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Deep transfer learning and data augmentation improve glucose
levels prediction in type 2 diabetes patients
Yixiang Deng 1,6, Lu Lu 2,6, Laura Aponte 3, Angeliki M. Angelidi3, Vera Novak3, George Em Karniadakis 1,4✉ and
Christos S. Mantzoros 3,5✉

Accurate prediction of blood glucose variations in type 2 diabetes (T2D) will facilitate better glycemic control and decrease the
occurrence of hypoglycemic episodes as well as the morbidity and mortality associated with T2D, hence increasing the quality of
life of patients. Owing to the complexity of the blood glucose dynamics, it is difficult to design accurate predictive models in every
circumstance, i.e., hypo/normo/hyperglycemic events. We developed deep-learning methods to predict patient-specific blood
glucose during various time horizons in the immediate future using patient-specific every 30-min long glucose measurements by
the continuous glucose monitoring (CGM) to predict future glucose levels in 5 min to 1 h. In general, the major challenges to
address are (1) the dataset of each patient is often too small to train a patient-specific deep-learning model, and (2) the dataset is
usually highly imbalanced given that hypo- and hyperglycemic episodes are usually much less common than normoglycemia. We
tackle these two challenges using transfer learning and data augmentation, respectively. We systematically examined three neural
network architectures, different loss functions, four transfer-learning strategies, and four data augmentation techniques, including
mixup and generative models. Taken together, utilizing these methodologies we achieved over 95% prediction accuracy and 90%
sensitivity for a time period within the clinically useful 1 h prediction horizon that would allow a patient to react and correct either
hypoglycemia and/or hyperglycemia. We have also demonstrated that the same network architecture and transfer-learning
methods perform well for the type 1 diabetes OhioT1DM public dataset.
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INTRODUCTION
Type 2 diabetes (T2D) is a multifactorial progressive chronic
metabolic disorder, accounting for approximately 90% of all cases
of diabetes1. The prevalence of diabetes has been increasing
rapidly over the past few decades2. In 2019, about 463 million
adults were living with diabetes, while it is estimated to be 578
and 700 million by 2030 and 2045, respectively3. T2D and
hyperglycemia are associated with an increased risk of vascular
and non-vascular complications and premature mortality4–6.
Furthermore, emerged evidence has also emphasized the
importance of avoiding fluctuations in glycemia in T2D7. Of note,
the Advanced Technologies & Treatments for Diabetes (ATTD)
consensus recommendations highlight the role of glycemic
variability and the time in ranges (including the time in target
range, hyperglycemia, and hypoglycemia) as key metrics for
Continuous Glucose Monitoring (CGM)8. The available antidiabetic
treatments combined with a near-to-normal glucose levels
approach, indicating the efforts of reducing high glucose levels
and normalizing glycated hemoglobin levels in the absence of any
contraindications, may lead to a lower frequency of T2D-related
microvascular and macrovascular events9,10. On the other hand,
intensified treatment targeting towards an intensive glucose
control is associated with a higher risk of therapy-induced
hypoglycemia and severe hypoglycemic events, which pose a
potential risk for worsening or developing major macrovascular
and microvascular complications, serious neurological conse-
quences, as well as cardiovascular and all-cause mortality11–14.
Additionally, hypoglycemia is a severe adverse outcome that may

negatively impact a patient’s health and psychological status,
leading to poor compliance and treatment adherence13,14.
Hypoglycemic events are also associated with a high direct and
indirect cost for patients, healthcare systems, and society14,15.
Thus, the accurate prediction of blood glucose variations and, in
particular, hypoglycemic events is of paramount importance to
avoid potential detrimental complications and adjust the ther-
apeutic strategy in a more optimized and personalized treatment
strategy for patients with T2D. To this end, well developed
predictive models with high sensitivity and accuracy, which are
easy to implement, may facilitate better glycemic control,
decrease the occurrence of hypoglycemic episodes or related
complications and increase the quality of life in this population. Of
note, due to the complexity of the blood glucose dynamics, the
design of physiological models that produce an accurate
prediction in every circumstance, i.e., hypo/normo/hyperglycemic
events, is met with substantial restrictions.
Recently, machine learning has been shown to be very effective

