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Deciphering spatial domains from spatially resolved
transcriptomics with an adaptive graph attention
auto-encoder
Kangning Dong1,2 & Shihua Zhang 1,2,3,4✉

Recent advances in spatially resolved transcriptomics have enabled comprehensive mea-

surements of gene expression patterns while retaining the spatial context of the tissue

microenvironment. Deciphering the spatial context of spots in a tissue needs to use their

spatial information carefully. To this end, we develop a graph attention auto-encoder fra-

mework STAGATE to accurately identify spatial domains by learning low-dimensional latent

embeddings via integrating spatial information and gene expression profiles. To better

characterize the spatial similarity at the boundary of spatial domains, STAGATE adopts an

attention mechanism to adaptively learn the similarity of neighboring spots, and an optional

cell type-aware module through integrating the pre-clustering of gene expressions. We

validate STAGATE on diverse spatial transcriptomics datasets generated by different plat-

forms with different spatial resolutions. STAGATE could substantially improve the identifi-

cation accuracy of spatial domains, and denoise the data while preserving spatial expression

patterns. Importantly, STAGATE could be extended to multiple consecutive sections to

reduce batch effects between sections and extracting three-dimensional (3D) expression

domains from the reconstructed 3D tissue effectively.
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The functions of complex tissues are fundamentally related
to the spatial context of different cell types1. The relative
locations of transcriptional expressions in tissue are critical

for understanding its biological functions and describing inter-
active biological networks2. Breakthrough technologies for spa-
tially resolved transcriptomics (STs), such as 10x Visium3, Slide-
seq4,5, Stereo-seq6, and PIXEL-seq7 have enabled genome-wide
profiling of gene expressions in captured locations (referred to as
spots) at a resolution of several cells or even subcellular levels.

Deciphering spatial domains (i.e., regions with similar spatial
expression patterns) is one of the great challenges from STs. For
example, the laminar organization of the human cerebral cortex is
especially related to its biological functions, in which cells resid-
ing within different cortical layers often differ in expressions,
morphology and physiology8. Most existing clustering methods
do not efficiently use the available spatial information. These
non-spatial methods can be roughly divided into two categories.
The first category uses traditional clustering methods such as
k-means and Louvain algorithm9. These methods are limited to
the small number of spots or the sparsity according to the dif-
ferent resolutions of ST technologies, and clustering results may
be discontinuous in the tissue section. The second category uti-
lizes the cell type signatures defined by single-cell RNA-seq to
deconvolute the spots10,11. They are not applicable to ST data at a
resolution of cellular or subcellular levels.

Some recent algorithms adapt the clustering methods by
considering the similarity between adjacent spots to better
account for the spatial dependency of gene expressions12–14.
These methods show significant improvements in identifying
spatial domains of sections from brain and cancer tissues. For
example, BayesSpace is a Bayesian statistical method that
encourages neighboring spots to belong to the same cluster by
introducing spatial neighbor structure into the prior12. Giotto
identifies spatial domains by implementing a hidden Markov
random field (HMRF) model with the spatial neighbor prior15.
stLearn defines the morphological distance based on features
extracted from a histology image and utilizes such distances as
well as spatial neighbor structure to smooth gene expressions13.
SEDR employs a deep auto-encoder network for learning gene
representations and uses a variational graph auto-encoder to
simultaneously embed spatial information14. SpaGCN also
applies the graph convolutional network to integrate gene
expression and spatial location, and further coupled with a self-
supervised module to identify domains16. Besides, a recent
developed method named RESEPT leverages the supervised
image segmentation method to perform tissue structure
identification17. Although these methods consider the spatial
structure of STs, the similarity of neighboring spots defined by
them is pre-defined before training and cannot be learned
adaptively. Moreover, these methods do not consider the spatial
similarity of spots at the boundary of spatial domains in more
detail and do not well integrate spatial information to impute
and denoise gene expressions. More importantly, these
approaches cannot be applied to multiple consecutive sections
to reconstruct a three-dimensional (3D) ST model and extract
3D expression domains (Supplementary Table S1).

To this end, we developed STAGATE to accurately identify
spatial domains from Spatially resolved Transcriptomics with an
Adaptive Graph ATtention auto-Encoder by learning low-
dimensional latent embeddings via integrating spatial informa-
tion and gene expression profiles. Extensive tests and comparison
with existing methods on ST data generated by different plat-
forms (e.g., 10x Visium, Slide-seq, and Stereo-seq) as benchmarks
demonstrated its superiorities for downstream analysis tasks such
as spatial domain identification, visualization, spatial trajectory
inference, data denoising, and 3D expression domain extraction.

Results
Overview of STAGATE. STAGATE first constructs the spatial
neighbor network (SNN) based on the relative spatial locations of
spots, and optionally introduces the cell type-aware SNN by
pruning the SNN based on the pre-clustering of gene expressions
(Fig. 1). The gene expression pre-clustering can effectively iden-
tify regions containing distinct cell types, thus this cell type-aware
SNN can help to better characterize the spatial similarity at the
boundary of these distinct spatial domains for ST data with low
spatial resolutions, such as 10x Visium (See “Construction of cell
type-aware SNN (optional)” subsection of the Methods).

