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Rift Valley Fever virus (RVFV) is a zoonotic mosquito-borne virus that belongs to the

Phenuiviridae family. Infections in animal herds cause abortion storms, high mortality

rates in neonates, and mild to severe symptoms. Infected animals can also transmit

the virus to people, particularly people who live or work in close contact with livestock.

There is currently an ongoing effort to produce safe and efficacious veterinary vaccines

against RVFV in livestock to protect against both primary infection in animals and zoonotic

infections in people. To test the efficacy of these vaccines it is essential to have a

reliable challenge model in relevant target species, including ruminants. In this study

we evaluated three routes of inoculation (intranasal, intradermal and a combination of

routes) in Holstein cattle using an infectious dose of 107 pfu/ml and a virus strain from

the 2006–2007 outbreak in Kenya and Sudan. Our results demonstrated that all routes

of inoculation were effective at producing viremia in all animals; however, the intranasal

route induced the highest levels and longest duration of viremia, the most noticeable

clinical signs, and the most widespread infection of tissues. We therefore recommend

using the intranasal inoculation for future vaccine and challenge studies.

Keywords: virus, Rift Valley Fever, cattle, animal model, Phenuiviridae

INTRODUCTION

Rift Valley Fever virus (RVFV) is a single-stranded RNA virus that belongs to the Phenuiviridae
family. It was first described in Eastern Africa in the early 1900s (1) and initially drew attention
during animal outbreaks that resulted in high rates of abortion. Since it was first detected, RVFV
has spread to new regions and continues to circulate widely throughout much of Africa (2, 3).
Serosurveys have demonstrated the presence of antibodies against RVFV in a variety of animal
species including domestic ruminants such as sheep, goats, cattle, alpacas and camels in addition to
a variety of wildlife such as the African buffalo (2, 4–8). Interestingly, these serosurveys have shown
that RVFV circulates not only during outbreaks but also during inter-epidemic periods including
areas where outbreaks have never occurred (9, 10). Although the number of seropositive animals
varies widely based on timing and region, where seropositivity ranges from 0 to 100% in sheep and
cattle, to 0–50% in goats and 0–30% in camels and humans (2, 3), these studies clearly highlight the
important role that animals play in the evolution and spread of RVFV.

Despite its widespread presence in Africa, RVFV outbreaks only occur sporadically and do
not necessarily occur in every area with seropositive animals. Outbreaks typically occur during
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periods of increased rain which are associated with an increase
in mosquito populations (11). In ruminants, outbreaks are
characterized by abortion storms and high rates of mortality,
especially in neonates. Although mortality rates can vary
significantly between different outbreaks, during the South
African outbreak in 2010–2011, adult cattle, sheep and goats
had an estimated 50–62% mortality rate while camels, buffaloes
and other wildlife species experienced 100% mortality (12).
Other studies have also reported high rates of abortions such as
70% in sheep and goats during out outbreak in Mauritania in
2003 (13).

RVFV outbreaks also pose significant risks to human
populations. Susceptible animals such as ruminants amplify the
virus to titers that are high enough to transmit to humans
and are one of the primary reservoirs for human infections.
The major risk factors associated with RVFV infections in
humans are related to close proximity with livestock, including
animal husbandry, animal slaughtering and exposure to raw
milk (14–18). In addition to health risks, the loss of fetuses and
newborn livestock to RVFV infections can have a severe socio-
economic impact on farmers (19). Together this data suggests
that vaccinating livestock against RVFV may be highly beneficial
not only in protecting livestock but also to the people who are
in direct contact with them (20, 21). Since the risk of human
infections increases as the seropositivity increases in animal
populations (22), surveillance systems in countries where RVFV
circulates are extremely important. Although RVFV surveillance
data for many African or other at-risk countries is currently
sparse, the development of international surveillance networks
(23–26) will make it much easier to monitor and share data
regarding the presence of RVFV. Surveillance data will also be
useful for informing vaccination programs about areas requiring
preferential targeting. These regions should also be studied to
identify potential barriers against uptake of the vaccine; for
example, limited health education and cost of the vaccine have
prevented vaccination of livestock in the past (27).