in solving classification and regression problems, and the ever-
growing availability of already collected personal data makes the
prediction of diabetic blood glucose through data-driven
approaches possible16–18. Machine learning-based data-driven
approaches use the individual’s recorded data, and require little
understanding of the underlying physiological mechanism. Blood
glucose dynamics in patients with type 2 diabetes are affected by
factors such as pancreatic function, insulin levels, carbohydrate
intake, history of dysglycemia and the level and extent of physical
activity. Models using combinations of input parameters
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accounting for these factors have been previously considered19,20.
Many different machine-learning methods have also been tested,
including traditional machine-learning methods, e.g., auto-
regression with exogenous input (ARX)21, support vector machines
(SVM)22, Gaussian process (GP)23, and ensemble methods24, as
well as deep-learning approaches, e.g., feed-forward neural
networks (FNNs), recurrent neural networks (RNNs), and convolu-
tional neural networks (CNNs). For more details of the studies until
2018, we refer the readers to relevant review papers16–18.
Owing to its predictive effectiveness, deep learning has quickly

become quite effective in blood glucose prediction since
201819,21,25–30. Among different deep-learning approaches, RNNs
based on the long short-term memory (LSTM), have been
designed for sequence prediction problems and are the most
commonly used models19,21,25,26,29. However, there is no
significant advantage observed by using the vanilla LSTM or
convolution networks compared to a classic model (e.g., ARX),
and in some cases RNNs or CNNs could showcase lower
performance, as shown in a recent benchmarking study21. To
achieve better prediction accuracy, more advanced network
architectures have recently been developed, e.g., the recurrent
convolutional neural network27, which includes a multi-layer
CNN followed by a RNN, and GluNet28 based on the Wavenet
architecture first presented in ref. 31.
Deep learning usually requires a large amount of data to train

the networks, therefore, they are usually trained by population
level rather than individual level data18,27,28. However, due to the
variability of blood glucose dynamics among different patients
and the heterogeneity of patient treatment response32, the
models trained only by population level data cannot guarantee
accurate prediction for each individual patient. To address the
problem of small dataset, transfer learning33–36 can be employed,
which stores knowledge gained while solving one problem (i.e.,
population data) and then applying it to a different but related
problem (i.e., patient-specific data). Transfer learning has been
employed in blood glucose prediction very recently19,29,37–39, but
in these studies the patient-specific model based on transfer
learning performed similarly to the population-based model or
other classic machine learning models.
In addition to the problem of small data, another challenge in

diabetic blood glucose prediction is the data imbalance. In
particular, the dataset of normal-level blood glucose measure-
ments (called majority class) is orders-of-magnitude larger than
the dataset of blood glucose measurements with specific
symptom (called minority class), e.g., hypoglycemia. The model
trained on the imbalanced dataset leads to a biased performance,
i.e., the accuracy of the minority class is much worse than that of
the majority class40. To address the data imbalance issue, various
general approaches have been developed40–42, including pre-
processing approaches, algorithmic centered approaches, and
hybrid approaches, but learning from imbalanced data effectively
and efficiently is still an open problem43.
In this study, we tackle both the challenge of small datasets as

well as the challenge of imbalanced datasets, by leveraging recent
advances in deep learning and developing new methods for
patient-specific prediction of diabetic blood glucose. First, we
consider three neural network architectures and compare their
performance systematically. These three representative architec-
tures are RNNs with the GRU cell44, gated convolutional neural
networks (CNNs)45, and self-attention networks (SANs)46, all of
which show their unique advantages due to the difference in
architecture designs for sequence classification, especially time-
dependent sequences. Given the flexible structure of neural
networks, we are presented with numerous ways of fine-tuning in
the transfer-learning step. However, as noted in ref. 47, the
performance of each fine-tuning technique is task-specific. To
the best of our knowledge, there is no established consensus
on the optimal fine-tuning technique for short-term glucose

