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ABSTRACT

Advances in genome sequencing have produced
hundreds of thousands of bacterial genome se-
quences, many of which have integrated prophages
derived from temperate bacteriophages. These
prophages play key roles by influencing bacterial
metabolism, pathogenicity, antibiotic resistance, and
defense against viral attack. However, they vary con-
siderably even among related bacterial strains, and
they are challenging to identify computationally and
to extract precisely for comparative genomic anal-
yses. Here, we describe DEPhT, a multimodal tool
for prophage discovery and extraction. It has three
run modes that facilitate rapid screening of large
numbers of bacterial genomes, precise extraction
of prophage sequences, and prophage annotation.
DEPhT uses genomic architectural features that dis-
criminate between phage and bacterial sequences
for efficient prophage discovery, and targeted ho-
mology searches for precise prophage extraction.
DEPhT is designed for prophage discovery in My-
cobacterium genomes but can be adapted broadly
to other bacteria. We deploy DEPhT to demon-
strate that prophages are prevalent in Mycobac-
terium strains but are absent not only from the
few well-characterized Mycobacterium tuberculosis
strains, but also are absent from all ∼30 000 se-
quenced M. tuberculosis strains.

INTRODUCTION

The explosion in bacterial genome sequencing and the
accumulated vast data sets present bioinformatic chal-
lenges to the identification and analysis of their prophages.
Prophages are the genomes of temperate bacteriophages ei-
ther integrated into bacterial chromosomes or maintained
as extrachromosomal replicons. Temperate phages are a
substantial proportion of the phage population––plausibly

the majority––and prophages are common residents of se-
quenced bacterial genomes (1). Bacteriophage genomics
has revealed them to be highly diverse genetically with ex-
tensive mosaicism being a hallmark of phage genome ar-
chitecture (2). A high proportion (∼70%) of bacteriophage
genes are of unknown function, and phages likely represent
the biggest reservoir of unexplored sequences in the bio-
sphere (3). When present, a prophage genome typically ac-
counts for only about 1% of the length of bacterial genomes,
∼20–80 kb, coding for 20–100 genes. Temperate phages
and their prophages commonly include genes that are lyso-
genically expressed and influence host physiology, including
virulence genes, metabolic genes, and phage defense genes
(4,5). Identifying and characterizing prophages is therefore
critical to understanding bacterial pathogenesis and micro-
bial dynamics.

Although highly diverse, there is substantial heterogene-
ity among the types of phages infecting any particular
bacterial host. Over 2000 phages infecting Mycobacterium
smegmatis have been completely sequenced, and these can
be grouped into ‘clusters’ according to their overall se-
quence relationships (6–8). Using a threshold of 35% shared
gene content (9), these represent 31 clusters (Clusters A–
Z, AA–AE) and seven singletons each of which has no
close relative (10). However, these are heterogeneously rep-
resented such that there are nearly 700 Cluster A phages, but
10 clusters have fewer than five phages each. Phages of other
hosts can be grouped similarly (11–13), and this heterogene-
ity likely emerges from unequal sampling of the underlying
phage population which has a continuum of diversity cre-
ated by exchange of mosaic components, often single genes
(14,15).

The proportion of phages that are lytic versus temperate
varies depending on the bacterial host, although the biolog-
ical basis for this is not known. This is illustrated by bacte-
ria within the phylum Actinobacteria; in Gordonia, Strep-
tomyces and Mycobacteria temperate phages are prevalent
and constitute a majority of the phage clusters (10). In
contrast, temperate phages are a minority in Arthrobac-
ter (16) and are rare in Microbacterium (17). These dif-
ferences are likely reflected in the prevalence of prophages
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in bacterial genomes, such that prophages are expected to
be rare in Microbacterium genomes but common in Gor-
donia, Streptomyces and Mycobacterium. In general, Acti-
nobacterial genomes mostly carry intact prophages capa-
ble of spontaneous induction and growth as lytic phages
(18) although many bacteria also carry defective or cryp-
tic phages that have lost genes and are no longer viable.
Some may be quite small and less easy to identify, al-
though likely play important roles in microbial evolution
(19,20).

Although some prophages replicate extrachromosoma-
lly (21), by far the majority integrate into the host chro-
mosome. Integration is site-specific and is mediated by in-
tegrases that catalyze site-specific recombination between
bacterial and phage attachment sites, attB and attP, respec-
tively (22). Two types of integrases are used, tyrosine- and
serine-integrases (Int-Y and Int-S, respectively) with dif-
ferent recombination mechanisms, although both catalyze
strand exchange within a short conserved common core
sequence shared by the attachment sites (23). Integrated
prophages are flanked by attachment junctions attL and
attR, which are used for excisive recombination in prophage
induction. The attB site for Int-Y enzymes commonly over-
laps a host tRNA gene (24), and the common core is 20–
45 bp such that the tRNA gene is reconstituted following
integration (25). In contrast, Int-S phages often integrate
within open reading frames, resulting in insertional inacti-
vation and phenotypic consequences (26–28); the common
core sequence is usually smaller, 8–12 bp (29). There are,
however, instances where the common core can be only 3–
5 bp (18,30). Some bacterial genera also have transposable
phages that integrate into multiple different chromosomal
locations (31).

A number of phage and prophage identification tools
have been developed, including Phage Finder (32), Phage-
Boost (33), PhiSpy (34), PHASTER (35), ProphET (36),
ProPhinder (37), Seeker (38), VirFinder (39) and VirSorter2
(40). Many of these rely on sequence similarity searches,
gene predictions, or nucleotide k-mer distributions, and
most are computationally intensive and relatively slow, pre-
senting challenges for searching large numbers of sequenced
genomes. VirSorter2 and PhageBoost use machine learn-
ing algorithms to speed up processing, and Seeker uses
Long Short-Term Memory (LSTM) models to distinguish
phage from bacterial sequences. Seeker can effectively dis-
cern phage from bacterial DNA in environmental metage-
nomic data using fast alignment-free strategies but is not de-
signed to identify prophages in bacterial genomes (38). All
of these tools were developed with the goal of being broadly
applicable to bacterial genomes, but for many genomes
they perform poorly at precise prediction of the prophage
boundaries. Many are also computationally intensive, lim-
iting their utility for screening vast number of sequenced
bacterial genomes [currently ∼500 000 (41)]. Thus, there is a
need for new approaches for fast searching of large numbers
of bacterial genomes and for precise extraction of prophage
sequences. We have used an alternative approach by devel-
oping prophage discovery tools that are genera-specific, fo-
cusing initially on Mycobacterium. A large number of My-
cobacterium prophages have been previously identified and

manually curated (28), providing a rare but valuable dataset
for validation of the tools and performance comparison
with other prophage discovery approaches.

The Discovery and Extraction of Phages Tool (DE-
PhT) is a multimodal program trained to identify genera-
specific prophages. DEPhT is initially trained to investi-
gate Mycobacterium genomes, as prophages are prevalent
among non-tuberculous mycobacteria (NTM) (28,42,43),
In contrast, full-length intact prophages may be rare
in Mycobacterium tuberculosis, but large numbers of se-
quenced genomes [∼30 000 sequenced strains in the
PATRIC database (44)] present a computational challenge
for prophage identification. We show that DEPhT is suffi-
ciently efficient in fast mode to analyze tens of thousands
of sequenced genomes, and sufficiently precise in its other
modes for extraction of prophage sequences with little to no
manual revision. We also show that DEPhT can be trained
to work with other bacterial genera, including Pseudomonas
and Gordonia.

MATERIALS AND METHODS

DEPhT programming

DEPhT is a Python package compatible with Python 3.7
and above, and uses several non-Python packages includ-
ing Prodigal (45) and Aragorn (46) for genome annota-
tion, MMseqs2 (47) for identification of shell/accessory
genes, HHsuite3 (48) for phage gene homology detection,
and BLAST to make a best approximation of attachment
site location. DEPhT can be obtained from GitHub (https:
//github.com/chg60/DEPhT.git) or the Python Package In-
dex (https://pypi.org/project/depht/), and non-Python de-
pendencies can be installed with Anaconda, or compiled
manually. Python dependencies are installed automatically
if DEPhT is obtained from PyPI.