Then STAGATE learns low-dimensional latent embeddings
with both spatial information and gene expressions via a graph
attention auto-encoder18 (Fig. 1). The normalized expression of
each spot is first transformed into a d-dimensional latent
embedding by an encoder and then reversed back into a
reconstructed expression profile via a decoder. Unlike the classic
auto-encoder, STAGATE adopts an attention mechanism in the
middle layer of the encoder and decoder. It adaptively learns the
edge weights of SNNs (i.e., the similarity between neighboring
spots) and further uses them to update the spot representation by
collectively aggregating information from its neighbors. Finally,
the latent embeddings are used to visualize the data with
UMAP19 and identify spatial domains with various clustering
algorithms, such as mclust20 and Louvain9 (Fig. 1).

STAGATE improves the identification of known layers on the
human dorsolateral prefrontal cortex dataset. To quantitatively
evaluate the spatial clustering performance of STAGATE, we first
applied it onto a 10x Visium dataset containing spatial expres-
sions of 12 human dorsolateral prefrontal cortex (DLPFC)
sections8. Maynard et al8. has manually annotated DLPFC layers
and white matter (WM) based on the morphological features and
gene markers (Fig. 2a). Considering it as the ground truth, we
compared the clustering accuracy of STAGATE with the non-
spatial clustering method implemented by SCANPY21 and five
recently developed spatial clustering approaches (Giotto15,
BayesSpace12, stLearn13, SpaGCN16 and SEDR14) in terms of
adjusted rand index (ARI), normalized mutual information
(NMI) and homogeneity score (HS) (See “Comparison with other
spatial domain identification methods” subsection of the Supple-
mentary Information).

STAGATE could effectively identify the expected cortical layer
structures and achieve significant improvement compared to
other methods (Fig. 2b and Supplementary Figs. S1, S2). For
example, in the DLPFC section 151676, STAGATE delineated the
layer borders clearly and achieved the best clustering accuracy
(ARI= 0.60) (Fig. 2c). For comparison, the clustering assignment
of the non-spatial approach SCANPY could roughly follow the
expected layer pattern in this section, but the boundary of its
clusters was discontinuous with many outliers, which impaired its
clustering accuracy. Interestingly, the performance of algorithms
leveraging the spatial information are significantly better than the
non-spatial clustering method SCANPY. These results demon-
strated the superiority of STAGATE at spatial domain identifica-
tion and the necessity of its usage of spatial information. In
addition, we further tested the robustness of STAGATE by
comparing the clustering accuracy with different hyper-para-
meters, and found that STAGATE is insensitive to the encoder
structure and the latent dimension (Supplementary Fig. S2c–e).

The integration of spatial information enables STAGATE to
reveal the distance between spatial domains and depict the spatial
trajectory in a UMAP plot19. For example, in the DLPFC section
151676, cortical layers were well-organized and showed consis-
tent spatial trajectories (from layer 1 to layer 6 and white matter)
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in the UMAP plots generated by the STAGATE embeddings
(Fig. 2d and Supplementary Fig. S3). This result is consistent with
the functional similarity between adjacent cortical layers as well as
the chronological order22. By contrast, in the UMAP plots of
SCANPY embeddings, spots belonging to distinct layers were not
separated clearly. As for the other two spatial clustering methods,
stLearn did not distinguish WM and cortex layers clearly, and
SEDR mixed the spots of layer 1 and layer 6. We further
confirmed the inferred trajectory using a trajectory inference
algorithm named PAGA23 (Fig. 2d). The PAGA graphs of both
STAGATE and stLearn embeddings showed a nearly linear
development trajectory from layer 1 to layer 6 as well as the
similarity between adjacent layers, while the PAGA results of both
SCANPY and SEDR embeddings were mixed.

STAGATE enables the identification of tissue structures from
ST data of different spatial resolutions. We further tested
whether STAGATE can be applied to ST data of different spatial
resolutions. We first applied STAGATE onto a Slide-seqV2
dataset with 10 μm spatial resolution from mouse hippocampus5.
Compared to the 10x Visium platform with a resolution of 55 μm,
Slide-seqV2 can profile spatial expressions at a resolution of
cellular levels with more spots (>10,000 per section) but less
sequence depth per spot (Supplementary Table S2). As expected,
using the Louvain clustering algorithm with the same parameter,
STAGATE can well characterize the tissue structures and uncover
the spatial domains, while the clusters identified by SCANPY and
SEDR lack clear spatial separation (Fig. 3a and Supplementary
Fig. S4). For example, STAGATE depicted a clear “cord-like”
structure as well as an “arrow-like” structure in the hippocampal
region and identified four spatial domains of it. This result is
consistent with the annotation of hippocampus structures from
the Allen Reference Atlas24 (Fig. 3b). Specifically, the “cord-like”