There are currently several RVFV veterinary vaccine options
available to African farmers such as formalin-inactivated vaccines
and the Smithburn vaccine. However, the formalin-inactivated
vaccine is inadequate at preventing viremia (28) and safety issues
have been identified with the live attenuated Smithburn vaccine
(29), which have stimulated the development of several new
RVFV vaccines (30). Some of the new RVFV vaccines have
already undergone safety and immunogenicity testing in sheep
such as a four-segmented RVFV vaccine (31), a Gn subunit
vaccine (32), a DNA vaccine containing either GP and NP genes
(33), a non-spreading (NSR) RVFV vaccine (34) and an equine
herpesvirus type 1 vector (35); others have been tested for safety
and immunogenicity in other natural host species including a
Gn-based vaccine with a paramyxovirus vector in sheep and
calves (36, 37), a Gn-based vaccine with a modified vaccinia
Ankara vector in sheep and baboons (38, 39), a Gn-based vaccine
with a Chimpanzee adenovirus vector in sheep, calves and camels
(40), a Gn-based vaccine with capripox vector (33, 41, 42), MP12
in sheep, goats and cattle (43), and Clone 13 in sheep, goats,
calves and camels (44–50). In terms of efficacy, many novel RVFV
vaccines have proven efficacious in mouse models; however,

as of yet, only a few efficacy challenges have been performed
in ruminants: a Gn subunit vaccine (51), R566 (52) and non-
spreading vaccine were 100% efficacious in sheep (52), and Clone
13 was 100% efficacious in sheep (45) and cattle (50).

Recently, in partnership with Kansas State University, we
sought to develop optimal RVFV infections in ruminants to
provide tools for evaluation of vaccines. These include sheep
(53, 54), goats (54–56), and cattle (57) which were tested
using a variety of factors such as different virus doses, viral
strains, routes of inoculation, and animal breeds. While sheep
and goats had consistent viremia, cattle proved to be more
resistant to infection as only 2 out of 5 animals developed robust
viremia (57). Therefore, the aim of this study was to develop a
robust RVFV infection with an increased proportion of cattle
with viremia.

The experimental design of this study was based on the
cattle model developed at Kansas State University (57) as well
as previous sheep and goat model development at the NCFAD
(54–56), but with several adaptations. Holstein calves were used
instead of the Angus breed, although the age range of the animals
was similar and at an appropriate age for vaccination (4–6
months). A unique virus isolate from the Kenya/Sudan 2006–
2007 outbreak, previously characterized in goats [RVFV-UAP
(55), at a slightly higher inoculation titer (107 pfu instead of
106 pfu). The RVFV-UAP virus isolate was chosen for the goat
study because the Wilson group had had good success with the
Ken06-128b isolate in terms of inducing viremia and systemic
spread to the tissues, including liver lesions and detection of
virus in the brain (57). However, due to the complexities in
shipping live viruses between countries, the RVFV-UAP isolate
was evaluated instead. Since the RVFV-UAP isolate and the
107 pfu dose proved to be robust in goats (55), it was used in
the current study. The inoculation titer of 107 pfu was chosen
based on previous sheep and goat model data from NCFAD
(54, 55). Different routes of inoculation were evaluated. Whereas,
Wilson et al. had used subcutaneous inoculation which is widely
utilized in the literature, it was previously demonstrated that
the intranasal route could induce higher levels of viremia in
goats than the subcutaneous route (55) and therefore it was
hypothesized that the intranasal route may work well in cattle
as well. Although most of the literature utilizes subcutaneous
injections, it is possible that a different subset or a greater number
of dendritic cells could be infected by intradermal injection.
For example, dendritic cells have been shown to infiltrate the
dermis upon infection and play a role in presenting antigens
from skin vaccinations and infections (58, 59). In addition, a
combination of routes was used (107 pfu subcutaneous, 107

pfu intradermal and 107 pfu intranasal) in the anticipation that
cattle could be fairly resistant to infection and may require more
than just a single injection. It was previously demonstrated that
intravenous injection was not any better than a subcutaneous
injection at inducing viremia (54), and similarly, inoculating
twice (once on day 1 and a second inoculation on day 2) did
not increase viremia titers over and above a single inoculation
(54). By modifying the parameters from the previous RVFV
challenge models, we sought to increase the robustness of the
cattle challenge model to more effectively test RVFV vaccines
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FIGURE 1 | Clinical signs, viremia, and shedding. (A) All animals were assessed daily for signs of disease, rectal temperature, eating and drinking habits, disposition

and stool consistency and given a clinical score. The average clinical score per group of animals (n = 4) is shown. (B) Rectal temperatures for each animal on a daily

basis; each value represents an individual animal. (C) Infectious virus was measured in the blood by plaque assay on a daily basis; each value represents an individual

animal. The horizontal dashed line indicates the detection limit of the plaque assay. (D) Viral RNA was measured in nasal swabs by RT-PCR on a daily basis; each

value represents an individual animal. The horizontal dashed line indicates the diagnostic detection limit of the RT-PCR assay.

and to minimize the number of animals needed to produce
statistically relevant vaccine efficacy data.

