NHR-80 on fat-6, only fat-6, but not fat-5
or fat-7 are required for life span extension in germline-less ani-
mals. Mechanistically, NHR-80 must assemble distinct regulatory
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FIGURE 1 | Functions of lipid remodeling enzymes in various aging

pathways. Germline ablation activates the transcription of the fatty acid
desaturase fat-6 and, through TOR signaling, of the lipase gene lipl-4. Insulin
signaling also upregulates lipl-4 and fat-6, and lipl-4 is required for longevity of

both germline-less worms and daf-2/insulin receptor mutants. Prohibitin
depletion extends the life spans of various C. elegans longevity models,
possibly also relying on lipase action (as indicated by the dashed line; for
details, see main text).

complexes at the fat-5, -6, and -7 promoters in the different
genetic contexts to achieve appropriate gene expression. More-
over, NHR-80 and the closely related NHR-49 both regulate fatty
acid desaturase gene expression (Van Gilst et al., 2005b; Brock
et al., 2006), but only NHR-80 targets fat-6 (Goudeau et al., 2011);
due to this difference, NHR-49 is probably not required for the life
span extension in germline-less animals, although this has not yet
been directly tested using germline-less nhr-49 mutants.

Goudeau et al. (2011) did not find a requirement for nhr-80
in other longevity pathways such as IIS or dietary restriction, but
fatty acid desaturases have been implicated in several such circuits
(Figure 1). For example, fat-1, -2, -3, -6, and -7 are all induced in
daf-2 mutants, and this regulation is at least partially dependent
on the downstream transcription factor DAF-16, a forkhead box
O transcription factor that plays key roles in longevity assurance
within multiple pathways (Murphy et al., 2003; Halaschek-Wiener
et al., 2005; Budovskaya et al., 2008). These data suggest that
increasing the synthesis of mono- and/or poly-unsaturated fatty
acids (MUFAs and PUFAs, respectively) may be important for
long-lived mutants; indeed, fat-6 or fat-7 depletion shortens the
life span of long-lived daf-2 mutants, albeit only mildly (Mur-
phy et al., 2003). Taken together, the above data indicate that
at least some fatty acid desaturases contribute to the life span

extension downstream of reduced insulin signaling or germline
removal.

The roles of fatty acid desaturases and their regulators have
also been studied in wild-type worms, and although the roles of
these genes in wild-type worms are likely distinct from the lifes-
pan modulation in long-lived strains, the data are nevertheless
informative. For example, depletion of fat-7 by RNA interference
(RNAi; Fire et al., 1998) shortens the life span of wild-type worms
(Van Gilst et al., 2005b). Similarly, depletion of the transcrip-
tion factors NHR-49 or SBP-1 (the ortholog of mammalian sterol
response element binding protein, a master regulator of lipogen-
esis and adipogenesis) or their coregulator MDT-15 reduces fatty
acid desaturase expression, increases the ratio of stearic acid to
oleic acid, and shortens lifespan (Van Gilst et al., 2005b; Taubert
et al., 2006, 2008; Yang et al., 2006). In the case of mdt-15 depletion,
the short lifespan can be partially rescued by exogenous PUFAs,
suggesting a requirement for PUFAs to maintain normal life span
(Taubert et al., 2006). mdt-15 is also required for the longevity of
other long-lived mutants, including IIS pathway mutants, mito-
chondrial mutants, and the eat-2 mutants that mimic dietary
restriction (Rogers et al., 2011), although it is not clear whether
these effects relate to MDT-15’s impact on fatty acid metabo-
lism (Taubert et al., 2006; Yang et al., 2006). fat-3 mutants also
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live shorter than wild-type worms, further supporting the notion
that reduced levels of PUFAs may shorten life span (Hillyard and
German, 2009). Contrasting these studies, nhr-80 mutants exhibit
an increased stearic acid to oleic acid ratio, yet a normal lifes-
pan (Brock et al., 2006; Goudeau et al., 2011). Similarly, fat-5, -6,
or -7 single mutants do not show a shortened life span, albeit
these mutants upregulate other desaturases, perhaps in a compen-
satory fashion (Brock et al., 2006). Lastly, fat-4 mutants exhibit
an increased lifespan (Lucanic et al., 2011), possibly through their
effects on N -acylethanolamine (NAE) levels and endocannabin-
noid signaling (see below). Clearly, fatty acid desaturases affect the
life span of wild-type worms and long-lived mutants alike; yet, the
requirements for individual enzymes and their upstream regula-
tors are not the same in all genetic (and perhaps environmental)
conditions.