structure corresponds to the pyramidal layer of Ammon’s horn,
which can be further separated into fields CA1, CA2, and CA3
(i.e., CA1sp, CA2sp, and CA3sp), and the “arrow-like” structure
corresponds to the granule cell layer of the dentate gyrus (i.e.,
DG-sg). Although the CA2sp domain was not clustered separately
due to the small spot number, it was separated in the UMAP plot
of STAGATE embeddings (Supplementary Fig. S5). Furthermore,
the expressions of many known gene markers also verified the
cluster partition of STAGATE (Fig. 3c and Supplementary
Fig. S6). For example, Itpka and Bcl11b showed differential
expressions between domains of Ammon’s horn and are highly
expressed at CA1sp as expected25,26. The known molecular
markers of hippocampal CA2 such as Amigo2 and Pcp4 were
specifically expressed in the identified CA2sp domain27. In
addition, Lrrtm4 that has been found to mediate excitatory
synapse development on dentate gyrus granule cells was specifi-
cally expressed at the identified DG-sg region28. Besides these
known tissue structures, STAGATE also identified many well-
separated spatial domains and revealed their spatial gene
expression patterns via differential expression analysis (Supple-
mentary Fig. S6). For example, the domain within the hippo-
campus except for the “cord-like” and “arrow-like” structures
(domain 6) exhibited strong expression of astrocytes gene mar-
kers Ddn and Camk2a29. The domain surrounding the hippo-
campal region (domain 7) expressed many oligodendrocytes-
related gene markers such as Trf and Mobp30. Moreover, we also
observed significant spatial expression patterns in the spatial
domains 3 and 4 with the dominant expression of Enpp2 and
Nwd2 respectively. These results demonstrated that STAGATE
can dissect spatial heterogeneity and further uncover spatial
expression patterns. We also tested STAGATE on the mouse
hippocampus section profiled by Slide-seq and 10x Visium
technologies. As the initial version of Slide-seqV2, the transcript
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Fig. 1 Overview of STAGATE. STAGATE first constructs a spatial neighbor network (SNN) based on a pre-defined radius, and another optional one in the
dashed box for 10x Visium data by pruning it according to the pre-clustering of gene expressions to better characterize the spatial similarity at the
boundary of spatial domains. STAGATE further learns low-dimensional latent representations with both spatial information and gene expressions via a
graph attention auto-encoder. The input of the auto-encoder is the normalized expression matrix, and the graph attention layer is adopted in the middle of
the encoder and decoder. The output of STAGATE can be applied for identifying spatial domains, data denoising, and extracting 3D spatial domains.
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detection sensitivity of Slide-seq is relatively lower4 (Fig. 3d).
STAGATE depicted the known tissue structures well except
CA2sp on the Slide-seq data (Fig. 3e) and 10x Visium data
(Fig. 3f) respectively.

We also validated the performance of STAGATE for identify-
ing tissue structures on the mouse olfactory bulb, a widely used
model tissue with the laminar organization. We first tested
STAGATE on a ST dataset generated by Stereo-seq from mouse
olfactory bulb tissues6. Stereo-seq is a newly emerging spatial
omics technology that can achieve the subcellular spatial
resolution by DNA nanoball patterned array chips. The data
used here were binned into a resolution of cellular levels
(~14 μm)6. Fu et al.14 has annotated the laminar organization
of coronal mouse olfactory bulb in the DAPI-stained image,
containing the rostral migratory stream (RMS), granule cell layer
(GCL), internal plexiform layer (IPL), mitral cell layer (MCL),
external plexiform layer (EPL) and olfactory nerve layer (ONL)
(Fig. 4a). Compared to the clusters identified by SCANPY, those

identified using both STAGATE and SEDR embeddings better
reflected the laminar organization and well corresponded to the
annotated layers (Fig. 4b and Supplementary Fig. S7). Impor-
tantly, STAGATE recognized the narrow tissue structure MCL
clearly, which was validated by the expression of mitral cell
marker GABRA131 (Supplementary Fig. S8).

We also applied STAGATE onto a mouse olfactory bulb
section profiled by Slide-seqV25 and found that the spatial
domains identified by STAGATE were well consistent with the
annotation of coronal mouse olfactory bulb from the Allen
Reference Atlas24 (Fig. 4c). Specifically, compared to clusters
produced by SCANPY and SEDR, STAGATE identified two
spatial domains corresponding to the accessory olfactory bulb
(AOB) and the granular layer of the accessory olfactory bulb
(AOBgr) respectively (Fig. 4d and Supplementary Fig. S9). These
spatial domains uncovered by STAGATE were clearly supported
by known gene markers (Fig. 4e). For example, Fxyd6 showed
strong expressions on the identified AOB domain, which is
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Fig. 2 STAGATE improves the identification of layer structures in the human dorsolateral prefrontal cortex (DLPFC) tissue. a Ground-truth
segmentation of cortical layers and white matter (WM) in the DLPFC section 151676. b Boxplot of clustering accuracy in all 12 sections of the DLPFC
dataset in terms of adjusted rand index (ARI) scores for seven methods. In the boxplot, the center line, box limits and whiskers denote the median, upper
and lower quartiles, and 1.5× interquartile range, respectively. c Cluster assignments generated by SCANPY, SEDR, SpaGCN, BayesSpace, and STAGATE in
the DLPFC section 151676. d UMAP visualizations and PAGA graphs generated by SCANPY, stLearn, SEDR, and STAGATE embeddings respectively in the
DLPFC section 151676. As end-to-end clustering approaches, SpaGCN and BayesSpace cannot be visualized using UMAP and PAGA.
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consistent with its immunohistochemistry experiment32. The
granular cell marker Atp2b433 showed strong expressions on the
identified AOBgr domain. The narrow MCL structure with the
dominant expression of mitral cell marker Gabra131 was also
identified by STAGATE. In addition, STAGATE identified a
spatial subpopulation of GCL named GCL_1 with the dominant
expression of Nrgn. Nrgn is a well-documented schizophrenia risk
gene34, implying that this domain is related to cognition function.
Moreover, we found that STAGATE delineated the spatial
trajectory among the mouse olfactory bulb (from AOBgr to
RMS to ONL) in the UMAP plots as well as the PAGA graphs
(Supplementary Fig. S10). Collectively, these results illustrated the
ability of STAGATE to identify tissue structures and reveal their
organization from ST data of different spatial resolutions.