Selection of Mycobacterium genomes for training

DEPhT uses sets of bacterial and phage genomes for
training on specific bacterial genera. Many Mycobacterium
genomes have been sequenced, and prophages have been
defined and the precise prophage sequences extracted from
M. abscessus genomes (28). A subset of these known to be
prophage-free as well as a subset of prophage-containing
genomes were used as training sets (Supplementary Ta-
bles S1 and S2). To create a diverse dataset of phage and
prophage genomes, single representatives of each temperate
mycobacteriophage subcluster (6) were selected by identify-
ing genomes with the highest pairwise gene content similar-
ity (GCS) (49) to other members of that subcluster, yield-
ing 60 temperate mycobacteriophages (Supplementary Ta-
ble S2). Similarly, a single representative was selected from
each subcluster of M. abscessus prophages (28) choosing
prophages from as few bacterial genomes as possible to re-
serve as many genomes as possible for DEPhT validation;
additional prophages present in these bacteria were also
used in the prophage training dataset (Supplementary Table
S2); these prophages were added to the 60 temperate phage
genomes.

https://github.com/chg60/DEPhT.git
https://pypi.org/project/depht/
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Training of the gene size and transcription directional change
(tdc) classifier

The temperate phage and prophage genomes in Supplemen-
tary Table S2, and the indicated Mycobacterium genomes in
Supplementary Table S1 were retrieved in FASTA format.
Prodigal (45) was used to annotate protein-coding genes in
all genomes with full motif scanning (-n) and closed ends
(-c) specified. Genes were examined in centered windows
to derive each gene’s local average gene size and number of
tdc’s. Separate histograms were constructed for both phage
and bacterial genes, with respect to both gene size––using
10 bp-sized bins––and tdc’s using integer counts; for both
features, histogram values were normalized to frequencies.
The phage and bacterial histograms were combined to cre-
ate probability distributions describing the relative proba-
bility that a bin value is derived from a prophage. These
probability distributions are retained by the classifier and
used with equal weight to predict prophage regions.

Construction of bacterial shell gene content and nucleotide
sequence databases

Completely sequenced Mycobacterium genomes from ex-
isting databases at NCBI and PATRIC were sorted into
subclades based on shared gene content using a custom
clustering pipeline anchored on the DBSCAN algorithm
(50) (see Figure 3A). Using the data from genomes in each
subclade, a nucleotide sequence database was constructed
using makeblastdb from the BLAST command line toolkit
(51). A protein sequence cluster database was created using
the predicted products from all the retrieved genomes using
the cluster pipeline from MMseqs2 (47), with parameters of
50% minimum identity and 80% minimum coverage. Pro-
tein sequence clusters that were represented at least once in
60% or more of the genomes in a subclade were assigned as
a shell of protein orthogroups for that subclade (52). Sub-
clade shell set membership for each protein orthogroup is
stored as a bit array, where the length of the bit array cor-
responds to the number of given subclades. The indices in
the array map to individual subclades and the value at an
index i in the array is a Boolean where a value of 1 indi-
cates an orthogroup’s membership in the subclade shell rep-
resented by the array’s ith index. The bit arrays were then
compacted and converted into a hexadecimal value for ef-
ficient data storage. For each predicted product, their pro-
tein sequence and the hexadecimal value representing their
subclade membership were stored in an indexed FASTA
database.

Construction of phage gene homolog HMM databases

The MySQL Actinobacteriophage genome database,
Actino Draft, available at http://databases.hatfull.org was
retrieved, and GenBank-formatted flat files for a set of
1,889 mycobacteriophage genomes stored in Actino Draft
were created, using the get db and export pipeline from the
pdm utils toolkit (8), respectively. The annotated protein
product sequences for each genome were assembled into
non-redundant sequence clusters, or ‘phams’, using the
phamerate pipeline from the pdm utils toolkit (53). Each

pham containing a consensus annotation of some variation
of ‘terminase’, ‘major capsid protein’, ‘portal protein’,
‘lysin’, ‘integrase’ or ‘immunity repressor’ with five or more
protein sequence members were assembled into an HMM
database using a custom python package and the HHsuite3
toolkit (48). Similarly, an HMM database was constructed
for each pham with 10 or more members that contained
a consensus annotation other than ‘hypothetical protein’
or those included in the primary database. Entries for all
created HMM databases were labelled with their consensus
annotation for easy identification.

Automated annotation of microbial sequences

Protein-coding genes were annotated in microbial se-
quences using Prodigal (45) with closed ends (-c) and full
motif scanning (-n) specified, in metagenomic mode (-p
meta) for contigs shorter than 100 000 bp; tRNA and tm-
RNA genes were predicted using ARAGORN (46). Con-
tigs shorter than 20 000 bp are not processed further,
based on our observation that Prodigal’s gene calling ac-
curacy performs poorly below that length. For regions
in the genome with prophage signal, the translations for
annotated open reading frames (ORFs) were written to
FASTA files and searched in parallel against the phage gene
homolog database described above using the HHsearch
pipeline from the HHsuite3 toolkit. The sequence-HMM
alignments produced were parsed with a custom python
script, and alignments with better than 90% probability,
50% bidirectional coverage and e-values of 10–4 were re-
tained. For each input protein sequence, a predicted func-
tional annotation was assigned from the consensus anno-
tation of the highest probability aligned HMM. Protein se-
quences with no significant HMM-HMM alignments were
labelled as ‘hypothetical protein’.

Identification of accessory genomic islands

Annotated protein sequences of the input microbial genome
were clustered with shell mycobacterial orthologous pro-
tein sequences using the linclust pipeline from the MMseqs2
toolkit, with parameters of 50% minimum identity and 80%
minimum coverage (47). For each sequence cluster, the pre-
viously described subclade hexadecimal values associated
with each database entry were converted back into bit ar-
rays, and an OR operation was performed with the collec-
tive bit arrays. Input protein sequences were assigned their
respective cluster’s cumulative bit array. The values for ev-
ery ith position were summed from the assigned bit arrays
of all protein sequences associated with the entered micro-
bial genome. The position(s) i with the greatest sum, if that
sum is greater than half the total entered protein sequences,
is used to create a bit array mask, with a value of 1 at the
position(s) i and a value of 0 at every other position. The
created bit mask is used in an AND operation with the bit
arrays for each entered protein sequence. Those sequences
where this operation yields a bit array with a 1 at any posi-
tion are labelled as part of the shell set of orthologous gene
content, and the remaining are labelled as accessory gene
content.

http://databases.hatfull.org
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Attachment site prediction

The gene size/tdc and shell-accessory classifiers yield pre-
dicted prophage regions, but with imprecise prophage
boundaries. For att site prediction, these boundaries were
extended by 5000 bp on either side to create upstream
and downstream, ‘left’ and ‘right’, nucleotide regions to
search for sequence repeats. The left and right sequences
are extended inward toward the prophage signal by a user-
definable multiplier parameter S (default = 7) and subse-
quently aligned using the BLASTN tool from the BLAST
command line toolkit, with word-size = 5 and E value
= 5000 × S. The left and the right regions are searched
with BLASTN against the bacterial nucleotide sequence
database described above, and results that indicate an over-
lap in coverage of the left and right regions in the reference
strain are cataloged. Sequence repeat pairs generated from
the BLASTN results of the left and the right regions (i.e.
left-right pairs) are then scored with a feature-based algo-
rithm, where the pair with the highest score is considered
the prophage region’s attachment site and the boundary co-
ordinates adjusted to the ends of the pair. With this algo-
rithm, sequence repeat pairs are scored on a 0 to 1 scale for
the z-score of their alignment bitscore, their proximity to
an integrase-like homolog encapsulated within the area they
demarcate, and the coverage of this area against the initial
putative prophage region. The scores produced from each
of these feature analyses are weighted and summed to a to-
tal score of 3, where the weights were optimized against the
training data set according to the sum of z-scores for met-
rics of the average score of manually determined attachment
sites, the average score difference between manually deter-
mined attachment sites and the greatest scoring sequence
repeat noise, the worst score of manually determined at-
tachment sites, and the worst score difference between man-
ually determined attachment sites and the greatest scoring
sequence repeat noise. Finally, any left-right pairs that align
to overlapping regions of a reference bacterium (suggesting
identification of attB) are given a score bonus of up to 1.5
points, based on the bitscore of the aligned regions.

Prediction of gene size and tdc discriminators for other bac-
terial genera

All complete phage genomes were downloaded from RefSeq
(accessed 29 August 2021) and binned according to their
infected host’s genus. These genomes were filtered with two
criteria: they need to encode at least 55 protein-coding genes
and be shorter than 100 kb. The first criterion allowed us
to use DEPhT’s processing workflow to examine gene size
and tdc’s, while the second criterion was employed to reduce
the likelihood of contaminating the analysis by inclusion
of larger phages, many of which are lytic and do not form
prophages. For host genera with at least five phage genomes
after filtering, we downloaded all the complete bacterial
genomes from RefSeq; genera without complete sequences
were not analyzed further. DEPhT was used to analyze the
gene size and tdc properties of 2064 phage and 14 233 bac-
terial genomes from 41 genera (including Mycobacterium),
in 55-gene windows. For each phage genome, the 95th per-
centile gene size and tdc windows were retained. For each

bacterial genome, the 5th percentile gene size and tdc win-
dows were retained. Within each host genus the phage 95th
percentile values were averaged, and the bacterial 5th per-
centile values were averaged. Then, these averages were ex-
pressed as a ratio of the average bacterial 5th percentile to
the average phage 95th percentile. This ratio serves as a sur-
rogate for the degree of overlap of the phage and bacterial
distributions; values greater than one suggest good separa-
tion of the distributions, while values less than one suggest
that the distributions are less well separated.