A recent study suggests that fatty acid desaturation per se may
not be the only determinant of how these molecules affect life
span, but that parameters such as chain-length matter as well
(Shmookler Reis et al., 2011). The authors used lipid profiling
in various long-lived mutants to generate correlations between
longevity and fatty acid composition. Several parameters corre-
late well with longevity; perhaps most strikingly, overall fatty acid
oxidation susceptibility (as expressed by the peroxidation index)
was strongly anti-correlated with longevity. Although the study
focused on a set of IIS pathway mutants with extreme longevity
phenotypes (all mutants were either close to wild-type life span,
or very long-lived, as opposed to representing a more continuous
spectrum), these data suggest that high PUFA levels may be disad-
vantageous for a long life. This somewhat contradicts the findings
that, e.g., nhr-49 mutants, nhr-49 (RNAi), or fat-7 (RNAi) worms
are short-lived, as these worms show changes in stearic to oleic acid
ratio, but only relatively minor changes in the distribution of other
fatty acid species, including most PUFAs (Van Gilst et al., 2005b).
However, nhr-49 mutants, nhr-49 (RNAi), or fat-7 (RNAi) worms
are severely short-lived, and perhaps the same fatty acid properties
do not apply equally in long-lived worms and in severely short-
lived worms. In any case, the findings by Shmookler Reis et al. add
to an existing body of data suggesting that fatty acid composition
is regulated in aging worms and that it may influence life span.

These above studies suggest that fatty acid desaturation is likely
important for normal and for extended lifespan, with context-
specific requirements for individual regulators and metabolic
enzymes. However, the above studies analyzed total fatty acids
obtained from whole worm extracts. Thus, the question remains
as to whether changes in fatty acid profiles may affect longevity
through a role in metabolism, signaling, or perhaps membrane
structure (Hulbert, 2011). Given that the observed changes in fatty
acid abundance are rather large in some instances, it may seem
likely that certain types of unsaturated fatty acids are structurally
relevant, e.g., in the membranes of specific organelles, which in
turn may affect nematode physiology. Affected organelles could
be the mitochondria or the endoplasmic reticulum (ER), both of
which can influence lifespan (Wong et al., 1995; Lakowski and
Hekimi, 1996; Feng et al., 2001; Henis-Korenblit et al., 2010). Per-
haps, membrane lipids may also influence aging by altering the
properties of the nuclear envelope, which in turn may influence
gene transcription or other nuclear processes. Notably, nuclear

structure is linked to aging, as mutations of lamin A cause a
progeria syndrome in humans (De Sandre-Giovannoli, 2003), a
phenotype that is reflected in C. elegans lmn-1 mutants (lmn-
1 is the only C. elegans lamin a gene), which also exhibit a
short life span and altered nuclear architecture (Bank and Gru-
enbaum, 2011; Bank et al., 2011). Without doubt the elucidation
of the mechanisms by which unsaturated fatty acids affect life
span will remain a challenging and fascinating topic for future
research.

LIPASE ACTION AND A LINK TO AUTOPHAGY
Two recent studies suggest that lipid-remodeling enzymes other
than the desaturases can also influence longevity, namely the
lipases. Lipases are esterases that catalyze the hydrolysis of fat,
thus producing mono- or diglycerides, glycerol, and free fatty
acids (Branicky et al., 2010). Wang et al. (2008) found that the
lipase LIPL-4 is required for germline-removal induced longevity,
suggesting that lipid hydrolysis plays a critical role in life span
extension (Figure 1). Moreover, LIPL-4 expression is increased
in animals without a germline (Wang et al., 2008), and intestinal
overexpression of LIPL-4 alone not only reduces fat storage (Wang
et al., 2011) but is also sufficient to extend the life span in wild-type
worms (Wang et al., 2008).