RESULTS

Clinical Signs, Temperature, Clinical
Chemistry, and Viremia
Throughout the experiment, animals were evaluated for clinical
signs of disease on a daily basis. The clinical score was a sum
of the animals’ general appearance, rectal temperature, alertness,
eating and drinking habits, and stool consistency. The endpoint
was defined as reaching a clinical score of 11, not eating or
drinking for more than 24 h or for any other unforeseen cause
identified by the institutional veterinarian. For the intradermal
and combination groups, the signs of disease were very mild with
clinical scores of 1.3 to 2.5 after inoculation (Figure 1A); with
the exception of a mild fever around 39.5–40◦C (Figure 1B), the
animals were generally asymptomatic. In contrast, the intranasal
inoculation produced mild but noticeable clinical signs with a
clinical score of 6 and 7 on days 3 and 4 (Figure 1A), which

was accompanied by a more pronounced fever between 40–41◦C
(Figure 1B). A summary of the individual scoring data can be
found in Supplementary Table 1.

Viremia was measured daily using plaque assays. All animals
in all groups became viremic, although the duration and level
of viremia varied. In the intradermal group, infectious virus was
detected on days 1 and 2 with peak levels of 103 pfu/ml serum
(Figure 1C). The combination group generated 102 pfu/ml of
infectious virus only on day 1 (Figure 1C). The intranasal
group developed the highest levels of virus, showing viremia
on all 4 days with infectious virus ranging from 7 × 102

to 6 × 105 pfu/ml serum (Figure 1C) with peak levels on
day 3 or 4.

In addition, a clinical biochemistry panel was performed on
the serum to evaluate the impact of RVFV infection on organ
function. Mild increases were observed in ALB, TP, ALP, CA
in all groups and additional increases in BUN were seen in
the intranasal group. The average values for each group are
listed in Tables 1–3, and the individual data can be viewed in
Supplementary Table 2.
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TABLE 1 | Average serum clinical chemistry values for the intradermal inoculation

group.

Normal

range

DPI 0 DPI 1 DPI 2 DPI 3 DPI 4

ALB 2.5–3.8 3.40 4.68 5.18 3.95 3.90

ALP 23–135 127.50 201.25 236.75 160.25 145.50

AST 66–211 70.25 108.50 129.00 75.75 67.75

CA 7.9–9.6 10.75 13.73 15.33 11.88 11.70

GGT 12–48 16.50 22.75 28.00 18.50 20.00

TP 6.6–9.3 7.60 9.20 11.13 7.63 7.50

GLOB 4.4–5.5 3.50 4.50 5.45 3.68 3.60

BUN 6–20 14.25 12.50 15.25 10.75 9.25

CK 83–688 320.00 437.25 482.50 363.00 252.50

PHOS 4.1–9.2 7.00 9.00 10.40 7.48 7.60

MG 1.7–2.9 2.38 2.73 3.25 2.30 2.28

Shedding and Mucosal Immunity
No infectious virus was isolated in the nasal and oral swabs at any
time or in any group, and no viral RNAwas detected in any of the
oral swabs. However, viral RNA was observed in nasal swabs by
qRT-PCR in the intranasal group with levels between 105 and 107

copies/swab at days 1, 3, and 4 post infection (Figure 1D).
Due to the lack of infectious virus despite high levels of viral