Training models for Gordonia and Pseudomonas genomes

DEPhT models for Gordonia and Pseudomonas were trained
similarly to the Mycobacterium model.

Illustrations and graphics

The DEPhT graphical output showing prophage pre-
dictions is generated with custom python scripts utiliz-
ing python packages DNAFeaturesViewer (54), pretty-
html-table (https://pypi.org/project/pretty-html-table), and
bokeh (https://bokeh.org). Figures and illustrations were
generated with custom scripts that utilize the Plotly (https://
plotly.com) python package, and R packages BioCircos (55)
and ggplot2 (https://ggplot2.tidyverse.org/index.html). For
genome representation, prophages identified and extracted
by DEPhT were added to a Phamerator (56) database
‘Mycobacterium Prophages’ (Version 8, available at http://
databases.hatfull.org) containing 180 individual prophages,
of which 88 were identified by DEPhT; the other prophages
have been described previously (28). An additional 36
prophages identified by DEPhT were not included in the
Phamerator database as they are exact duplicates of other
prophages in the dataset.

RESULTS

Design of DEPhT for multimodal prophage discovery

DEPhT is designed to combine two key functionali-
ties: prophage discovery, and precise extraction of intact
prophage sequences (Figure 1). To provide both speed and
accuracy in prophage detection, DEPhT was designed with
multiple run modes, ‘normal’, ‘fast’ and ‘sensitive’ (Fig-
ure 1). The discovery component is shared by all modes,
and the modes differ in the precision with which the
prophages are extracted. The discovery component avoids
time-consuming extensive homology searching. It takes
advantage of three architectural features that distinguish
phage/prophage and bacterial genomes: (i) phage genes
are on average shorter than bacterial genes (and more
densely packed), (ii) phage genes are commonly arranged
into multigene operons that on average are longer than bac-
terial operons with fewer transcription directional changes
(tdc’s) and (iii) they are part of the ‘accessory’ genome that
varies among related bacterial strains; HHsearch-based
phage gene homology detection is limited to the normal
and sensitive modes, and then only to the subset of genes
found by the discovery component. Because this approach
is computationally efficient, DEPhT has the capacity to dis-
cover prophages in tens of thousands of genomes relatively

https://pypi.org/project/pretty-html-table
https://bokeh.org
https://plotly.com
https://ggplot2.tidyverse.org/index.html
http://databases.hatfull.org
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Figure 1. Workflow for DEPhT. Input files may be in either FASTA or Genbank flat file format. For FASTA files, contigs are parsed and CDS, tRNA
and tmRNA genes are annotated. For Genbank files, contigs are parsed and annotations are reduced to CDS, tRNA and tmRNA genes. Annotated CDS
genes are examined for (i) global homology to conserved mycobacterial genes and (ii) size, spacing, and transcription directionality change frequency.
Genomic islands with gene architecture similar to that seen in temperate phages are identified as high likelihood prophage regions. In normal or sensitive
run modes, the CDS genes in these regions are searched against a database of HMMs of genes performing phage-specific functions such as integrase, lysin,
capsid, and terminase. In sensitive run mode genes are searched against a larger HMM database that includes any additional functionally annotated gene
families. The sensitive mode thus yields a reasonably complete prophage sequence annotation. These limited homology searches help to distinguish true
intact prophages from false positive prophage-like regions. Remaining prophage regions are searched for the phage attachment sites (attL/attR) before
output files are generated. Asterisks indicate components that use thresholds that may be adjusted by users.

quickly, particularly when run in fast mode where precision
in prophage extraction is sacrificed for speed in prophage
discovery (Figure 1). The normal and sensitive modes of
DEPhT use targeted protein-based homology searches to
improve the accuracy of prophage discovery and to iden-
tify the precise location of the attachment sites at prophage
boundaries (Figure 1). The sensitive mode provides a more
detailed prophage annotation.

DEPhT fast mode predicts prophages using phage genome
architectural features

To examine the discriminatory and predictive value of
prophage gene size and tdc’s we first constructed two
datasets, one with known bacterial genes and one with
known phage genes. The bacterial training dataset was ob-
tained by identifying 25 Mycobacterium genomes in the
PATRIC (41) dataset (designated as being either ‘repre-
sentative’ or from RefSeq) that are prophage free, as de-

termined using PHASTER and careful manual inspection
(Supplementary Table S1). The phage training dataset con-
tains 95 phage genomes (Supplementary Table S2) repre-
senting temperate mycobacteriophages from phagesdb.org
(6) together with representatives from clusters of recently
reported M. abscessus prophages (18,28). Protein-coding
genes in both datasets were annotated using Prodigal (45),
then a custom Naı̈ve-Bayes-type classifier was trained on
both the average gene density (gene size calculated with a
sliding window) and tdc frequency using windows ranging
from 5 to 55 genes (with the upper limit imposed by the size
of the smallest mycobacteriophage genomes in the training
dataset). At all window sizes tested there are evident differ-
ences in the size distributions of bacterial and phage genes
(Figure 2A), and we note the bimodal distribution of phage
genes which likely reflects the differences between virion
structure and assembly genes (which are relatively large),
and non-structural genes (which are relatively small). Like-
wise, there are distinct bacterial and prophage distributions
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Figure 2. DEPhT uses gene size and transcription direction changes (tdc’s) in multi-gene windows to identify prophage regions sensitively. (A) The per-
centage of bacterial (red) and prophage (blue) genes corresponding to average gene size is plotted using window sizes of 25, 40 and 55 genes, as indicated.
Increasing window size improves separation of bacterial and prophage gene size distributions. (B) The percentage of bacterial (red) and prophage (blue)
genes corresponding to the average number of transcription directionality changes is plotted using window sizes of 25, 40 and 55 genes, as indicated.
Increasing window size improves separation of bacterial and prophage distributions for transcription direction changes. (C) The cumulative percentage of
bacterial (red) and prophage (blue) genes is plotted as a function of the classifier probability, which combines the gene size and tdc parameters. All prophage
genes have a classifier probability above 25%, and only 1.5% of bacterial genes have classifier probabilities above 25%. (D) Schematic representation of
the challenges in identifying prophage boundaries. Using a 25% threshold value the gene size/tdc classifier readily identifies prophage regions (dashed line
represents raw classifier probabilities), but the prophage boundaries are ill-defined due to the large window size. Inclusion of shell gene analysis can align
the signal over regions determined to be accessory parts of the genome, thus improving specificity.

of the frequencies of tdc’s (Figure 2B) reflecting the pre-
ponderance for longer operons in phage genomes. For both
measures, increasing window size improves the discrimina-
tion between bacterial and prophage genes and reduces the
proportion that fall into both categories (Figure 2, Supple-
mentary Table S3). The 55-gene window yields the most ac-
curate predictions, and we use this window size for all sub-
sequent analyses.

DEPhT uses the 55-gene window distributions (Figure
2) to calculate probabilities for these two parameters (gene

size and tdc’s) for each gene, and then combines these with
equal weight into a single probability score indicating if that
gene is prophage-derived; these probabilities are then des-
ignated as being either above or below a threshold value
(25%; Figure 2C). The discriminatory behavior is greatly
enhanced by the relatively large window size, and whereas
>99% phage genes score above a threshold value of 25%
(and >90% phage genes have probability scores >60%, Fig-
ure 2C), bacterial genes rarely score above the 25% cut-
off value (<1.5%), rendering this a powerful and fast ap-
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catalogues genes as being either bacterial orthologs or accessory genes. Bacterial genes, red; prophage genes, blue. (C) Validation of the shell/accessory
classifier using 10 M. abscessus genomes (Supplementary Table S4) shows the proportion of either known bacterial or known prophage genes as being
classified as shell or accessory genes. (D) Distribution of shell and accessory gene island sizes across regions known to be either prophage or bacterial. For
every identified shell gene from content contributed by a prophage in 10 M. abscessus genomes (Supplementary Table S4), the size of the gene island it
belongs to was plotted as a histogram (left; red), where the height of each bin in the histogram corresponds to the percentage of the total prophage genes.
A similar histogram (left; blue) was plotted in the adjacent spaces for accessory gene content contributed by a prophage. The right histograms are the
same representations for gene content not contributed by a prophage, where again a histogram (right; red) is plotted for shell gene content and an adjacent
histogram (right; blue) is plotted for accessory gene content.

proach to prophage identification. We note that a subset of
prophages – particularly those within Cluster MabE – have
average gene scores as low as 45–50%, although these are
still well above the 25% threshold value. Values approach-
ing 25% are only rarely observed in complete prophages,
and manual inspection suggests these typically correspond
to genes adjacent to the phage attL or attR sites.