How does LIPL-4 action contribute to increased life span? Sev-
eral mechanisms appear possible. For one, lipase action can change
overall fat levels, and such changes could alter animal lifespan.
However, as pointed out above, fat levels and longevity do not
correlate in C. elegans, and thus simple reduction of overall stor-
age lipids is unlikely to cause lifespan extension. Instead, given
that intestine-specific LIPL-4 is sufficient to extend the lifespan
of germline-less animals, it is tempting to speculate that LIPL-4
action could generate lipids that act in endocrine fashion to mod-
ulate downstream pathways. In this context we reiterate the role
of DAF-12 in the longevity of germline-less animals (Hsin and
Kenyon, 1999). Perhaps, LIPL-4 products directly or indirectly
contribute to altered abundance of DAF-12 ligands.

Another way for LIPL-4 to modulate lifespan could involve
autophagy (Lapierre et al., 2011), a catabolic process that degrades
cellular organelles and macromolecular complexes, thus recycling
their molecular building blocks (Kundu and Thompson, 2008).
Autophagy is a highly regulated process that participates in nor-
mal growth, development, and homeostasis, and it is known to
modulate aging in C. elegans (Meléndez et al., 2003; Hansen et al.,
2008). Lapierre et al. found that reduced TOR activity induces
autophagy and LIPL-4 lipase activity in long-lived, germline-less
animals. Autophagy and lipase action are co-dependent, and hence
the authors suggested that LIPL-4 activity promotes autophagy. It
will be interesting to determine whether it indeed does so, and
if yes, by what mechanism, e.g., by providing a specific type of
lipid required for autophagosome formation, or possibly by gen-
erating a regulatory ligand for a (membrane or nuclear) receptor
that promotes autophagy. As described above, LIPL-4 is required
for lifespan extension in IIS signaling mutants (Wang et al., 2008),
and autophagy is required for lifespan extension due to impaired
TOR signaling, IIS signaling, or mitochondrial function (Hansen
et al., 2008; Tóth et al., 2008). Thus, autophagy is emerging as an
important player in several longevity pathways, and may perhaps
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broadly contribute to lifespan extension in C. elegans. This could
involve LIPL-4 or possibly other lipases.

Lipases other than LIPL-4 may also contribute to life span
modulation and/or are age-regulated in C. elegans. Most strik-
ingly, lips-7 is induced in long-lived ctbp-1 mutants, and lips-7
depletion prevents this longevity, whereas another lipase is dis-
pensable; lips-7 induction also correlates with lower fat levels in
ctbp-1 mutants (Chen et al., 2009). Again, the functional conse-
quence of lips-7 induction is not clear, but it is possible that lips-7
induced autophagy contributes to the longevity of ctbp-1 mutants.
Vice versa, it would be useful to test whether lips-7 plays a role in the
long life span of germline-less animals. Although both LIPL-4 and
LIPS-7 affect overall fat storage, it would be intriguing if they were
differentially required for life span extension in different genetic
backgrounds.

LIPS-7 and LIPL-4 are members of protein families, and their
homologs may also affect aging. In line with this notion, LIPL-
1, -2, -5, and -7, and LIPS-4, -14, and -17 expression is altered
in aging worms and/or in long-lived mutants (Budovskaya et al.,
2008; Golden et al., 2008; McCormick et al., 2012; Youngman et al.,
2011), suggesting that they may contribute to lipid remodeling in
these contexts. However, whether these regulations are cause or
consequence of aging remains to be determined, and none of these
lipases have yet been studied genetically to determine their roles
in longevity pathways. Nevertheless, taken together with the fact
that intestinal LIPL-4 expression is sufficient to extend worm life
span, these data suggest that temporal and spatial changes in lipase
expression may influence aging. In summary, lipases are likely to
act selectively and in a tightly controlled fashion within certain
signaling pathways to affect longevity.