prediction. Hence, we develop four transfer-learning strategies for
our glucose prediction task. Specifically, we examine the
performance of these four transfer-learning techniques by
comparing the results of predicting hypoglycemia vs. normogly-
cemia vs. hyperglycemia obtained from RNN, CNN, and SAN
models in the setting of individual-based training. In addition, we
consider new pre-processing approaches to address the data
imbalance issue, because they are only performed on training data
and can be directly combined with any neural network algorithm.
Besides the common approach of re-sampling, where the training
data is augmented by repeating existing samples, we also used
other data augmentation techniques to generate synthetic data,
including adding random noises and employing the recent
techniques of mixup48 and time-series generative adversarial
networks (TimeGAN)49. While mixup has been very popular in
computer vision tasks50, TimeGAN is designed specially for time
series prediction tasks. In this work, we test the performance of
mixup and TimeGAN for data augmentation in the short-term
blood glucose prediction task. To compare the performance of our
algorithms with existing literature, we evaluate the proposed
algorithms using a public dataset OhioT1DM51, documenting the
CGM history and physiological measurements of 12 patients
with type 1 diabetes. We also examine the performance of our
algorithms on a private dataset recording blood glucose data for
patients with type 2 diabetes. We include the details of our study
design and blood glucose (BG) data collection in the Materials and
Methods section. Taken together, herein we propose a model
capable of predicting blood glucose variability in patients with
type 2 diabetes with high sensitivity and specificity for the longest
prediction horizon (time period after 30min of BG collection)
possible. More broadly, our combined methodology for tackling
the fundamental problems of small and imbalanced datasets
can be transferred to many other biomedical applications for
predicting the outcomes of diseases using bio-signals and time-
series data, e.g., classification of abnormal cardiac rhythms using
data collected from wearable devices52 or electrocardiogram53,
detection of seizure54 and Alzheimer’s disease55 using
electroencephalography.

RESULTS
Patient-specific prediction of blood glucose
According to Cox et al.56, severe hypoglycemia (SH) often follows a
specific blood glucose fluctuation pattern that is identifiable from
self monitoring blood glucose; hence, we consider the 30-min
blood glucose as the primary predictor and the future glycemia as
the target prediction. In this paper, we consider the following two
classification tasks of diabetic blood glucose, i.e., one classification
is “hypoglycemia” vs. “no hypoglycemia” and the other is
“hypoglycemia” vs. “normoglycemia” vs. “hyperglycemia”, with
the setup shown in Fig. 1. Specifically, the threshold for
hyperglycemia is set to 180 mg/dL, i.e., blood glucose levels
higher than 180 mg/dL are labeled with “hyperglycemia”. On the
other hand, we set the threshold for hypoglycemia to be 80mg/
dL, i.e., we label blood glucose levels lower than 80mg/dL as
“hypoglycemia”. Here, unlike the common definition for level 1
hypoglycemia based on the threshold of 70 mg/dL, we instead
choose 80mg/dL as the hypoglycemia threshold. This is because
recent results by Farrell et al.57 have revealed a measurement
artifact, i.e., that the real-time continuous glucose monitoring
(CGM), where we would expect these algorithms to have clinical
applicability, underestimates the degree of hypoglycemia by a
difference of 10mg/dL, as shown in Supplementary Fig. 1.

Deep transfer learning for small patient-specific data
We compare the performance of three neural network architec-
tures by the averaged prediction accuracy per capita for these two
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classification problems. The results in Fig. 2 suggest that as the
training data size from the target patient increases, the prediction
accuracy of all models generally increases. We note that CNN
models are generally more accurate than RNN models and slightly
outperform SAN models with higher mean and smaller standard
deviation for prediction accuracy in both of the classification tasks.
The results also suggest that the transfer-learning models
(Transfer1 and Transfer2) can sometimes outperform the pre-
trained models in CNN models. We also compared our models with
some existing classification methods, i.e., logistic regression, GP,
SVM, and FNN in terms of (1) Predicting hypoglycemia vs. no
hypoglycemia (Supplementary Table 1); (2) Predicting hypoglyce-
mia vs. normoglycemia vs. hyperglycemia (Supplementary Table 2)

over a prediction horizon of 30min; (3) Predicting hypoglycemia vs.
no hypoglycemia (Supplementary Table 3); (4) Predicting hypogly-
cemia vs. normoglycemia vs. hyperglycemia (Supplementary Table
4) over a prediction horizon of 60min. In both tasks, our models
showed consistent increases in accuracy and the area under the
receiver operating characteristic curve (AUROC) given more
training data from the target patient and, specifically, better than
those by existing classification methods examined in predicting
hypoglycemia vs. normoglycemia vs. hyperglycemia, see Supple-
mentary Tables 1 and 2.
Figure 3 shows the sensitivity analysis of the prediction horizon

on the prediction accuracy and Fig. 4 shows the ROC curves
(receiver operating characteristic curves) of best models among all
the models tested, given the training data size from the target
patient around 1000 data segments. Figure 3a suggests that the
sensitivity between different prediction horizons is negligible in
predicting hypoglycemia vs. no hypoglycemia (binary classification),
while Fig. 3b shows that the sensitivity between different prediction
horizons becomes larger when the time elapse of two prediction
horizons is large in predicting hypoglycemia vs. normoglycemia vs.
hyperglycemia (three-class classification). Figure 4 suggests that our
best model maintains a high AUROC in both classification tasks for
a range of clinically useful prediction horizons, i.e., 5 min (Fig. 4a, b),
30min (Fig. 4c, d) and 60min (Fig. 4e, f).
We evaluate the performance of our models on the OhioT1DM