Discriminating between shell and accessory genes enhances
prophage boundary predictions

A disadvantage of using a relatively large window size
for prophage prediction is that the prophage boundaries
are ill-defined (Figure 2D). To correct for this, DEPhT
scores each gene of a bacterial query sequence to classify
it as either being part of the bacterial shell gene content

(gene present in 60% genomes within a clade), or an ac-
cessory gene (Figure 1). DEPhT does this in a four-step
process. First, a dataset of predicted proteins encoded by
34 Mycobacterium genomes (Supplementary Table S1) are
grouped into ‘phamilies’ using a k-mer based approach with
MMseqs2 (47). Secondly, the genomes are assorted into
clusters (clades) of related genomes, and for Mycobacterium
we assigned four major clades (Figure 3A). Thirdly, protein
sequences of a bacterial query sequence are assembled with
the bacterial dataset using MMseqs2, and the query genome
is assigned as belonging to one of the pre-determined clades.
Lastly, each gene is assigned as part of the shell bacterial
genome if it is present in 60% of the genomes constitut-
ing a clade. If not, it is assigned as an accessory gene (Fig-
ure 3B). These data are used to mask the probability values
generated from the gene size/tdc classifier to quickly elim-
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inate prophage signal from regions in the genome that are
common among similar bacteria and therefore unlikely to
contain active prophages (see Figure 2D). This helps to de-
marcate gene content contributed by a prophage, as only a
small fraction of prophage genes is masked in this way; as
a corollary most of the prophage-like signal in non-phage
gene content is substantially dampened (Figure 3C). Be-
cause phage genomes are architecturally asymmetric––with
the larger virion structural genes in one half and the smaller
genes of unknown function in other half––the phage signa-
ture derived from the gene size/tdc classifier is skewed to
one side of the prophage. The shell/accessory classifier rec-
onciles this by centering the prophage signal on the identi-
fied genomic island, and trims signal toward the attL/attR
of prophages (Figure 2D). Within the gene content con-
tributed by prophages from M. abscessus genomes in our
validation set (Supplementary Table S4), shell gene content
within prophage boundaries that might deform the signal
from valid prophages is not only a small fraction of the total
gene content in these regions but also occurs solely as iso-
lated or paired interruptions, not as large gene-blocks (Fig-
ure 3C).

Enhanced accuracy of prophage discovery using limited ho-
mology searches in normal mode

In the prior analysis of M. abscessus prophages, all the
prophages identified are likely intact and functional (18,28),
but there is the expectation that there may be defective or
cryptic prophages that have lost essential genes and are un-
dergoing decay. To discriminate between intact and defec-
tive prophages, the normal and sensitive DEPhT modes
were designed to quantify phage genes within the prophage-
like signal. In these modes, protein-coding genes in the
prophage-like regions are searched using HHsearch against
a collection of HMMs built from genes that are character-
istically phage-derived, and absent from the bacterial shell;
these include integrases, lysins, major capsid proteins and
terminases (see Materials and Methods). In the normal
mode, a limited set of ∼400 HMMs are used, whereas in
sensitive mode a total of ∼800 HMMs are used. To deter-
mine suitable threshold values for the number of positive
matches, we examined the profiles of matches in 10 M. ab-
scessus genomes (Supplementary Table S4, Figure S1) and
chose values of 5 and 10 for normal and sensitive modes,
respectively (Supplementary Figure S1).

The integration of the gene size/tdc and shell/accessory
classifiers together with the limited homology searches pro-
vides powerful prophage prediction capabilities (Figure 4A,
B). In Figure 4A and B, it is evident that the gene size/tdc
classifier and the shell/accessory classifier identify the true
prophage regions, but also have signals in other parts of
the genomes that are not prophage. In M. abscessus GD91,
the five prophages are correctly identified, as is the single
prophage in M. abscessus GD68A (Figure 4A, B). However,
in each genome there is a region identified by both clas-
sifiers, and has some homology hits, although fewer than
the threshold value (five). As such, these two regions are re-
ported as false positive predictions in DEPhT fast mode,
but not in normal mode (Table 1). However, such false pos-
itive predictions in fast mode are relatively uncommon, and

these two are the only events in the 10 genomes (contain-
ing 27 prophages) we tested (Table 1). Further examina-
tion shows that this region in GD91 contains a defective
piece of a MabI-like prophage in which about 55 kb of
the ∼80 kb genome has been lost, and the only phage-like
homology-based hits are to the terminase, portal and inte-
grase proteins (Figure 4C). The additional region in M. ab-
scessus GD68A (Figure 4D) is unlikely to be phage-derived,
as none of the protein-coding genes in this region have sig-
nificant similarity to any known phage genes, but it has
some phage-like features including an abundance of small
genes. It is unusual in having a large array of 35 closely
linked tRNA genes (Supplementary Table S5), greatly ex-
panding the extant set of ∼49 M. abscessus tRNA genes.
DEPhT does not identify this region in normal mode due to
the lack of phage homologues. The origins and roles of this
unusual part of the accessory gene content are not known,
although BLASTN searching shows that there are several
other M. abscessus genomes with similar regions. We note
that some phages encode large tRNA sets, including MabI
prophages and Cluster M mycobacteriophages which can
have up to 24 tRNA genes (28,57), and we cannot exclude
the possibility that at least part of this island is phage de-
rived.

Attachment site detection

Precise extraction of the prophage sequences typically re-
quires identification of the sequences shared by the com-
mon core sites of attL and attR (and also attP and attB). If
these common core sequences are relatively large (>20 bp)
they are comparatively easy to identify bioinformatically.
However, detection is more challenging for smaller att core
sequences, or where there are base pair mismatches within
the core. In most phages the attP site is located close (typ-
ically within 500 bp) to the integrase gene, such that one
of the att junctions (attL or attR) is near int, and this is
helpful for att site prediction. However, there are notable
exceptions––including Cluster M mycobacteriophages and
Cluster MabI prophage––where attP is located more than 8
kb away from int.

DEPhT uses BLASTN to search for sequence similari-
ties targeted to up to 35 kb regions spanning the prophage
junctions identified in the discovery process; a high e-value
threshold (scaled to the length of the searched region) is
used such that most BLASTN hits of at least 5 bp length will
be retained for subsequent analysis (Figure 5). In the nor-
mal and sensitive modes, each BLASTN pair of hits is then
assigned a score based on (i) z-score of bitscore, (ii) distance
between the hits (as a fraction of the predicted prophage re-
gion) for that BLASTN pair and (iii) proximity of one mem-
ber of the BLASTN pair to a putative integrase gene, iden-
tified in the homology searches described above (see Figure
1). In fast mode, DEPhT uses only the first two parameters.
Additionally, each pair receives a score bonus if a BLASTN
search reveals that the pair coincides with a single sequence
in a prophage-free region in a related strain, suggesting a
putative attB site. BLASTN pairs are sorted on their final
scores, and the top scoring pair above a threshold value is se-
lected as the predicted attachment site. If no BLASTN pairs
score above threshold, the entire prophage region predicted
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Figure 4. Phage gene homology detection in normal mode eliminates false positives from fast mode. (A) A circular genome diagram for M. abscessus
GD91, with five known prophages, illustrated with green (forward oriented) or red (reverse oriented) boxes outside the circle. The outermost track (cyan)
shows the location of genes determined not to be part of the M. abscessus shell genome. The next track (purple) shows the location of genes with size/tdc
similar to temperate phages. The innermost track (red dots) shows the location of genes with strong hits to one or more HMMs in the limited database used
in normal mode. Regions with overlapping cyan and purple signal are identified as prophages in fast mode. Any such regions with fewer than 5 phage gene
homologs are removed from the output in normal mode. (B) The same as (A), but for M. abscessus GD68A, which has one known prophage. (C) Close
inspection of the false positive from GD91 reveals that it is a defective phage with many of the genes related to Cluster MabI prophages, but 55 kb of the
80 kb MabI length missing, including all tail assembly genes. (D) Inspection of a false positive from GD68A reveals an abundance of short genes arranged
in long operons with few tdc’s, and an array of 35 predicted tRNA genes that nearly doubles the species normal ∼49 tRNA genes (Supplementary Table
S5); nonetheless the region contains no compelling hits to any phage proteins.

by the discovery process is reported. Typically, a single pair
of hits scores discernably higher than all other pairs and is
readily identified as corresponding to the attL and attR sites
(Figure 5).