SIGNALING BY LIPID-DERIVED SMALL MOLECULES
An exciting recent study has revealed that signaling by lipid-
derived small molecules can directly modulate life span in C. ele-
gans. Lucanic et al. (2011) identified N -acylethanolamines (NAEs)
as signaling molecules that link dietary restriction to longevity.
NAEs are lipid derivatives that participate in endocannabinoid sig-
naling (Matias and Di Marzo, 2007). In mammals, endocannabi-
noids have profound effects on energy homeostasis by influencing
food intake and by affecting energy metabolism in adipose, liver,
pancreas, and skeletal muscle (Banni and Di Marzo, 2010). Lucanic
et al. show that NAEs function in the C. elegans pharynx to sig-
nal nutrient availability; thus, compared to ad libitum fed worms,
wild-type worms under dietary restriction show reduced NAE
levels. Artificial reduction of NAEs under ad libitum conditions
extends life span, and this effect is refractory to dietary restriction;
conversely, exogenous NAEs suppress dietary restriction-induced
lifespan extension. Together, these data demonstrate that NAEs
and dietary restriction act via overlapping pathways (Figure 2).
Further demonstrating a direct link between lifespan and lipid
biology, Lucanic et al. find that fat-4 mutants show reduced NAE
levels and a concomitant lifespan extension, although molecules
other than NAEs may also contribute to this effect. Lastly, the syn-
thesis of one particular NAE species is reduced in long-lived worms
carrying a mutation in the ribosomal protein S6 kinase gene rsks-
1, and pharmacological supplementation with this NAE reverts
the mutant’s longevity. RSKS-1 is known to influence life span,

and it is a critical downstream target of TOR signaling (Hansen
et al., 2007; Pan et al., 2007). Thus, the data described in Lucanic et
al. also suggest a link between the nutrient sensor TOR and NAE
signaling.

The novel role of NAEs in longevity is exciting. Yet, as noted
by Lucanic et al. (2011), the C. elegans genome lacks obvious
orthologs to the endocannabinoid receptors that bind NAEs in
mammals (McPartland and Glass, 2003); thus, the molecular mode
of NAE action in worms remains unclear. The C. elegans genome
encodes a large number of G-protein coupled receptors, and it
is possible that some of these (or some other membrane recep-
tors) bind NAEs and mediate their effects in paracrine fashion
(Figure 2). Alternatively, NAEs may act as NHR ligands, akin to
the role of two endogenous NAEs as ligands for the mouse NHR
peroxisome proliferator activated receptor alpha (PPARα; Fu et al.,
2003; Verme, 2005). By activating PPARα, these NAEs modulate
feeding behavior. Perhaps, NAEs similarly modulate NHR activ-
ity in C. elegans; although PPARα orthologs are unrecognizable
in the C. elegans genome, NHR-49 acts in a PPARα-like fashion
to regulate fatty acid β-oxidation and the fasting response(Van
Gilst et al., 2005a,b), and it would be interesting to determine
whether it participates in NAE signaling and/or dietary restriction
(Figure 2). Other candidates include the aforementioned NHR-
80 (Goudeau et al., 2011), NHR-69, which was recently shown to
modulate longevity (Park et al., 2012), and other NHRs that regu-
late lipid metabolism in C. elegans (Ashrafi et al., 2003; Arda et al.,
2010; Wang et al., 2011). Clearly, much remains to be discovered
about the NAEs and their role in the regulation of metabolism,
behavior, and aging.

In addition to the NAEs, another class of lipid-derived small
molecules is emerging as candidate life span modulators: the
ascarosides, a family of small molecules whose founding members
were identified based on their capacity to induce the formation of
dauer larvae (also collectively referred to as dauer pheromones).
The dauer is a specialized C. elegans larva that is long-lived and
stress resistant, and its formation is induced by overcrowding, star-
vation, or high temperatures (Hu, 2007). Parallels between dauer
larvae and long-lived mutants had been noted a long time ago:
not only are dauer larvae long-lived, but many genetic pathways
(e.g., IIS) and dietary stimuli (e.g., starvation) that control dauer
formation also affect life span. Recent work has identified the
molecular identity of the ascarosides (Jeong et al., 2005; Butcher
et al., 2007). These molecules are linked to lipid metabolism in two
ways. Firstly, the ascaroside core structure is composed of a sugar
(ascarylose) and a lipid moiety. Thus, the abundance of individual
ascarosides may directly reflect the availability of certain lipids.
Secondly, ascarosides are intricately linked to lipid metabolism
through their biosynthetic pathway, as several ascaroside biosyn-
thesis enzymes are involved in fatty acid β-oxidation; these include
the acyl-CoA oxidase ACOX-1, the enoyl CoA-hydratase MAOC-
1, the β-hydroxyacyl-CoA dehydrogenase DHS-28, and DAF-22,
a homolog of sterol carrier protein SCPx (Butcher et al., 2009;
Pungaliya et al., 2009; Joo et al., 2010; von Reuss et al., 2012).
In line with an important role for these enzymes in fatty acid
catabolism, daf-22, dhs-28, and maoc-1 mutants all accumulate
excess fat; yet, daf-22 and dhs-28 mutants are short-lived, whereas
worms with depleted maoc-1 are long-lived (Hansen et al., 2005;
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FIGURE 2 | Model for NAE action in dietary restriction-mediated