RNA in the nasal swabs, it was hypothesized that any virus in
the nasal cavity had been inhibited directly, for example through
the antiviral action of interferons on cells in the nasal cavity.
Therefore, ELISAs were performed to monitor the levels of
interferons alpha (IFN-α), beta (IFN-β) and gamma (IFN-γ) in
the swabs. In the intranasal group, IFN-α, IFN-β, and IFN-γwere
all detected in the nasal swabs starting at 1 or 2 dpi and peaked at
40–60 ng/swab at 3 or 4 dpi (Figures 2A–C); in comparison, the
oral swabs from the intranasal group contained similar amounts
of IFN-α but did not contain significant amounts of IFN-β or
IFN-γ, except in one animal (Figures 2D–F). The intradermal
inoculation also contained levels of IFN-β and IFN-γ in the
nasal swabs, with peak levels at 20–50 ng/swab at 4 dpi, but
not IFN-α (Figures 2A–C); in comparison, the oral swabs from
two animals in the intradermal group had increased IFN- β after
infection, while IFN-α and IFN-γ did not change from baseline
(Figures 2D–F).We did not detect INFs in the nasal or oral swabs
from the combined inoculation route group except for a low level
of INF-α at 3–4 dpi (Figure 2E).

Infection of Tissues and Pathology
The endpoint was determined by the parameters chosen to
compare future vaccinated and non-vaccinated groups including:
viremia, virus isolation from tissues, changes in blood chemistry,
viral shedding in swabs, clinical signs and liver pathology. If
present, all of these parameters should be detectable throughout
the acute phase of infection (usually within the first week after
infection); however, based on data from Wilson’s cattle model,
infectious virus is only present in the tissues at days 3 and 4
post infection (57); therefore 4 dpi was chosen as the endpoint.
Inspection of the animals at necropsy did not indicate any gross
pathology, except for animal #1835 in which we noted significant

TABLE 2 | Average serum clinical chemistry values for the intranasal inoculation

group.

Normal

range

DPI 0 DPI 1 DPI 2 DPI 3 DPI 4

ALB 2.5–3.8 3.68 4.80 3.98 3.78 4.38

ALP 23–135 136.00 181.00 138.00 137.25 183.00

AST 66–211 63.50 99.25 78.50 142.25 189.25

CA 7.9–9.6 11.28 13.97 12.00 11.00 12.55

GGT 12–48 89.00 100.00 75.75 68.25 79.75

TP 6.6–9.3 7.33 10.40 7.75 7.35 9.00

GLOB 4.4–5.5 3.65 5.63 3.78 3.55 4.60

BUN 6–20 16.50 22.75 16.75 18.75 24.75

CK 83–688 281.50 444.50 554.50 312.25 393.25

PHOS 4.1–9.2 6.73 8.23 7.30 5.70 8.33

MG 1.7–2.9 2.28 3.13 2.33 1.98 2.50

TABLE 3 | Average serum clinical chemistry values for the combination

inoculation group.

Normal

range

DPI 0 DPI 1 DPI 2 DPI 3 DPI 4

ALB 2.5–3.8 3.68 4.49 5.28 4.63 4.37

ALP 23–135 136 143.38 234.92 174.08 159.25

AST 66–211 63.5 87.00 105.42 86.25 81.08

CA 7.9–9.6 10.01 12.15 11.30 7.21 12.80

GGT 12–48 16.5 20.94 22.17 18.08 17.83

TP 6.6–9.3 7.33 9.17 11.01 9.19 8.56

GLOB 4.4–5.5 3.65 4.67 5.71 4.54 4.19

BUN 6–20 16.5 15.88 23.17 18.75 18.83

CK 83–688 281.5 306.50 328.08 291.50 284.58

PHOS 4.1–9.2 6.73 9.93 10.84 9.02 9.28

MG 1.7–2.9 2.28 2.74 3.43 2.54 2.63

fibrosis in the liver. Tissues were collected fresh to evaluate viral
loads using virus isolation or placed into formalin for sectioning
to identify lesions if present.

The intradermal and combination groups presented the fewest
number of tissues infected by the virus; the intradermal group
harbored virus in the spleen, turbinates, prescapular lymph
nodes, and retropharyngeal lymph node (Figure 3, ID group) and
the combination group contained virus in the liver, turbinates,
olfactory bulb and trigeminal nerve (Figure 3, ID-IN-SQ group).
In contrast, the intranasal group had the greatest number of
tissues infected by RVFV; infectious virus was isolated from
mesenteric and retropharyngeal lymph nodes, spleen, liver, lung,
trachea, turbinate, ileum, heart, brainstem, cerebellum,midbrain,
and cerebral spinal fluid (Figure 3, IN group). Some of the tissues
were consistently infected in all four animals within a group;
however, some tissues were only infected in one or two animals
within a group, in line with the variability between animals that
is commonly seen in livestock.