Attention mechanism and cell type-aware module help to
better characterize the similarity between neighboring spots.
Next, we tested whether STAGATE could provide insights into
sections including more biologically complex tissues, such as the

whole brain. We applied STAGATE onto a 10x Visium dataset,
which profiled the spatial expressions of a coronal mouse brain
section (Fig. 5a). We found that the clustering results identified by
SCANPY roughly divided the tissue structures containing dif-
ferent cell types while lacking the identification of small spatial
domains (Fig. 5b and Supplementary Fig. S11). For example, the
clustering assignment of SCANPY failed to identify the “cord-
like” structure -- Ammon’s horn and the “arrow-like” structure --
dentate gyrus within the hippocampus. Moreover, SEDR only
smoothed the domain border, but cannot depict the small spatial
domains either (Fig. 5b). The direct application of STAGATE
brought some improvements in spatial domain identification
(Fig. 5b). Specifically, in the hippocampal region, STAGATE
without the cell type-aware module identified the field CA1
(domain 7) and CA3 (domain8) of Ammon’s horn, but did not
depict the dentate gyrus structure.

For ST data containing heterogeneous cell types with low
spatial resolution, STAGATE with the cell type-aware module
could better learn the spatial similarity (Fig. 1). Specifically, the
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Fig. 3 STAGATE improves the identification of known tissue structures in the mouse hippocampus tissue. a Spatial domains generated by Louvain
clustering with resolution= 0.3 on the low-dimensional SCANPY, SEDR, and STAGATE embeddings in the Slide-seqV2 hippocampus section. b The
annotation of hippocampus structures from the Allen Reference Atlas of an adult mouse brain. c Visualization of CA1sp, CA2sp, CA3sp, and DG-sg
domains identified by STAGATE and the corresponding marker genes. Spatial domains were annotated by the structure annotation showed in the Allen
Reference Atlas. d Number of total UMIs per spot in the mouse hippocampus sections generated by Slide-seq (n= 18,509 spots) and Slide-seqV2
(n= 19,285 spots) respectively. In the boxplot, the center line, box limits and whiskers denote the median, upper and lower quartiles and 1.5× interquartile
range, respectively. e, f Spatial domains generated by STAGATE on the hippocampus section profiled by Slide-seq (e) and 10x Visium (f) technologies
respectively.
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pre-clustering process is based on the Louvain algorithm with a
small resolution parameter (set as 0.2 by default) (Supplementary
Fig. S11b). As expected, the usage of the cell type-aware module
aided in the identification of spatial domains (Fig. 5b). STAGATE
identified the Ammon’s horn as well as the dentate gyrus
structure in the hippocampus, and further depicted the spatial
domains CA1 (domain 7) and CA3 (domain 8) of the Ammon’s
horn. In addition, STAGATE better depicted the layer structures
of the cortex region (domain 2, 3, and 4). Notably, we found that
the cell type-aware module also significantly improved the

separation of tissue structures in the UMAP plot, while those of
SEDR and STAGATE without the cell type-aware module were
more like a smooth version of the non-spatial method SCANPY
(Fig. 5c).

We further evaluated whether the usage of the attention
mechanism indeed contributed to better characterizing the
heterogeneous similarity between neighboring spots. We visua-
lized the attention layer by arranging the nodes according to their
spatial locations and coloring the edges by their weights, and
found that using the attention mechanism alone could delineate
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Fig. 4 STAGATE identifies the laminar organization in the mouse olfactory bulb tissue sections profiled by Stereo-seq and Slide-seqV2 respectively.
a Laminar organization of mouse olfactory bulb annotated in the DAPI-stained image generated by Stereo-seq. b Spatial domains generated by Louvain
clustering with resolution= 0.8 on the low-dimensional SCANPY, SEDR, and STAGATE embeddings in the Stereo-seq mouse olfactory bulb tissue section.
c Laminar organization of mouse olfactory bulb annotated by the Allen Reference Atlas. d Spatial domains generated by Louvain clustering with
resolution= 0.5 on the low-dimensional SCANPY, SEDR, and STAGATE embeddings in the Slide-seqV2 mouse olfactory bulb tissue section.
e Visualization of spatial domains identified by STAGATE and the corresponding marker genes. Spatial domains were annotated by the laminar
organization showed in the Allen Reference Atlas.
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the boundaries of main tissue structures such as the cortex,
hippocampus, and midbrain (Fig. 5d). Combining the attention
mechanism and the cell type-aware module enhanced the
delineation of structure boundaries, and further revealed the
spatial similarity within small spatial domains (Fig. 5e). For
example, in the hippocampal region, STAGATE adaptively
learned the spatial similarity within the Ammon’s horn as well
as the dentate gyrus structure (Fig. 5f). Collectively, these results
indicated the importance of the attention mechanism and the cell
type-aware module for depicting the similarity between
neighboring spots.