longevity. The TOR signaling pathway senses nutrient availability.
Activation of TOR triggers NAE synthesis in the pharyngeal cell, leading to
several possible mechanisms of action. NAEs could act in paracrine
fashion to stimulate signaling through unidentified receptors, thus
promoting growth, reproduction and inhibiting longevity. NAEs could also

inhibit the transcription factor PHA-4 and therefore repress genes required
for dietary restriction-induced longevity. Lastly, NAEs could act as ligands
for nuclear hormone receptors (NHRs) and result in the regulation of
genes required for dietary restriction-mediated longevity. Low NAE levels
signal dietary restriction and result in activation of the transcription of
genes that contribute to extension of lifespan.

Joo et al., 2009; Zhang et al., 2010). As maoc-1, daf-22, dhs-28,
and acox-1 are expected to act in a linear biosynthetic pathway
(von Reuss et al., 2012), the differential effects of individual gene
deletions on life span is somewhat unexpected. Perhaps, distinct
ascarosides differentially affect lifespan, and the enzymes out-
lined above are not equivalently required for the synthesis of each
ascaroside subspecies. Structurally diverse members of the ascaro-
side family continue to be identified (von Reuss et al., 2012),
and thus such functional specialization may not be too surpris-
ing. Lastly, it is also conceivable that the enzymes outlined above
influence lifespan through a mechanisms that does not involve
ascarosides.

In addition to the identification of the ascarosides and relevant
biosynthetic enzymes, two recent studies describe the identifica-
tion of dauer pheromone receptors (Kim et al., 2009; McGrath
et al., 2011). Worms carrying mutations in the pheromone recep-
tor genes srg-36, srg-37, srbc-64, and srbc-66, or in gpa-3, a key
downstream effector, are compromised for dauer formation upon
ascaroside treatment; alas, none of the studies report life span
phenotypes. It will be interesting to test whether these mutants, or
other mutants defective for dauer pheromone sensing and/or sig-
naling exhibit an increase or decrease in longevity; perhaps, differ-
ent pheromone receptor combinations will emerge that specifically
affect life span but not other phenotypes, akin to the combinatorial
and differential roles of ascarosides in development and behavior
(Srinivasan et al., 2012).

MITOCHONDRIAL PATHWAYS TO LONGEVITY AND LIPID
METABOLISM
Mutations in mitochondrial ETC genes extend lifespan in C. ele-
gans and in other organisms, and lipids play critical structural
and energetic roles in mitochondria (Nicholls, 2002; Marchi et al.,
2012). Mitochondria produce energy by means of oxidative phos-
phorylation, which generates a proton gradient across the inner
mitochondrial membrane that is used to generate ATP. Oxidative
phosphorylation also produces reactive oxidative species (ROS)
that react with and can damage macromolecules such as DNA,
proteins, and lipids. The mitochondrial free radical theory of aging
first proposed by Harman (1956) suggested that ROS-induced
damage accumulation would gradually lead to a decrease in many
cellular functions and eventually result in aging. However, several
studies have cast doubt on this model (reviewed in Hekimi et al.,
2011), and a recent study found that mitochondrially produced
superoxide signals may in fact contribute to life span extension
(Yang and Hekimi, 2010), possibly by signaling the occurrence
of damage to relevant repair pathways. In line with this notion,
moderate and transient ROS levels trigger autophagy to remove
damaged organelles, sustaining cell life, and therefore promot-
ing longevity (Marchi et al., 2012). Alternative explanations for
the increased longevity of ETC mutants include the notion that
reduced mitochondria function generally slows down metabolism
(the rate-of-living theory) or the possibility that specific meta-
bolic changes cause delayed aging (Cristina et al., 2009). Below,
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we discuss several recent studies that provide new insights into
how mitochondria may affect life span, hinting at roles for energy
metabolism, homeostasis, and signaling.