Livers from all 3 groups of inoculated animals had lesions
that were consistent with RVFV infection; however, they differed
slightly in severity and stage of pathogenesis. Livers from
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FIGURE 2 | Interferons alpha, beta and gamma in nasal and oral swabs. IFN-α (A,D), IFN-β (B,E), and IFN-γ (C,F) were measured in nasal and oral swabs by ELISA;

each value represents an individual animal. The horizontal dashed line indicates the diagnostic detection limit of the RT-PCR assay.

animals in the ID-IN-SQ combined inoculation group had small
numbers of lesions (Figure 4A, arrow, calf 1818) which on
higher magnification (Figure 4B) were characterized by areas
of hepatocyte necrosis (arrows) and loss with replacement by a
mixed inflammatory infiltrate (∗); the presence of RVFV in the
lesions was confirmed using in situ hybridization (Figure 4C, calf
1818). Most livers from the intranasally inoculated animals had
numerous lesions (Figure 4D, arrows, calf 1836) which on higher
magnification (Figure 4E) were characterized by replacement of
normal hepatocytes (∗) with large areas of necrosis (delineated
by arrows); the presence of RVFV lesions was confirmed using in
situ hybridization (Figure 4F, calf 1836). Numerous lesions were
also observed in several livers from the intradermally inoculated
group (Figure 4G, arrows, calf 1912). In this group there was
significant hemorrhage associated with the areas of hepatocyte
loss (Figure 4H); the presence of RVFV in the lesions was
confirmed using in situ hybridization (Figure 4I, calf 1912). In
contrast, no lesions were found in the spleen of any animal.

METHODS

Ethics Statement
All animal experiments were carried out in the enhanced
biosafety level 3 (BSL3) facility at the National Centre for Foreign

Animal Disease (NCFAD) in Winnipeg, Manitoba. All protocols
for animal use were approved under the animal document use
number C-17-002 at the Canadian Science Centre for Human
and Animal Health (CSCHAH) in Winnipeg, Manitoba by the
Animal Care Committee. Care was taken to minimize animal
suffering and to follow the Canadian Council on Animal Care
guidelines for animal manipulations.

Cells
Mosquito C6/36 cells (ATCC, USA) were grown and infected
in 1:1 EMEM and ESF-921 (Expression Systems, USA)
supplemented with 10% fetal bovine serum (FBS, Hyclone)
and 1% L-glutamine and maintained at 28◦C without CO2.
Mammalian Vero E6 (VE6) cells were grown and infected in
DMEM (Gibco) supplemented with 10% FBS and maintained at
37◦C with 95% relative humidity and 5% CO2.

Virus Production and Titration
VE6 cells were infected with a virus isolate from the 2006–
2007 Kenyan outbreak (RVFV-UAP; Genbank #MH175203,
MH175204, MH175205) (55) at an MOI 0.1 and maintained
in DMEM with 10% FBS. Thereafter, virus was alternatively
propagated between VE6 and C636 cells twice. All passages were
titrated on VE6 cells with a plaque assay to determine virus
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FIGURE 3 | Virus load in tissues. Infectious virus was measured in tissues by plaque assay; each value represents an individual animal. All samples were run, but

negative results were not included on the graph. The horizontal dashed line indicates the detection limit of the plaque assay.

concentration. The calves were then infected using passage 6
C6/36-derived virus.

RVFV Inoculation of Cattle
Twelve Holstein calves (3–4 months) were inoculated with
RVFV-UAP that was grown in mosquito cell culture. Group 1
(n = 4) received intradermal (ID) inoculation; group 2 (n = 4)
received intranasal (IN) inoculation; and group 3 (n= 4) received
a combination (SQ/ID/IN) of all three routes. The subcutaneous
injections consisted of 1× 107 pfu in 100 µl PBS in the left flank;
the intradermal inoculations consisted of five injections of 2 ×

106 pfu in 100 µl PBS each in the left lumbosacral region; and the
intranasal inoculations consisted of 1× 107 pfu in 1ml PBS with
half in each nostril.

Sampling
All calves were carefully monitored for signs of illness and rectal
temperature on a daily basis. We also collected serum on a daily
basis and stored at −70◦C. Nasal and oral swabs were collected
on a daily basis, placed into 2ml sterile PBS containing antibiotics
and an antifungal and stored at−70◦C.