We also confirmed the usage of the cell type-aware module
could improve the identification of small spatial domains in
another 10x Visium dataset from mouse posterior brain

(Supplementary Fig. S12). Specifically, STAGATE clearly depicted
the thin layer around the coronal structure, which confirmed by
the higher expressions of Calb1 (Supplementary Fig. S12c). By
contrast, STAGATE without the cell type-aware module and
SEDR classified more spots into this domain. The similar
situation was found in the domains 2, 12 and 15, where
STAGATE is the only method that can clearly distinguish these
three domains corresponding to the histological images (Supple-
mentary Fig. S12d, e). Moreover, the usage of the cell type-aware
module also aided in the identification of the layer structures
within the cortex region (Supplementary Fig. S12f). By visualizing
the attention layer, we found that the attention mechanism
depicted the heterogeneous spatial similarity between tissue
structures (Supplementary Fig. S12g).

a STAGATE (α=0) STAGATE (α=0.5)SCANPY SEDRb

c

UMAP1

U
M

AP
2

STAGATE (α=0) STAGATE (α=0.5)RDESYPNACS
Hippocampal

Thalamus

HypothalamusFiber 
tracts

Cerebral 
cortex

e fd Histology image

Attention layer
(Hippocampal region)

0.25

0.05

Attention layer (α=0.5)Attention layer (α=0)

0.25

0.05

0.2

0.08

Fig. 5 STAGATE reveals spatial domains in adult mouse brain section profiled by 10x Visium. a Immunofluorescent imaging of the tissue section stained
with DAPI and Anti-NeuN. b Spatial domains generated by Louvain clustering with resolution= 1 on the low-dimensional embeddings of SCANPY, SEDR,
STAGATE, and STAGATE with the cell type-aware module. The α represents the weight of the cell type-aware SNN (see Fig. 1). c UMAP visualizations of
the low-dimensional embeddings of SCANPY, SEDR, STAGATE, and STAGATE with the cell type-aware module respectively. d, e Visualizations of the
attention layer of STAGATE without (d) or with (e) the cell type-aware module. The nodes of the attention layer are arranged according to the spatial
position of spots. The edges of the attention layer are colored by corresponding weights. f Zoomed-in views of immunofluorescent imaging of the
hippocampus region and the visualization of attention layer in e.
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STAGATE denoises gene expressions for better characterizing
spatial expression patterns. STAGATE could denoise and
impute gene expressions. We adopted STAGATE to reduce noises
in the DLPFC dataset to better show the spatial pattern of genes.
We compared the expressions of six layer-marker genes of the
raw data to those denoised ones by STAGATE in the DLPFC
section 151676 (Fig. 6a). As expected, the denoised ones by
STAGATE exhibited the laminar enrichment of these layer-
marker genes clearly. For example, after denoising, the ATP2B4
gene showed differential expressions in layers 2 and 6, which is
consistent with previously reported results8,35, while its raw
spatial expression is completely messy. We validated the laminar
enrichment showed by STAGATE against publicly available
in situ hybridization (ISH) data from the Allen Human Brain
Atlas24 (Fig. 6b). Moreover, a comparison of the raw expressions
and the denoised ones by STAGATE using violin plots demon-
strated that STAGATE enhanced the spatial patterns of layer-
marker genes (Fig. 6c, d). Notably, STAGATE obtained similar
performance on the DLPFC section 151507 (Supplementary
Fig. S13). Collectively, these results demonstrated the ability of
STAGATE to reduce noises and enhance spatial expression pat-
terns. In addition, we also compared the imputation performance
of STAGATE with four widely used single-cell RNA-seq impu-
tation algorithms in terms of downsampling experiments, and

showed its superior in both imputation efficiency and preserva-
tion of spatial expression patterns (See “STAGATE imputes gene
expressions while preserving spatial expression patterns” sub-
section of the Supplementary Information; Supplementary
Fig. S14).

The usage of 3D SNN leads to better extraction of 3D spatial
patterns. We applied STAGATE onto a pseudo-3D ST data con-
structed by aligning the spots of the “cord-like” structure in seven
hippocampus sections profiled by Slide-seq (Fig. 7a; Supplemen-
tary Table S3). We extended STAGATE for 3D spatial domain
identification by simultaneously considering the 2D SNN within
each section and neighboring spots between adjacent sections
(Fig. 7b; See “Identification of 3D spatial domains using STA-
GATE” subsection of the Methods). Due to the data sparsity, the
clustering results generated using SCANPY were mixed (Supple-
mentary Fig. S15). When only adopting the 2D SNN, STAGATE
failed to identify the CA2sp domain due to the batch effects
between sections (Fig. 7c, d). After adding neighboring edges
between adjacent sections, STAGATE depicted the known tissue
structures clearly, and spots tend to cluster by their spatial struc-
tures rather than by section IDs in the UMAP plot (Fig. 7e, f). We
verified the tissue structures identified based on STAGATE by the
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Fig. 6 STAGATE enhances the spatial patterns of layer-marker genes in the DLPFC dataset. a Visualizations of the raw spatial expressions and
STAGATE denoised ones of six layer-marker genes in the DLPFC section 151676. b ISH images from visual cortex (ATP2B4, RASGRF2, NEFH, NTNG2, and
B3GALT2) or temporal cortex (LAMP5) of the adult human brain from the Allen Human Brain Atlas. c Violin plots of the raw expression of layer-marker
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known marker genes, including Itpka25, Bcl11b26, Amigo227, and
Lrrtm428 (Supplementary Fig. S15d). These results illustrated that
STAGATE could help to reconstruct 3D tissue models and accu-
rately extract 3D expression patterns by incorporating 3D spatial
information.