Validation of DEPhT and comparison with other prophage
prediction programs

We previously described a set of 82 M. abscessus genomes
with a rich and varied set of integrated prophages (18,28),
which were identified using PHASTER, BLAST, and care-

ful manual curation. We used a set of 10 with completely
sequenced genomes (Supplementary Table S4) and at least
one prophage to validate DEPhT and to compare it to
other prophage prediction programs; the total number of
prophages previously reported was 25 (18,28). In nor-
mal mode, DEPhT identifies all these plus two additional
prophages (designated prophiGD91-5 and prophiGD05-4)
which on closer inspection are true prophages and not false
positives (Table 1, Figure 4A, B). The likely reason these
were missed in the prior analysis is that in both cases there
is a closely related prophage (including extensive nucleotide



e75 Nucleic Acids Research, 2022, Vol. 50, No. 13 PAGE 10 OF 20

Table 1. Comparison of prophage discovery programs

Program
Prophages
Identifieda

False
positives

Prophages
missed

Prophages
split

PHASTER 45 8 0 10
VirSorter2+
CheckV

43 15 0 1

PhageBoost 63 17 3 14
DEPhT (fast
mode)

29 2 0 0

DEPhT (normal
mode)

27 0 0 0

aThe total number of prophage or prophage segments reported for each
program using a test-set of 10 completely sequenced M. abscessus genomes.
A total of 25 prophages was previously reported for these genomes, and the
two additional prophages discovered with DEPhT in the standard mode
were checked by manual inspection, and were clearly missed in the prior
analysis.

sequence identity) in the same genome (prophiGD91-2 and
GD05-2, respectively; Supplementary Figures S2 and S3).
In fast mode, DEPhT does not miss any prophages, but
gives two false positive hits, as described above. In normal
mode, DEPhT predicts all the known prophages with no
false positive hits.

We used the same set of genomes to perform
prophage predictions using PHASTER, ProphET,
VirSorter2+CheckV (58) and PhageBoost (Table 1).
PHASTER and VirSorter2+CheckV did not miss any
prophages, although PhageBoost failed to identify three
prophages. However, all three programs identified many
more prophage regions than DEPhT (Table 1), either
because they falsely identified some candidate prophage
regions, or because prophages were split into more than one
piece due to poor boundary definition. Manual inspection
of a subset of the false positive regions confirmed they are
not bona fide prophages missed both in the prior analysis
and by DEPhT. We determined the positive predicted
values (PPV) for PhageBoost, PHASTER and VirSorter2,
all of which were poorer for this genome set than DEPhT,
even in fast mode (Figure 6A).

To determine the accuracy of the prophage predic-
tion (and boundary definitions) rather than number of
prophages, we also collated the total size of the prophage
regions determined by DEPhT and the other programs (Ta-
ble 2). The total size of the true prophages identified by
DEPhT differs from the prior analysis by only 157 bp, in-
cluding loss of one nucleotide for one prophage, and in-
clusion of 156 bp from prophages where DEPhT identifies
an overextended attachment site sequence from the manu-
ally determined attB (Supplementary Table S6). However, it
predicts 13 of the 27 prophages with 100% precision (both
attL and attR extremities identified correctly), and in four
prophages it identified one end correctly, and overextended
the other by no more than 10 bp (Supplementary Table S6).
No prophage was predicted to be more than 34 bp longer
than expected, and the longest att overcall was 21 bp (Sup-
plementary Table S6). There is no evident correlation be-
tween the accuracy of the prediction and the specific attB
site used (Supplementary Table S6). In contrast to DEPhT,
all of the other programs included not only false positive

signals, but also missed substantial parts of the prophages,
even though PHASTER and VirSorter2+CheckV did not
miss any prophages entirely (Tables 1 and 2). And when the
prophage predicted sizes including false positive and false
negatives values are accounted for, DEPhT performs sub-
stantially better than the other prediction programs in terms
of sensitivity, PPV, and by Matthews correlation coefficient
(MCC, Figure 6B). Thus, at least for this validation genome
set, DEPhT performs well in both the accuracy of prophage
prediction as well as prophage extraction.

We then compared PhageBoost, PHASTER and Vir-
Sorter with DEPhT on the consistency of prophage pre-
diction. As DEPhT discovers all prophages and determines
their boundaries precisely or within a few base pairs, the
output of DEPhT is largely centered and totally encompass-
ing of the prophage region. A heatmap illustrates the collec-
tive alignment of prophage regions determined by DEPhT
and other programs with manually identified prophages in
the validation genome set (Figure 6C). This prophage cov-
erage, together with the other metrics, shows that DEPhT
consistently reports the entirety of a prophage region with
no large relative variation, while other programs tend to
skew or truncate prophage signal. And although the out-
put from PHASTER more consistently encompasses most
of a prophage region, the bimodal distribution of its output
indicates that this seemingly global coverage is sometimes
the result of reporting two separate regions.

Finally, we evaluated the output of DEPhT in fast mode
and normal mode against a second validation set of 45
completely sequenced M. abscessus genomes, which we
also used to manually identify 60 prophages for this study
(Supplementary Table S7). DEPhT in normal mode and
fast mode perform similarly and do not miss any of these
prophages, except one dilysogen where both outputs report
the presence of one large prophage instead of two. In addi-
tion, DEPhT in fast mode included 11 false positive hits and
DEPhT in normal mode included one likely false-positive
hit, which is similar to previously described prophages but
with large foreign and disrupting insertions (Supplementary
Table S8). With respect to extraction accuracy, DEPhT per-
forms similarly well on this dataset, completely encompass-
ing all manually identified prophages and mostly with close
proximity to the manually determined boundaries (Supple-
mentary Figure S4).

DEPhT performance with whole genome sequence (WGS)
data

The vast majority of sequenced bacterial genomes in the
public databases are not assembled beyond the WGS level,
and the overall quality of these assemblies varies greatly,
as shown by the number of contigs and the N50 values.
Seventy-two of the M. abscessus genomes described pre-
viously (18,28) are WGS assemblies containing more than
contig, whereas all of the genomes in our validation set (Ta-
ble 1) are completely sequenced (i.e. in one contig per repli-
con). We therefore tested the ability of DEPhT to detect
prophages in WGS projects by re-assembly of eight genomes
(Supplementary Table S9) that had previously been com-
pletely assembled and shown to contain 1–6 prophages. To
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Figure 5. DEPhT identifies attachment sites at prophage boundaries. DEPhT uses BLASTN to identify all sequence repeats present at both the left and
right sides of predicted prophages. All left/right pairs identified by BLASTN are scored as described (see Methods) and the highest scoring sites are shown
in a red box. The position of the prophage is shown. Three examples are presented: (A) prophage prophiGD43A-3 that uses a tyrosine integrase and has
a 17 bp att site common core with a single mismatch between attL and attR, (B) prophage prophiGD43A-4 which uses a serine integrase and has an 8
bp common core at attL and attR, and (C) prophiGD17-1 which uses a tyrosine integrase and has a 39 bp common core without mismatches at attL and
attR.
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Figure 6. DEPhT discovers, discriminates, and extracts prophage signal deftly. (A) The positive predictive value (PPV) of the outputs for PHASTER,
VirSorter2 supplemented with CheckV, PhageBoost, DEPhT (fast mode) and DEPhT (normal mode) for prophage discovery is displayed as a bar graph.
PPV for prophage discovery was calculated as the number of manually identified prophages discovered by a program divided by the total number of
prophage-like regions reported. (B) The sensitivity, PPV, accuracy, and Matthew’s correlation coefficient were determined on a nucleotide basis for the
same outputs and displayed as a multi-bar graph, using the same color scheme. For prophage extraction, true positives (TP) are calculated as the total
nucleotide base pairs (bp) reported within a prophage region that belong to a manually identified prophage, true negatives (TN) is calculated as the total
bp not reported in a prophage region that do not belong to a manually identified prophage, false positives (FP) are calculated as the total bp that is
reported within a prophage region that belong to a manually identified prophage, and false negatives (FN) are calculated as the total bp not reported
in a prophage region that do not belong to a manually identified prophage. Sensitivity is calculated as TP/(TP + FN), positive predictive value (PPV)
is calculated as T P/(T P + F P), Accuracy is calculated as T P + TN/(T P + F P + TN + F P), and Matthew’s Correlation Coefficient is calculated as
((T P ∗ TN) − (F P ∗ F N))/