Clinical Chemistry
Serum biochemistry was evaluated daily with the VetScan
VS2 blood analyzer (Abaxis, USA) and Large Animal Profile
rotors (Abaxis, USA). All assays were run as per manufacturer’s
instructions and the bovine reference ranges were provided
by Abaxis.

Post-mortem Tissue Collection
At 4 days post infection we examined the calves for changes
in gross pathology and collected fifteen tissues including
liver, spleen, kidney, lung, ileum, retropharyngeal lymph node,
prescapular lymph node, mesenteric lymph node, cerebral
spinal fluid, brainstem, midbrain, cerebellum, olfactory bulb
and trigeminal nerve. Separate pieces of each tissue were
collected fresh and subsequently frozen at −80◦C or placed in
10% formalin.

Tissue Homogenization
We made 10% homogenates of each tissue by placing 5 g of
tissue in a 7ml PreCellys tube and adding 5ml with PBS.
This sample was then homogenized for 30 s at maximum speed
using the Personal Homogenizer. A single homogenate was used
for both downstream qRT-PCR and plaque assays without any
freeze/thaw cycles.

Virus Isolation From Oral and Nasal Swabs
Virus was isolated from oral and nasal swabs using two blind
passages in 95% confluent monolayers of Vero E6 cells: 200 µl
of each swab was adsorbed to cells in 24-well plates for 1 h at
37◦C with gentle rocking, then overlaid with 1ml serum-free
DMEM, incubated for 7 days, and were visually checked for
cytopathic effects. The entire contents from each well were then
transferred to cells in T25 flasks, adsorbed to cell for 1 h at 37◦C
with gentle rocking, then overlaid with 4ml serum-free DMEM,
incubated for a further 7 days, and were visually checked for
cytopathic effects.
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FIGURE 4 | Liver histopathology and in situ hybridization. Livers from animals in the ID-IN-SQ combined inoculation group had small numbers of lesions (A, arrow)

which on higher magnification (B) were characterized by areas of hepatocyte necrosis (arrows) and loss with replacement by a mixed inflammatory infiltrate (*). Most

livers from intranasally inoculated animals had numerous lesions (D, arrows) which on higher magnification (E) were characterized by replacement of normal

hepatocytes (*) with large areas of necrosis (delineated by arrows). Numerous lesions were also observed in several livers from the intradermally inoculated group (G,

arrows). In this group there was significant hemorrhage associated with the areas of hepatocyte loss (H). The presence of RVFV in the lesions was confirmed using in

situ hybridization, in bright pink (C,F,I).

Virus Quantitation by qRT-PCR
RVFVRNAwas extracted from serumusing the TriPure Isolation
Reagent (Roche) according to the manufacturer’s instructions.
Purified RNA was stored at −70◦C. Viral RNA was detected
using the TaqMan Fast Virus 1-Step RT-PCR master mix as per
manufacturer’s instructions and ran the samples on the ABI 7500
thermocycler with the following conditions: 5min at 50◦C, 2min
at 95◦C and 40 cycles of 3 s at 95◦C and 30 s at 60◦C. Primers
(Invitrogen) and probe (Biosearch) targeted nucleotides 2912 to
3001 for the RVFV L gene segment. All Ct values were plotted on
a standard curve using a DNA plasmid containing the targeted
RVFV L gene segment (GenScript) and quantified.

Virus Quantitation by Plaque Assay
Serial dilutions of serum, nasal swabs, oral swabs and 10% tissues
homogenates were used to infect confluent monolayers of VE6
cells in 48-well plates. Seventy five microliter of inoculum was

added to the cells in triplicate for 1 h at 37◦C with rocking. The
inoculum was then removed and the cells were overlayed with
2ml 1.75% carboxymethylcellulose (CMC). After 4 days the cells
were formalin-fixed and stained with 0.5% crystal violet (Sigma)
to visualize and count plaques.

ELISA for Interferons
We used bovine interferon alpha (IFN-αA), beta and gamma
ELISA kits (Kingfisher Biotech Inc., USA) to detect protein in
nasal and oral swabs. 96-well MaxiSorp ELISA plates (Nunc)
were coated with 2.5 ng/ml capture antibody diluted in DPBS and
incubated at room temperature for 24 h. The plates were blocked
with DPBS+4% bovine serum albumin at room temperature
for 1 h. Oral and nasal samples were diluted 1:2 in DPBS
before plating, standards were diluted in DPBS+4% bovine
serum albumin and plates were incubated at room temperature
for 1 h. Detection antibody was diluted in DPBS +4% bovine
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serum albumin at room temperature for 1 h, followed by 5
washes in TBS-Tween20 (0.05%). Plates were then incubated
with Streptavidin-HRP at room temperature for 1 h, followed
by 5 washes in TBS-Tween 20 (0.05%). TMB was added for
colorimetric development, followed by 2N sulfuric acid as a stop
solution. Plates were read on an Epoch (Biotek) plate reader at
450 nm.