Mitochondria are intricately linked to lipid biology because
triglycerides and fatty acids provide acetyl-CoA, the substrate
for the citric acid cycle that is directly coupled to mitochondr-
ial oxidative phosphorylation. A recent study elegantly linked fat
metabolism and mitochondrial energetics to longevity in C. ele-
gans (Artal-Sanz and Tavernarakis,2009). The authors investigated
the prohibitin complex, which is formed at the inner mitochon-
drial membrane. Depletion of the prohibitins extends life span
in several genetic backgrounds, including IIS pathway mutants,
mitochondrial mutants, and the eat-2 mutants mimicking dietary
restriction; in contrast, reduced prohibitin levels shorten the lifes-
pan in wild-type animals, suggesting that prohibitins act in a
context-specific fashion. Because of the direct link between mito-
chondria and fat catabolism, the authors assessed fat storage in
worms with depleted prohibitins. Strikingly, they found that in
the long-lived mutants, prohibitin depletion correlates with lower
fat levels, reduced mitochondria content, and increased ATP pro-
duction, whereas in wild-type worms, prohibitin depletion results
in only a slight decrease in fat content, an increase in mitochon-
drial level, and no change in ATP synthesis. Prohibitin depletion
also decreases fat levels and increases life span in fat-7 and nhr-49
mutants, which store excess fat. These data suggest that fat-7 and
nhr-49 are not required for the life span extension in this con-
text, and that prohibitin depletion reduces fat levels and achieves
life span extension even in high-fat backgrounds. Although it is
not certain that reduced fat storage is causally linked to lifespan
extension, these data are especially intriguing in view of the roles
for lipases in the long life span of germline-less and IIS path-
way mutants (see above). Indeed, it is tempting to speculate that
lipases may be required for the increase in life span following pro-
hibitin depletion (Figure 1), which would be supported by the
concomitant decrease in fat levels.

Prohibitins localize to the inner membrane of the mitochon-
dria, which is the only eukaryotic membrane to contain the
bacterial lipid cardiolipin (Marchi et al., 2012). Given the shared
localization of prohibitins and cardiolipin it is tempting to spec-
ulate that cardiolipin abundance could alter lifespan by affecting
the properties of the inner mitochondrial membrane and its asso-
ciated proteins. A recent study on wild-type worms found that
cardiolipin abundance decreases with worm age, as does mito-
chondrial number (Gruber et al., 2011). Another study found that
cardiolipin synthase mutant worms exhibit a decreased mitochon-
drial membrane potential and developmental phenotypes, but no
lifespan phenotype was reported (Sakamoto et al., 2012). It would
be informative to find out whether cardiolipin synthase mutation,
or perhaps cardiolipin depletion in adult worms, affects aging in
wild-type worms, or in long-lived mutants.

In addition to the requirement for prohibitins in several
longevity pathways, mitochondrial membrane potential – the dri-
ving force for ATP generation – may broadly impact aging. Lemire
et al. (2009) found that reduced mitochondrial membrane poten-
tial correlates with long life span in several mutants and RNAi
treated worms. Moreover, the artificial reduction of membrane
potential with a chemical uncoupler – which dissipates the proton

gradient across the inner mitochondrial membrane and thus pre-
vents ATP synthesis – directly increases lifespan. Given the effect of
chemical uncoupling, one might expect that channels alleviating
the protein gradient, such as the uncoupling proton UCP-4, might
also positively influence aging. However, ucp-4 deficiency does not
alter the lifespan of wild-type worms (Iser et al., 2005), albeit it
is possible that ucp-4 is required for the long lifespan of certain
mutants. Together, the above studies suggest that mitochondria,
and perhaps especially membrane potential and the function of
the inner mitochondrial membrane, may play important roles in
multiple pathways that extend lifespan.