√
(T P + F P)(T P + F N)(TN + F P)(TN + F N). (C) A schematic representation of how predicted prophage regions align

to true prophages is shown. At the bottom three known prophage are depicted of different lengths, and these are length normalized, to a scale of 0–100%,
together with flanking sequences corresponding to 25% of genome length at each side. Examples of how predicted prophage regions may correspond to
the actual prophage are shown above, including good alignment and multiple ways in which the alignment is imperfect. To quantify these alignments, each
sequence is divided into bins, with the normalized true prophages forming 150 bins. If the predicted sequence aligns with a bin then it receives a positive
score, and these score are summed and represented as a heat map, as shown in panel D. (D) Prophage discovery length-normalized coverage for binned
regions of manually identified prophages from 10 M. abscessus strains (Supplementary Table S4) were plotted as a heatmap for the outputs of PHASTER,
VirSorter2 supplemented with CheckV, PhageBoost and DEPhT, using the method depicted in panel C. Coverage for a particular nucleotide region bin
was assigned if the cumulative output for the whole region was recognized as part of a prophage at least once, where coverage is represented on a red to
blue color gradient with blue representing the most coverage.
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Table 2. Single-nucleotide error rate comparison of prophage detection programs

Program True positive (bp)a False positive (bp)b True negative (bp)c False negative (bp)d

PhageBoost 628256 240902 44072113 896160
VirSorter2 + CheckV 1391420 908285 43404730 132996
PHASTER 1382161 253163 44059852 142255
DEPhT (fast) 1524416 864719 43320915 0
DEPhT (normal) 1524415 156 44312859 1

aTrue positive values are determined as the number of nucleotides in each prophage prediction that are within a manually validated prophage.
bFalse positive values are determined as the number of nucleotides in each prophage prediction that are not within a manually validated prophage.
cTrue negative values are determined as the number of nucleotides that are not within a manually validated prophage and are not part of a prophage
prediction.
dFalse negative values are determined as the number of nucleotides that are within a manually validated prophage, and are not part of a prophage prediction.

do so, varying numbers of the Illumina sequence reads were
used to re-assemble the genomes yielding a broad span of
contig numbers, coverage, and N50 values (Supplementary
Table S9). When all available reads were used, we were able
to identify all the prophages in each genome––even though
they are in multiple contigs––with two notable exceptions,
M. abscessus GD05 and M. abscessus GD91 (Supplemen-
tary Table S9), in which two prophages were not identified.
The reason for this is seemingly not a DEPhT deficiency, but
an assembly issue that arises when a genome contains two
closely related prophages whose nucleotide sequence iden-
tity interferes with contig assembly (Supplementary Figures
S2 and S3). These are also the same two genomes in which
prophages were missed in the prior characterization (18,28).
However, this circumstance is not common––at least among
M. abscessus genomes––and of the 82 genomes we have
characterized, only these two strains each contain two re-
lated prophages.

The re-assembled genomes with fewer reads and over-
all lower quality vary in the ability of DEPhT to detect
prophages, especially when average contig size is sufficiently
small that the prophages are no longer represented in a
single contig. For M. abscessus GD22 and GD26 DEPhT
identified the single prophage in each using as few as 300
000 and 400 000 reads (Supplementary Table S9), respec-
tively, giving 23–30-fold coverage. For M. abscessus GD43A
and GD21, which contain 6 and 4 prophages, respectively,
DEPhT failed to identify one of the prophages when only
500 000 reads were used, or when coverage was 34–36-fold.
Overall, we predict that DEPhT will accurately identify
most of the prophages in WGS genome projects that are as-
sembled into fewer than 100 contigs, and with average cov-
erage greater than 35-fold. DEPhT can identify prophages
in lower quality assemblies, but in poorer assemblies it may
not identify all of them.

We used DEPhT in both fast and normal mode to screen
28 WGS M. abscessus genome assembles not used in any
previous training or validation steps (Supplementary Ta-
ble S10). In normal mode it identified all 15 prophages
present as complete regions (i.e. the entire prophage is
wholly within a single contig), and identified 23 of 25 in-
complete prophages (which are typically located in two or
more contigs and at contig ends; Supplementary Table S10).
DEPhT performed similarly in fast mode, but also reported
22 false positive regions. We note that for relatively small
numbers of genomes such as in this data set, fast mode only
offers a modest time-saving, and at the expense of more false
positive regions identified.

M. tuberculosis does not contain integrated prophages

We used DEPhT in normal mode to predict and extract
prophages in sequenced Mycobacteriaceae genomes; M. tu-
berculosis genomes were excluded as there are a large num-
ber and they are analyzed separately below. Searching the
2498 genomes with fewer than 100 contigs (1799 of which
are M. abscessus) identified 2630 prophages present in 1479
genomes. The proportion of prophage-containing genomes
(60%) is somewhat higher than reported for a set of 235
NTM genomes (34%) (42), but the larger data set has a high
proportion of M. abscessus genomes (72%), a larger pro-
portion of which––up to 85% (28,42)––contain prophages.
More targeted searches of either complete genome se-
quences (249) or those assembled into 9 contigs (496) or
fewer identified 125 and 614 prophages, respectively. In
general, the proportion of prophage-containing Mycobac-
terium genomes and the numbers of prophages identified
are in good agreement with prior reports (28,42). Visual-
ization of prophage genomes shows good alignment with
previously identified prophages, as illustrated by Cluster
MabA prophages (Figure 7). DEPhT is thus a powerful
tool for discovery and extraction of large numbers of My-
cobacterium prophages. The detailed comparative genomic
analyses of these will be reported elsewhere (CHG, LA and
GFH, manuscript in preparation), but these analyses sug-
gest a potential wealth of biological insights. The prophages
can be grouped into more than 200 sequence-related groups
(Clusters/Subclusters/Singletons), and among the obser-
vations we note polymorphic toxin-immunity cassettes are
prevalent among prophages of M. abscessus (28) but gener-
ally absent from prophages of other Mycobacterium species,
suggesting they contribute to the behaviors of this impor-
tant pathogen.

Unlike in M. abscessus, no prophages have been reported
in M. tuberculosis genomes although two small (∼10 kb)
prophage-like elements (�Rv1 and �Rv2) have been de-
scribed in M. tuberculosis H37Rv (59). This is somewhat
surprising as a number of temperate phages (or mutants of
them) have been described for M. tuberculosis (60,61) and
M. tuberculosis genomes have variable CRISPR arrays sug-
gesting they have been defending themselves against phage
infection in their recent evolutionary past (62). However,
there is a large number of M. tuberculosis genome sequences
(29 279 in the PATRIC database as of 26 July 2021) rais-
ing the question as to whether integrated prophages are
present in any of these strains, not just the few that have
been closely examined to-date. DEPhT provides the oppor-
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Figure 7. Genome maps of Cluster MabA M. abscessus prophages. DEPhT running in normal mode was used to search all single-contig M. abscessus
genome assemblies in PATRIC, prophages were identified and extracted, and––together with previously identified prophages (28)––were used to build a
Phamerator database (56). The genome maps for a subset of related genomes grouped in Cluster MabA are displayed, with each genome represented as
a ruler with predicted genes shown as colored boxes above or below each genome, reflecting rightwards and leftwards transcription, respectively. Pairwise
nucleotide sequence similarly is displayed by spectrum colored shading between genomes, with violet being the most similar. Prophages previously described
are labeled as prophiGDxx at the right, and the DEPhT-derived sequences are labeled with the strain name and subspecies shown in parentheses, where
known (a, abscessus; b. bolettii, m, massiliense). The genome alignments show good identification of prophage boundaries and illustrate their diversity and
variation. We note that strain FLAC013 has a similar transposon insertion as prophiGD15-1 and prophiGD20-1 reported previously (28) giving longer
genomes. The prophage in M. bolettii 1518 appears to have undergone deletions at both the left and right ends and is likely non-functional.

tunity to address this question, as it can screen large num-
bers of bacterial genomes relatively quickly, with modest
false positive but very low false negative outcomes, at least
in those genomes with good coverage and assembly using
WGS data.

The 29 279 M. tuberculosis genomes were downloaded
(Supplementary Table S11), binned according to the num-
ber of contigs (Table 3), and DEPhT was used in normal
mode to screen all 29 279 genomes (requiring a run time
of ∼60 h using all 8 cores of a workstation equipped with
an AMD Ryzen 7 3700X processor). Only 523 of the input
genomes are assembled into single contigs, although over

6600 are in fewer than 100 contigs for which DEPhT is an-
ticipated to identify all of the prophages if there are any; an-
other 11 750 are in 100–249 contigs, and DEPhT is expected
to identify many prophages in this assembly-range (Supple-
mentary Table S9). We note that some genomes tagged as
‘M. tuberculosis’ may be either misidentified or contain con-
tigs from contaminating bacterial species.