Discussion
Accurate identification of spatial domains and further extraction of
spatially expressed genes are essential for understanding tissue
organization and biological functions. Here, we developed a fast and
user-friendly spatial domain identification method STAGATE,
which can be seamlessly integrated into the standard analysis
workflow by taking the “anndata” object of SCANPY package21 as
inputs. STAGATE transforms spatial location information into
SNNs and further adopts a graph attention auto-encoder to integrate
SNNs and expression profiles. We tested the performance of STA-
GATE on diverse ST data generated by different platforms with
different spatial resolutions. We found that STAGATE accurately
revealed the laminar organization of DLPFC and mouse olfactory
bulb. Moreover, STAGATE identified the known tissue structures of
the hippocampus clearly and uncovered spatial domains of it. We
additionally demonstrated the ability of STAGATE in expression

denoising by comparing it with the ISH images. Lastly, we illustrated
the ability of STAGATE to alleviate batch effects between con-
secutive sections and extract 3D expression domains in a pseudo-3D
ST model.

The success of STAGATE is mainly attributed to the usage of
the graph attention mechanism for considering spatial neighbor
information. However, the current STAGATE focuses on the
integration of expression profiles and spatial information and
does not leverage the histological images. Existing methods taking
histological images as inputs, such as stLearn, did not achieve
good performance in our comparison. stLearn employs a pre-
trained neural network to extract features from images and fur-
ther calculates the morphological distance by cosine distance. We
believe this pre-defined approach does not take advantage of the
flexibility of deep learning, and the attention mechanism can be
extended to adaptively integrate the histological image features
conveniently.

In this study, we mainly focused on the sequencing-based ST
data, which were not characterized at single-cell resolution. We
further applied STAGATE onto an image-based ST dataset at
single-cell resolution generated by the STARMAP technology36,
which includes the expression of 1020 genes on 1207 cells
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Fig. 7 STAGATE can alleviate the batch effect between consecutive sections by incorporating a 3D spatial network. a Visualization of the 3D
hippocampal volume stacked by seven aligned consecutive sections profiled by Slide-seq. b The 3D SNN is a combination of the 2D SNN within each
section and the spatial network between consecutive sections. c Cluster assignments generated by STAGATE-2D with the 2D SNN. d The UMAP plots
generated by STAGATE-2D embeddings. The spots are colored by the identified spatial domains (left) and the section IDs (right) respectively. e Cluster
assignments generated by STAGATE-3D with the 3D SNN. f The UMAP plots generated by STAGATE-3D embeddings. The spots are colored by the
identified spatial domains (left) and the section IDs (right) respectively.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-29439-6 ARTICLE

NATURE COMMUNICATIONS |         (2022) 13:1739 | https://doi.org/10.1038/s41467-022-29439-6 | www.nature.com/naturecommunications 9

www.nature.com/naturecommunications
www.nature.com/naturecommunications


(Supplementary Fig. S16). Considering the expert annotated
structures as the gold standard, STAGATE achieved the best
clustering accuracy (ARI= 0.544) compared to other five meth-
ods, while SpaGCN ranked the second (ARI= 0.484). Moreover,
in light of the connections of the spatial domain identification
and the single-cell segmentation (e.g., ClusterMap37 and
Baysor38) designed for image-based ST data, we expect that the
idea of STAGATE can be extended to single-cell segmentation
task for the ongoing subcellular resolution technologies (e.g.,
Stereo-seq and PIXEL-seq) in the near future. We also expect to
improve its applicability through the usage on datasets generated
by new technologies.

STAGATE can handle ST data of diverse spatial resolutions.
Generally, STAGATE performs better for ST data of cellular or
subcellular resolutions due to the high similarity between
neighboring spots. For technologies with relatively low spatial
resolution, we introduced the cell type-aware module to depict
the heterogeneous spatial similarity. However, a potential lim-
itation of STAGATE is that it treats neighboring spots from one
section the same as those belonging to different sections. Future
work may employ heterogeneous networks to better depict 3D
tissue models.

With the increase of spatial resolution and data scale, the
computational approach should meet the basic requirement of
efficiency and scalability. We recorded the running time spent on
real datasets by STAGATE (Supplementary Fig. S17a). When
dealing with the largest real dataset with more than 50k spots,
STAGATE only costs about 40 min. We also benchmarked the
running time and memory usage of STAGATE on simulated
datasets of different scales where spots were arranged according
to the location of 10x Visium chips. Numerical experiments
showed that STAGATE was fast and only took less than 40 min
with about 4GB GPU memory usage for dealing with the dataset
with 50k spots (Supplementary Fig. S17b). However, the GPU
memory usage is nearly linearly correlated to the number of spots
and could be a bottleneck restricting the application of STAGATE
to massive datasets (Supplementary Fig. S17c). Future work is
expected to improve the scalability of STAGATE by introducing
the subgraph-based training strategy.

Moreover, STAGATE enables the detection of spatially variable
genes within spatial domains. Existing spatially variable gene
identification algorithms such as SPARK-X39 do not consider
spatial domain information, which makes it difficult to identify
space-specifically expressed genes within small tissue structures.
To illustrate it, we compared differential expressed genes of
STAGATE spatial domains with those of SPARK-X on the Slide-
seqV2 dataset from mouse olfactory bulb tissue. Specifically,
STAGATE identified 959 domain-specific genes, and SPARK-X
searched 2479 spatially variable genes with FDR < 0.01. We found
that many genes identified by SPARK-X did not show significant
differences between spatial domains (Supplementary Fig. S18a).
Furthermore, the spatial autocorrelations measured by Moran’s I
statistic were similar between the gene set identified by STA-
GATE and the first 1,000 genes of SPARK-X (Supplementary
Fig. S18b). The gene sets identified by these two methods have a
great overlap, but SPARK-X ignores some specific genes of small
tissue structures (Supplementary Fig. S18c). For example, the
mitral cell marker Gabra1 show significant enrichment in the
MCL domain (Fig. 4e; FDR= 1e-34), but SPARK-X did not
identify its spatial pattern (FDR= 0.018). Moreover, the Nefh
gene also showed a strong expression in the MCL domain
(Supplementary Fig. S18d; FDR= 1e-12), while SPARK-X
ignored it (FDR= 1). We expect that STAGATE can facilitate
the identification of tissue organization and the discovery of
corresponding gene markers.