Tissue Sectioning and Staining
Five-micron paraffin-embedded formalin fixed tissue sections
were cut, air-dried, and melted onto charged slides in a 60◦C
oven. The slides were then cleared and hydrated in xylene and
100% ethanol, and then air-dried. The sections were stained
with hematoxylin and eosin (H&E) and imaged with a Zeiss
microscope at 40X and 200X.

In situ Hybridization
For the ISH technique, 5 um paraffin-embedded formalin fixed
tissue sections were cut, air dried then melted on to the
charged slides in a 60◦C oven. Then the slides were cleared
and hydrated in xylene and 100% ethanol then air dried. The
sections were quenched for 10min in aqueous H2O2, boiled
in target retrieval solution for 15min, rinsed in 100% ethanol
and air dry again. Then a final pre-treatment of protease plus
enzyme for 15min at 40◦C was applied. The probe (V-RVFV-
ZH501-NP, from Advanced Cell Diagnostics) was applied and
incubated at 40◦C for 2 h. Then the Hybridization amplification
steps (AMP 1-6) are applied to the slides for the recommended
times and temps as per the manual for the RNAscope R©

2.5HD Detection Reagent – Red kit (ACD). The signal is
then visualized by the chromogen Fast Red. The sections were
then counter stained with Gill’s 1 hematoxylin, dried, cleared
and cover-slipped.

DISCUSSION

Robust and reliable models are essential for efficient vaccine
evaluation. For RVFV, there are currently a variety of effective
small animal, NHP, sheep and goat models, although cattle
have proven more difficult to reliably infect. In this study,
successful infection of 3–6 month old Holstein calves with three
different inoculation routes was demonstrated: intradermal (ID),
intranasal (IN) and a combination of intradermal, intranasal
and subcutaneous (SQ/ID/IN). All three routes reliably elicited
viremia, with the combination and ID routes producing similar
viral titers while the IN route generated much higher viral
titers. The clinical scores for each group correlated strongly
with the intensity of viremia, where higher clinical scores and
rectal temperatures were seen in the IN group whereas mild
to asymptomatic clinical scores were observed in the ID and
combination groups.

Clinical biochemistry markers were evaluated to monitor
organ function throughout infection which indicted mild
increases in albumin (ALB), total protein (TP), alkaline
phosphatase (ALP) and calcium (CA) in all groups and elevated
blood urea nitrogen (BUN) levels in the intranasal group.
Interestingly, a more prominent elevated level of ALP was

detected in Wilson’s cattle model in both SA01 and Ken06
infected groups, but not in the uninfected control group (57). The
mild increases in our current model could potentially be due to
bone growth as our cattle are still growing; however, in light of
Wilson’s data it is also possible that the increase could be due to
the infection. More data is needed to evaluate this further. Other
clinical chemistry values that were elevated in this study include
ALB, TP, and CA, which might indicate mild dehydration; the
same mild elevations were not found in Wilson’s study (57).
Another change that was specific to the intranasal group was
an increase in BUN levels. One cause of elevated BUN levels
could be dehydration; however since only the intranasal group
was affected and only the intranasal group had infectious virus
isolated from the kidney, this may again be RVFV specific. Future
experiments could include a urinalysis to confirm this. During
the necropsy, it was noted that calf 1,835 had significant areas
of portal fibrosis and bile duct hyperplasia in the liver which
likely caused impairment of liver function prior to arriving at
our facility and explains the high GGT values in that specific
animal. Liver necrosis was also detected in all animals; however,
as liver enzyme levels such as AST were not considered clinically
abnormal, the extent of liver damage was likely not extensive
enough to compromise organ function.