Recent discoveries have also shed new light on the mechanisms
by which mitochondrial ETC mutants may achieve an extended
life span. An exciting study by Durieux et al. (2011) found that
ETC loss is required specifically in the intestine to delay aging. A
signal emanating from the intestine – termed a mitokine – is pro-
posed to set the rate of aging throughout the body. The molecular
nature of the proposed mitokine is unclear, but ROS come imme-
diately to mind, given the recent identification of superoxide as
a signaling molecule in long-lived mitochondrial mutants (Yang
and Hekimi, 2010). Lipid-derived molecules could also play such a
role, especially given that the C. elegans intestine is the major organ
involved in lipid metabolism. NAEs, or perhaps ascarosides, could
in principle perform such functions. Whatever the molecule, these
studies all reinforce the notion that mitochondria play a key role
in influencing life span, and provide new evidence that lipids are
paramount for the longevity-affecting role of mitochondria.

SPHINGOLIPID AND CERAMIDE SIGNALING
Sphingolipids and ceramides constitute a diverse class of lipids that
play important roles in many processes, including cellular prolifer-
ation, differentiation, and apoptosis (Kolesnick, 2002). Ceramides
are composed of a sphingosine group and a fatty acid, and they
represent important components of cellular structures, especially
membranes, while also participating in cellular signaling path-
ways. Notably, one of the first genes found to affect yeast longevity,
Longevity Assurance Gene 1 (LAG1), encodes a ceramide synthase
(D’Mello et al., 1994; Guillas et al., 2001). LAG1 has four homologs
in C. elegans, and a recent paper investigated the potential of these
genes to influence life span in C. elegans (Tedesco et al., 2008).
However, neither mutation nor overexpression of hyl-1, the closest
LAG1 ortholog, results in life span extension, and hyl-1 depletion
only causes a mild lifespan extension. These conflicting results
may relate to the fact that different E. coli strains were used as food
sources in mutant and RNAi studies; alternatively, the RNAi clone
may have off target effects. Depletion of two hyl-1 homologs, hyl-2
and lagr-1, results in a shortened lifespan. In summary, whether
and how ceramides and/or sphingolipids affect longevity in C.
elegans remains obscure and needs to be studied further.

CONCLUSION
Lipids are key for many biological processes, acting in struc-
tural, metabolic, and/or signaling capacities. It is thus of little
surprise that lipids, and the enzymes involved in lipid synthesis
and remodeling, are materializing as key players in aging. We have
highlighted recent studies in C. elegans that depict exciting new
connections between aging and lipid biology, including emerging
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roles for lipases and fatty acid desaturases, and the identifica-
tion of lipid-derived signaling molecules that influence – or may
influence – aging. Some of the challenges that lie ahead include
defining in which tissues and by what molecular mechanisms these
newly discovered molecules act (including the identification of
their receptors). It will also be important to determine whether
these molecules and enzymes such as lipases act more broadly or
in restricted fashion.

The recent identification of novel lipid-derived signaling mol-
ecules that affect aging suggests that our insight into lipid sig-
naling is likely incomplete. Similar limitations may apply to our
views of structural and metabolic contributions of lipids to aging.
To gain better insight into lipid action, and to identify the key
molecules/metabolites linked to aging we may benefit from new
technologies such as (lipid) metabolomics. Recent publications
suggest that metabolomics is a powerful approach to identify
novel regulatory relationships (Walker et al., 2011), and to reveal
metabolite changes in aging worms (Fuchs et al., 2010). How-
ever, metabolomic approaches have to date primarily been used
to analyze whole-worm extracts, which provides little insight into

tissue-restricted or subcellular roles of individual lipids. Perhaps,
organelle purification may be required to yield information about
spatially restricted roles for certain lipids. Similarly, sophisticated
analysis of individual lipid synthesis pathways as performed by
Perez and Van Gilst (2008) can be used to delineate activity changes
of certain pathways over time, e.g., in aging worms.

In summary, the studies reviewed here provide exciting new
directions for future research on the roles of lipids in aging. Given
that many genes and molecules are conserved in mammals, there
is a great potential that such pathways may be developed as targets
for drugs to ameliorate age-related diseases and/or slow aging.
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