Methods
Data description. We applied STAGATE to ST datasets generated by different
platforms including 10x Visium, Slide-seq, Slide-seqV2, and Stereo-seq (see Sup-
plementary Table S2 for details). Specifically, the DLPFC dataset includes 12
human DLPFC sections sampled from three individuals experiments8. The number
of spots ranges from 3498 to 4789 for each section, and the original authors have
manually annotated the area of DLPFC layers and white matter (WM). The Stereo-
seq mouse olfactory bulb data has been binned into a resolution of cellular levels
(~14 μm) and contains 19,109 spots14. The Slide-seqV2 mouse hippocampus data
and mouse olfactory bulb data were profiled at a spatial resolution of 10 μm, and
contain 19,285 and 20,139 spots respectively5.

Moreover, seven ST data profiled by Slide-seq were used to reconstruct the 3D
hippocampus model4 (Supplementary Table S3). To generate the 3D hippocampus
model, we first extracted the “cord-like” structure and “arrow-like” structure based
on the STAGATE embeddings in the entire section. Then sections are aligned using
the Iterative Closest Point algorithm40 and manual fine-tuning.

We also downloaded publicly available ISH images and the annotation atlas
images from the Allen Brain Atlas website24 (Supplementary Table S4).

Data preprocessing. In all datasets, we first removed spots outside the main tissue
area. Then raw gene expressions were log-transformed and normalized according
to library size using SCANPY package21. Finally, the top 3000 highly variable genes
were selected as the inputs of STAGATE.

Construction of SNN. To incorporate the similarity of neighboring spots of a given
spot, STAGATE converts the spatial information into an undirected neighbor
network according to a pre-defined radius r. Let A be the adjacency matrix of the
SNN, then Aij ¼ 1 if and only if the Euclidean distance between spot i and spot j is
less than r (Fig. 1). Specifically, for 10x Visium data, we set the network to contain
the six nearest neighbors for each spot. For other data, we empirically choose r so
that each spot contains 6–15 neighbors on average. The statistics of the number of
neighbors for all the experiments can be found in Supplementary Fig. S19. Self-
loops are added for each spot.

Construction of cell type-aware SNN (optional). For ST data with relatively low
spatial resolution, STAGATE adopts a cell type-aware module by pruning the SNN
according to pre-clustering of gene expressions. Specifically, the pre-clustering of
gene expressions is conducted by the Louvain algorithm with a small resolution
value (set as 0.2 by default) on the PCA embeddings, and STAGATE prunes the
edge if the spots of it belong to different clusters (Fig. 1). This module should be
adopted to better characterize the heterogeneous spatial similarity between
neighboring spots for the technologies with relatively low spatial resolution, such as
the 10x Visium. We do not recommend using it to technologies at a resolution of
cellular or subcellular levels. Because in this scenario, the similarity between
adjacent sites is relatively homogeneous. Moreover, limited to the capture efficiency
of a single spot, clustering result obtained by using expressions alone may be
severely affected by technical noises, which will hurt the performance of
STAGATE.

Graph attention auto-encoder. The graph attention auto-encoder consists of
three parts: encoder, decoder and graph attention layer.

Encoder. The encoder in our architecture takes the normalized gene expressions as
input and generates the spot embedding by collectively aggregating information
from its neighbors. Let xi be the normalized expressions of spot i and L be the
number of layer of the encoder. By treating expression profiles as initial spot
embeddings (i.e., hð0Þi ¼ xi; 8i 2 f1; 2; ¼ ;Ng), the k-th (k 2 f1; 2; ::; L� 1g)
encoder layer generates the embedding of spot i in layer k as follows:

hðkÞi ¼ σ
�
∑
j2Si

attðkÞij

�
Wkh

ðk�1Þ
j

��
; ð1Þ

where Wk is the trainable weight matrix, σ is the nonlinear activation function, Si is
the neighbor set of spot i in SNN (including spot i itself) and attðkÞij is the edge
weight between spot i and spot j in the output of the k-th graph attention layer. The
L-th encoder layer does not adopt the attention layer and is formulated as follows:

hðLÞi ¼ σ
�
WLh

ðL�1Þ
i

�
: ð2Þ

The output of encoder is considered as the final spot embedding.

Decoder. By contrast, the decoder reverses the latent embedding back into a
reconstructed normalized expression profile. By treating the output of the encoder

as the input of the decoder (i.e. bhðLÞi ¼ hðLÞi ), the k-th (k 2 f2; ::; L� 1; Lg) decoder
layer reconstructs the embedding of spot i in layer k-1 as follows:

bhðk�1Þ
i ¼ σ

�
∑
j2Si

cattðk�1Þ
ij

� bWk
bhðkÞj

��
: ð3Þ
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Similar to the encoder, the last layer of decoder is formulated as follows:

bhð0Þi ¼ σ
� bW1

bhð1Þi

�
: ð4Þ

The output of decoder is considered as the reconstructed normalized expressions.

To avoid overfitting, STAGATE sets bWðkÞ ¼ WðkÞT and cattðkÞ ¼ attðkÞ respectively.