In this M. tuberculosis data set, DEPhT identified a to-
tal of 27 prophages in 25 genomes (Table 4). However,
closer inspection and BLASTN analysis of individual con-
tigs shows that most of these are in non-M. tuberculosis con-
tigs derived from other bacteria; closer inspection of some
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Table 3. Genomic assembly profiles of M. tuberculosis

Groupa # Contigsb # Genomesc % ‘Good’d Total contigse Usable contigsf Median N50g

1 1 523 100 523 523 4411217
2 2-9 788 99.5 4434 3186 2575182
3 10-99 5301 99.9 322785 171895 132057
4 100-249 11750 99.9 1995446 677407 81101
5 250-499 7026 99.5 2335349 450625 64634
6 500-749 1208 97.4 724170 77638 61910
7 750-999 584 94.0 501681 34738 64010
8 1000-9999 1915 0.05 5393139 117683 44747
9 10000+ 184 0.00 3571408 13010 1516

aEach group is a bin containing the number of M. tuberculosis genome projects with different contig numbers and the overall quality. All data are from
PATRIC (https://www.patricbrc.org).
bThe range of contig numbers for M. tuberculosis genome projects in each group
cThe number of M. tuberculosis genome projects containing the range of contig numbers
dThe percentage of sequencing projects designated as ‘good’ quality by PATRIC
eThe total number of contigs from all projects in that group
fThe total number of contigs above threshold length (20 kb) for DEPhT analysis
gMedian of N50 for each group, which is the sequence length of the shortest contig at 50% of the total genome length.

of these indicates they are accurate prophage predictions.
Of the two bona fide M. tuberculosis strains, one (M. tu-
berculosis CG24) was isolated as a mutant that is resistant
to phage Fred313 cpm in vitro and was shown previously
to contain large segments of Fred313 integrated into the
genome (60). Although DEPhT identified this as expected,
it does not reflect a naturally occurring integrated prophage.
The second hit was to a contig in M. tuberculosis (PATRIC
ID: 1773.19498) that corresponds to a phage virion genome
with defined termini, and genes that are most closely related
to Streptomyces phages. It seems likely that this phage was
a contaminant in the DNA preparation, although we can-
not exclude the possibility that it is a true M. tuberculosis
phage replicating in the M. tuberculosis strain. In summary,
we discovered no integrated prophages in any M. tuberculo-
sis strain, and we conclude that naturally occurring M. tu-
berculosis isolates are devoid of intact integrated prophages.
We note that the �Rv1 and �Rv2 prophage-like elements are
too small (∼10 kb) to be reported by DEPhT.

Adaptation of DEPhT to non-Mycobacterium genomes

While DEPhT was developed with the goal of quickly and
accurately extracting intact prophages from Mycobacterium
genomes, we wanted to investigate whether the prophage
identification and extraction strategy is applicable to other
bacterial genera. First, we tested the discriminatory power
of the phage and host gene size and tdc compositions for 40
additional host genera (Figure 8). Each genus has at least
five phage genomes and at least one bacterial genome in
RefSeq. The gene size and tdc parameters were determined
for each of these using a 55-gene window size (as for My-
cobacterium), and the ratios of the fifth percentile of bacte-
rial values to 95% percentiles of phage values within each
genus were determined; this approximates the regions of
overlap in Figure 2A and B (Figure 8). Although these val-
ues vary considerably for different genera, Mycobacterium
is close to the median of both parameters. Thus, although
DEPhT may have reduced predictive efficacy for bacterial
genera at the lower extremities of this plot, we predict DE-
PhT will be broadly applicable to a large number of bacte-

rial systems; training models will, however, need to be es-
tablished for other bacteria.

Second, we explored the application of DEPhT to Pseu-
domonas and Gordonia genomes by developing training
models for each; both of these have environmental or clin-
ical importance and for which many temperate phages
have been identified. For Gordonia, we retrieved all 28 of
the complete, non-redundant genome sequences available
in PATRIC (Supplementary Table S12), and 110 diverse
phages from phagesdb.org (Supplementary Table S13).
For Pseudomonas, we retrieved 53 representative bacterial
genomes from Genbank (Supplementary Table S14), and
all 214 Pseudomonas phage genomes from RefSeq (Supple-
mentary Table S15). As with the Mycobacteria, the goal was
to retrieve as many diverse and representative sequences as
possible while keeping the total number of genomes rela-
tively low. The gene size and tdc classifiers and shell gene
content for Gordonia and Pseudomonas were trained as de-
scribed above for Mycobacteria.

The gene size and tdc classifier for Gordonia (Supplemen-
tary Figure S5) performs similarly as for Mycobacterium
(Figure 2) with good discrimination between bacterial and
phage genomes at larger window sizes, and when combined
with equal weight, the classifier achieves an MCC of 0.941
on the training data (similar to 0.955 for Mycobacterium).
Also similar to Mycobacterium, Gordonia prophages are pri-
marily composed of genes lacking homology to the bacte-
rial shell genome (Supplementary Figure S6A). However,
the distribution of shell gene block sizes identified by DE-
PhT is somewhat different (Supplementary Figure S6B)
which may reflect different overall diversity of the Gordonia
genomes.

DEPhT running in normal and sensitive modes showed
high precision in extracting 9 of the 12 Gordonia prophages
when compared to PHASTER (Supplementary Table S16),
extracting them either perfectly or to within a few dozen nu-
cleotides of the manually determined boundaries (Supple-
mentary Figures S7 and S8). The other three prophages are
identified in their entirety but are less precisely extracted,
likely reflecting their use of serine integrases, and the Gor-
donia genome diversity constrains attB identification us-
ing BLAST against the reference genomes. In fast mode,

https://www.patricbrc.org
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Table 4. Predicted prophages identified in genome projects

GenomeIDa SRA PATRIC speciesb #contigs %GCc Size (Mbp)d # Prophagese Prophage contig matchf

1733.4750 ERR2514035 M. tuberculosis 1047 55.0 8.03 1 Enterococcus casseliflavus
1733.8175 ERR2517475 M. tuberculosis 11,273 59.1 13.1 1 M. abscessus
1733.8957 SRR5709926 M. tuberculosis 2074 67.2 11.5 2 Actinomycetales
1733.10987 SRR6153015 M. tuberculosis 1025 53.2 8.99 1 Clostridium; Bacillus ssp.
1765.193 n/a M. bovis 576 59.4 11.95 1 Bacillus ssp.
1773.5318 SRR2101661 M. tuberculosis 635 21.1 5.29 1 Bacillus licheniformis
1773.13291 n/a M. tuberculosis 650 67.3 10.38 1 M. avium
1773.13467 n/a M. tuberculosis 1683 53.3 6.99 1 Staphylococcus epidermitis
1773.13508 n/a M. tuberculosis 2572 53.6 7.31 1 Staphylococcus epidermitis
1773.13517 n/a M. tuberculosis 5330 52.5 7.39 1 Staphylococcus epidermitis
1773.14094 n/a M. tuberculosis 1025 53.2 8.99 1 Clostridium; Bacillus ssp.
1773.14969 SRR6397654 M. tuberculosis 390 67.3 10.35 1 M. avium
1773.15146 SRR6397396 M. tuberculosis 330 53.4 6.86 1 Staphylococcus epidermitis
1773.15187 SRR6397568 M. tuberculosis 334 53.4 6.86 1 Staphylococcus epidermitis
1773.15196 SRR6397721 M. tuberculosis 363 53.2 6.92 1 Staphylococcus epidermitis
1773.15773 SRR6153015 M. tuberculosis 308 53.2 8.89 1 Clostridium; Bacillus ssp.
1773.17698 ERR751414 M. tuberculosis 167 58.6 8.40 1 Morganella morganii
1773.18195 ERR1873557 M. tuberculosis 199 62.3 10.36 1 Pseudomonas ssp.
1773.18223 ERR1873445 M. tuberculosis 214 62.2 10.34 1 Pseudomonas ssp.
1773.18344 ERR1035327 M. tuberculosis 177 56.2 6.26 1 Lactobacillus
1773.18754 ERR036242 M. tuberculosis 385 59.2 9.62 2 Paenibacillus
1773.18812 ERR037510 M. tuberculosis 1051 50.5 8.78 1 Clostridium
1773.19498 ERR181684 M. tuberculosis 87 65.7 4.42 1* M. tuberculosis
1773.20520 ERR1035082 M. tuberculosis 746 50.3 9.44 1 Bacillus ssp.
1773.25614 n/a M. tuberculosis 1 65.6 4.46 1** M. tuberculosis

aPATRIC GenomeID.
bSpecies designated in PATRIC.
cAverage GC% M. tuberculosis GC% is 65.52 ± 0.39%, and values outside this suggest non-M. tuberculosis or mixed assemblies.
dAverage M. tuberculosis genome size is 4.41± 0.4 Mb. Projects outside this likely reflect mixed assemblies.
eNumber of prophages predicted using DEPhT in fast mode. *, phage virion DNA, probably not M. tuberculosis; **, scrambled prophage in phage resistant
mutant.
fClosest genome(s) to prophage-containing contig by BLASTN.