Interestingly, infectious virus was found in the turbinates of
all three groups, suggesting that the nasal swabs could contain
virus. Yet, only the intranasal group had detectable viral RNA
in the nasal swabs and none of them contained infectious virus.
These results were consistent with previous reports in Nubian
goats (55); however, one other study has reported infectious virus
in nasal swabs (57). While assaying potential virus neutralizing
components in swabs, we found both ID and IN infections
induced IFN-β and IFN-γ secretion, but only the IN infection
contained IFN-α in nasal swabs. Many cell types can secrete
interferons, which then act on the same or nearby cells to
induce an intracellular antiviral state. Therefore, the presence of
interferons in the swabs could indicate that the nasal and oral
mucosal environment may be able to prevent active replication
of RVFV through activation of an antiviral state via interferon
and copies of viral RNA detected may represent incomplete virus
found in the cytoplasm of cells. Alternatively, other components
that were not measured may also be present in the swabs that are
able to neutralize infectious virus, such as antibodies.

The only tissue to be consistently infected in all three
experimental groups was the turbinate. The IN infection was
much more widespread than the other groups and had a higher
number of infected tissues, which may have been due to the
increased titers and duration of viremia in this group. Perhaps
most strikingly, some brain tissues and the cerebral spinal fluid
(CSF) in one animal produced infectious virus in the IN group
but not in the other groups, at least as measured at 4 days post
infection. Other studies have identified RVFV in brain tissues
as well, although it is unusual to find data on different areas
of the brain. For example, RVFV was isolated from the brains
of 21 day old calves infected subcutaneously with RVFV (60),
4 month old calves infected subcutaneously with RVFV (57) or
4 month old goats infected subcutaneously with RVFV (55). In
addition, clinical neurological manifestations could be readily
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seen in young 21 day old calves (60), but not in the 4 month
old animals.

In comparison to Wilson’s previous cattle model study, it was
hypothesized that the success in infecting all animals was due to
differences in virus dose, isolate, or cattle breed. Unfortunately
there is no information about how the pathogenicity compares
between the Kenya-128b isolate used in Wilson’s study and the
RVFV-UAP isolate used in the current study. The two isolates
were shown to be phylogenetically distinct but still very similar
in sequence (55). Any sequence or amino acid changes did not
fall within critical sites that have been characterized such as the
RNA polymerase active site or phosphorylation sites, although
point mutations are not well-characterized in RVFV and their
effects are unknown. It is also difficult to speculate whether the
Holstein cattle breed was more susceptible to RVFV than the
Angus breed as we did not directly compare the two with the
same parameters. While more groups and more comparisons
would have been scientifically interesting, we could not justify all
of them due to the number of animals required. Since the focus
was on developing an effective challenge model, parameters were
chosen that would most likely produce a reliable challenge model
with viremia.

Age is an important factor in RVFV cattle infections as
both disease severity and the ability to mount an immune
response to a vaccine are age dependent. For example, young
ruminant neonates (1–2 months) are highly susceptible to RVFV
with mortality rates of up to 100% and would demonstrate
a severe RVFV infection. However, the goal was to create a
RVFV infection for testing vaccines at an age with a mature
immune system. It was previously demonstrated that 3–6month-
old sheep, goats and cattle all mount robust immune responses
against RVFV infection (54–57). Perhaps because of these strong
immune responses, the overall disease severity in our model was
quite mild, especially considering the fact that RVFV can be lethal
to adult ruminants during outbreaks. In this respect, it is also
worth considering the fact that our animals were all of high health
status, well-fed, in temperature-controlled housing, free of any
obvious underlying disease, and free of many stressors.

CONCLUSION

This study was conducted to determine an optimal RVFV
infection in cattle for vaccine efficacy studies. Overall, it was
demonstrated that RVFV infection could be achieved via three
different routes of infection in vaccine-aged cattle using an
endpoint at 4 days post infection. This day coincides with the
peak of infection and is ideal to compare vaccinated to non-
vaccinated animals. Interestingly, all three routes were effective
at inducing viremia and producing liver lesions, which are two

major hallmarks of RVFV infection. However, a major difference
between the groups consisted of increased systemic spread of the
virus to tissues in the intranasal group by 4 dpi, which was much
less pronounced in the other groups. As the intranasal route
is not thought to be a natural route of infection for livestock,
the intradermal or subcutaneous models may mimic a natural
infection more closely. However, the intranasal route generated
the most severe clinical disease and most robust virus replication,
making it an excellent challenge model to use to evaluate the
ability of RVFV vaccines to decrease viremia in cattle.
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