Graph attention layer. To adaptively learn the similarity between neighboring
spots, we employed a self-attention mechanism that has been widely used for graph
neural networks41. We first described it in the context of using SNN alone. Briefly,
the attention mechanism is a single-layer feedforward neural network with shared
parameters among nodes, parametrized by a weight vector. In the k-th encoder
layer, the edge weight from node i to its neighbor node j is computed as follows:

eðkÞij ¼ Sigmoid
�
vðkÞ

T

s

�
Wkh

ðk�1Þ
i

�
þ vðkÞ

T

r

�
Wkh

ðk�1Þ
j

��
; ð5Þ

where vðkÞs and vðkÞr are the trainable weight vectors, and Sigmoid represents the
sigmoid activation function.

To make the spatial similarity weights comparable, we normalized them by a
softmax function as follows:

attðkÞij ¼
exp

�
eðkÞij

�

∑
i2Si

exp
�
eðkÞij

� : ð6Þ

These learned weights are further used to update the latent embedding in the
encoder and decoder.

In addition, when the cell type-aware module is used, STAGATE adopts self-

attention mechanism for the two types of SNNs respectively. Let attspatialij and
attawareij represent the learned spatial similarity based on SNN and the cell type-
aware SNN respectively (the layer symbol is omitted here), and the spatial
similarity finally adopted is the linear addition of them (α is a hyperparameter that
represents the weight of cell type-aware SNN, and is set as 0.5 by default):

attij ¼ ð1� αÞattspatialij þ αattawareij : ð7Þ
We discussed the selection of α on the 10x Visium coronal mouse brain data in the
“Selection of hyperparameter α” subsection of the Supplementary Information and
Supplementary Fig. S20.

Loss function. The objective of STAGATE is to minimize the reconstruction loss of
normalized expressions as follows:

∑
N

i¼1

����xi � bh0i
����
2

: ð8Þ

The overall architecture of STAGATE. In all experiments, the encoder of STA-
GATE is set as a two-layer neural network (512-30) with the graph attention layer,
and the decoder is set as the same number of layers as the encoder. Adam
optimizer42 is used to minimize the reconstruction loss with an initial learning rate
of 1e-4. The weight decay is set as 1e-4. The activation function is set as the
exponential linear unit (ELU)43. The number of iterations is set as 500 by default,
and 1,000 when using the cell type-aware module.

Clustering. We used different strategies to identify spatial domains based on
STAGATE embeddings. When the number of the label is known, we employ the
mclust clustering algorithm20. For data without prior information, we use the
Louvain algorithm implemented by SCANPY package21. The resolutions of the
Louvain algorithm are manually selected. For fairness, we also displayed the results
of the Louvain algorithm under different resolutions.

Spatial trajectory inference. We employed the PAGA algorithm23 implemented
in the SCANPY package21 to depict spatial trajectory. The PAGA graphs were
visualized by the scanpy.pl.paga_compare() function.

Identifying differentially expressed genes. We used the Wilcoxon test imple-
mented in SCANPY package21 to identify differentially expressed genes for each
spatial domain with a 1% FDR threshold (Benjamin-Hochberg adjustment).

Identification of 3D spatial domains using STAGATE. All current ST technol-
ogies profile gene expression patterns in the context of 2D tissue sections, which
limits the accurate depiction of 3D ST in the real world. A conventional solution is
to reconstruct gene expressions in 3D space by stacking consecutive 2D
sections4,44. However, the batch effect between sections hinders the extraction of
3D spatial patterns. Here, we introduced a 3D SNN by incorporating the 2D SNN
of each section and the SNN between adjacent sections to alleviate the batch effect
between consecutive sections (Fig. 7b). Specifically, the SNN between adjacent
sections is constructed based on the aligned coordinates and a pre-defined radius.
The key idea of the usage of 3D SNN is that the biological differences between
consecutive sections should be continuous, so we can enhance the similarity

between adjacent sections to eliminate the discontinuous independent technical
noises.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All data analyzed in this paper are available in raw form from their original authors.
Specifically, the DLPFC dataset8 is accessible within the spatialLIBD package (http://
spatial.libd.org/spatialLIBD). The MouseBrain dataset is collected from the 10x Genomics
website (https://support.10xgenomics.com/spatial-gene-expression/datasets). Slide-seqV2
datasets5 are available at the Broad Institute Single Cell Portal at https://
singlecell.broadinstitute.org/single_cell/study/SCP815/highly-sensitive-spatial-transcriptomics-
at-near-cellular-resolution-with-slide-seqv2#study-summary. Slide-seq datasets4 are available
at https://portals.broadinstitute.org/single_cell/study/slide-seq-study. The processed Stereo-seq
data from mouse olfactory bulb tissue6 is accessible on https://github.com/JinmiaoChenLab/
SEDR_analyses. The mouse visual cortex STARmap data36 is accessible on https://
www.dropbox.com/sh/f7ebheru1lbz91s/AADm6D54GSEFXB1feRy6OSASa/visual_1020/
20180505_BY3_1kgenes?dl=0&subfolder_nav_tracking=1. The ISH images of the adult
human brain are available at the Allen Human Brain Atlas (https://human.brain-map.org/).

Code availability
The STAGATE algorithm is implemented in Python and is available on Github [https://
github.com/zhanglabtools/STAGATE]. It is also deposited at Zenodo [https://doi.org/
10.5281/zenodo.6330702].
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