DEPhT identifies two additional ‘prophages’ in plasmids,
which do not appear to correspond with true prophages, in-
tact or otherwise.

For Pseudomonas, the bacterial and phage gene size and
tdc distributions do not discern between host and phage
sequences as clearly as for Mycobacterium and Gordonia,
although increasing the window size to 55 genes improves
the separation (Supplementary Figure S9). For both fea-
tures, the Pseudomonas phage distributions have longer tails
that increase the overlaps in the distributions, and the op-
timized classifier achieves an MCC of only 0.759. How-
ever, the shell and phage gene profiles align with the bacte-
rial and prophage genomes (Supplementary Figure S10) be-
cause Pseudomonas has been deeply sampled and individual
species (or clades) tend to have well-defined shell genomes,
as identified by DEPhT using MMseqs2. Prophages in
Pseudomonas are primarily composed of genes lacking ho-
mologs in the bacterial shell genome (∼98%), and the vast
majority (∼85%) of non-prophage genes are recognizable as
part of the shell genome (Supplementary Figure S10A). Al-
though Pseudomonas genomes have more accessory genes
than Mycobacteria, the distribution of the size of genomic
islands is similar in the two genera (Supplementary Figure
S10B).

Because many Pseudomonas phages are poorly anno-
tated, DEPhT normal and sensitive modes provide rela-
tively little additional resolution than fast mode, compared
to the Mycobacterium and Gordonia examples. Further-
more, many of the Pseudomonas phages are either very

closely related, or so distantly related as to share few if any
genes, such that the HMMs that DEPhT uses to identify ho-
mologs of functionally characterized phage genes are either
too small or too homogeneous to provide much sensitiv-
ity. As a consequence, HHsearch contributes only modestly
to the identification of phage regions and the discrimina-
tion against false positive predictions. Nonetheless, DEPhT
is largely successful in identifying Pseudomonas prophages
(Supplementary Figures S11 and S12), with precision and
accuracy comparable to PHASTER (Supplementary Tables
S17 and S18), but substantially faster. We note that DEPhT
is somewhat less precise at extracting prophages from Pseu-
domonas than from Mycobacterium or Gordonia, perhaps
reflecting in part the prevalence of transposable phages,
which use multiple integration sites in the chromosome.

DISCUSSION

Advances in sequencing technology and the reduction in
sequencing costs have resulted in the availability of hun-
dreds of thousands of bacterial sequencing projects. This
represents a substantial challenge for computational tools
for prophage discovery and extraction of the prophage se-
quences for comparative genomic analyses. DEPhT is a
multimodal tool that in fast mode enables the search for
prophages in large numbers of genomes relatively quickly,
albeit with some imprecision in identification of prophage
boundaries, although no more so than other prophage iden-
tification tools. In normal mode, DEPhT may be up to 3
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Figure 8. Gene size and transcription directional change parameters for 41 bacterial genera and their phages. Gene size and tdc distributions were examined
for the complete phage and bacterial genomes available in RefSeq (see Materials and Methods). The intra-genus ratio of the average bacterial genome 5th
percentile to the average phage genome 95th percentile for both gene size and tdc, was calculated and plotted. Each point on the plot indicates the calculated
gene size and tdc ratios for a single genus. Genera are colored according to the phylum (or family for the Proteobacteria) that the genus belongs to. A value
of one or greater reflects minimal overlap of the phage and bacterial distributions.

times slower than fast mode but can extract prophages with
considerable precision. Sensitive mode is not as fast but
gives a more detailed genome annotation.

The development of DEPhT benefitted from a genus-
specific approach, focusing on prophages in Mycobacterium
genomes. The conclusion that there are no prophages in M.
tuberculosis is an important one, as it suggests that M. tuber-
culosis is not accessible by phages in its environment. There
are temperate phages that infect M. tuberculosis in vitro but
this does not appear to occur in vivo, or else we would expect
to find at least some integrated prophages in the thousands
of M. tuberculosis genomes. This could be explained by the
propensity for M. tuberculosis to live and grow intracellu-
larly within macrophages, and within granulomatous struc-
tures. However, in a severely ill TB patient there are large
numbers of extracellular bacteria, which are transmissible
to other patients, and the bacteria are likely to be exposed to
environmental phages in this process. These are important
considerations when contemplating the therapeutic use of
bacteriophages as TB control measure (60). DEPhT will be
an effective and powerful tool for identification and extrac-
tion of the potentially hundreds or thousands of prophages
in sequenced NTM genomes, and which may be key drivers
of physiology and virulence (18,28).

Although DEPhT was developed with Mycobacterium
genomes in mind, it can be adapted to other bacteria. In
support of this, we determined the predicted discriminatory

effectiveness of the DEPhT gene size and tdc parameters for
40 additional bacterial genera, and although there is consid-
erable variation, Mycobacterium is not an outlier. DEPhT
is thus expected to be broadly although perhaps not uni-
versally applicable. We evaluated DEPhT on Pseudomonas
and Gordonia spp. by developing the required training mod-
els, notwithstanding the more limited knowledge of the
prophage content in these strains. DEPhT performs simi-
larly for Gordonia as it does for Mycobacterium but is not
as precise in prophage extraction for Pseudomonas, largely
due to the preponderance of transposable phages. Nonethe-
less, DEPhT performs at least as well as PHASTER (Sup-
plementary Tables S18 and S19). It is also likely that DE-
PhT benefits from larger, more diverse, or better annotated
genomic datasets. Training of DEPhT for additional bac-
terial genera will further inform us of the applicability and
limitations of DEPhT.

In normal mode, DEPhT can identify and precisely ex-
tract the sequences for about half of the Mycobacterium
prophages; the other half have a few additional base pairs
at one or both att sites (Supplementary Table S6). This im-
precision occurs primarily because of the need to accom-
modate mismatches in the common core sequences at the
attachment sites, but rarely are base pairs omitted. Perfect
precision for all prophages is likely not an achievable goal
and may not be required for many subsequent analyses. If
precision is needed, then the prophages may require manual
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inspection and correction, but with little or no additional
sequence searching, and revision of only a few base pairs.
This may be important if attempting to design and synthet-
ically reconstruct a lytic phage from the prophage sequence.

We note that whereas DEPhT performed well when
benchmarked for the given set of M. abscessus genomes
and out-performed other prophage-prediction programs,
this may not be replicated for all other bacterial genomes,
even after re-training for phylum-specific searches. There
are thus likely to be utilities for the spectrum of prophage
prediction programs depending on project goals, and usage
of multiple programs in combination may be desirable for
some projects. However, the considerable speed of DEPhT
in fast mode is especially effective in screening large num-
bers of genomes for putative prophages, followed by DE-
PhT in normal or sensitive mode or one of the other pro-
grams for extraction of the prophage sequences. We also
note that Mycobacterium prophages appear to be most in-
tact and capable of growing lytically (18), and there are few
defective or cryptic prophages. These may be more preva-
lent in other bacteria, and may not be recognized by DE-
PhT, especially if they have lost attachment junctions or in-
tegrase genes.

DEPhT has some evident limitations. First, in fast mode
it identifies some non-phage accessory parts of genomes as
false-positive hits, thus fast mode is most useful for screen-
ing genomes for those that lack prophages, and as a rapid
pre-screen for genomes to input into DEPhT normal or sen-
sitive mode. Also, some of these false-positive non-phage re-
gions may be of general interest, especially those contribut-
ing large numbers of tRNA genes. Second, att site identifi-
cation in normal and sensitive mode is strengthened by the
assumption that one att junction is closely linked to the in-
tegrase gene. Although this is true for many phages, there
are exceptions including the Cluster M mycobacteriophages
and Cluster MabI prophages (28,57), and DEPhT may
struggle to predict the correct att sites. Transposons inserted
either within prophages or close to prophages can con-
found att site prediction, as transposon genes are typically
grouped within the accessory genome component, but this
occurs with low frequency. Third, some prophages in non-
Mycobacterium strains may be as small as 15 kb, requiring
a more stringent set of DEPhT parameters to identify these
correctly. Fourth, prophage boundaries may be especially
challenging to predict accurately for transposable phages,
and generally less accurate for prophages encoding serine-
integrase than those with tyrosine integrases. Lastly, DE-
PhT may not correctly identify regions in genomes where
two prophages are integrated at the same site, or dilysogens
with two copies of the same prophage. These can usually be
readily resolved by manual curation. Overall, DEPhT pro-
vides an effective multimodal tool for prophage discovery
and extraction.

DATA AVAILABILITY

The code for the DEPhT Python package is publicly avail-
able with installation and usage instructions at https://
github.com/chg60/DEPhT.git and https://pypi.org/project/
depht/. The models we trained for this study are available

at https://osf.io/zt4n3. The training and testing data acces-
sions are available in Supplementary Tables.
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