dataset, a de-identified public dataset recording the glucose level,
insulin dosage, exercise and other metabolism readings for six
patients with type 1 diabetes in the 2018 version and another six
patients with type 1 diabetes in 2020 version51. We demonstrate
the performance of our model by evaluating it on the dataset of
six patients in the 2020 version. Specifically, the training data is
the union of all the training data of the 12 patients and the
testing data of the 6 patients in the 2018 version. We discard any
training sequences with one or more missing data points.

Fig. 1 Patient-specific prediction of diabetic blood glucose. We
use the patient’s blood glucose levels (every 5-min measurements)
during several time periods in the past (e.g., 30min) along with key and
widely available patient’s personal data to predict the patient’s blood
glucose level in the future (e.g., 30min later). In particular, we aim to
detect hyperglycemia (HYPER, blood glucose level > 180mg/dL) and
hypoglycemia (HYPO, blood glucose level < 80mg/dL). NORMO,
normoglycemia, 80mg/dL ≤ blood glucose level ≤ 180mg/dL.

Fig. 2 Prediction accuracy comparison among different architectures (RNN, CNN, and SAN) with respect to the number of training data
from the target patient in two classification tasks. a to c Prediction accuracy of the binary classification, i.e., identifying the neural network
output as hypoglycemia or no hypoglycemia, using a RNN, b CNN, and c SAN. d to f Prediction accuracy of the three-class classification, i.e.,
identifying the neural network output as hypoglycemia or normoglycemia or hyperglycemia, using d RNN, e CNN, and f SAN. The data from a
target patient is divided into two parts, one is for training and the other is for testing, and the prediction horizon is fixed at 30min. The
accuracy of Transfer3 is lower compared to other transfer-learning methods. Here, CNN Pretrain and Transfer2 as well as SAN Pretrain show the
best performance. Error bars (standard deviation, s.d.) are computed over all patients’ results.
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The training process of our model is again two-step, i.e., in the
first training step, we pretrain the model on the training data
excluding the training data of the patient to be tested; in the
second training step, we fine tune the model on the training data
of the patient to be tested; finally we test the model on the
testing data of the target patient. To make a fair comparison, we
compare our model performance with those using historical
blood glucose levels as the only predictor and 30 min as the
sampling horizon58–61. Similarly, all models are evaluated on 6
patients in the 2020 version, see Table 1.
The results in Table 1a suggest that our best model (CNN+

Transfer2) outperforms all other models in terms of mean absolute
error (MAE) in both cases of 30 and 60min prediction horizon.
While the root mean squared error (RMSE) of our results are not
the best among these five models, they are the second to the best
model, i.e., the model by Bevan et al.59, which reported RMSE of
18.23 for 30 min prediction horizon after imputing missing value
with mean value of the training dataset. Bevan et al. also reported
a slightly higher RMSE at 18.82 for 30 min prediction horizon when
missing data in the training sequence is discarded, which we
believe is very close to our results, given the same missing data
handling strategy. It is standard practice in clinical medicine to use
sensitivity to evaluate the value of a test as a screening test and
use specificity to evaluate the value of a test as a confirmatory test.
Hence, we further examine our model performance using the
regression results for binary classification of hypoglycemia class vs.
no hypoglycemia class. Specifically, we set the threshold of
hypoglycemia vs. no hypoglycemia to be 80mg/dL, i.e., values <
80mg/dL are denoted as the positive class while greater than that
as the negative class. The results of the binary classification for
30min prediction horizon in Table 1b suggest that our model is
more accurate than that by Bevan et al., i.e., higher accuracy and
F1 score. Compared to the results of Bevan et al., our model shows
same specificity and negative predictive value (NPV) but much
better sensitivity (almost 10% higher). Hence, our model provides
a better screening test (sensitivity) and equally good confirmatory
test (specificity), which is an overall better test and is highly
favorable in the clinical setting.

Improvement of sensitivity for imbalanced data
In this section, we show further detailed analysis with regression-
based models for classification, i.e., we perform regression
prediction then convert the real-valued prediction into class labels,
as shown in Fig. 1. We note that our raw BG data is innately real-
valued, hence it is natural to investigate the data feature following
a regression approach. Here, we aim to show the effects of
different data augmentation methods mainly on the minority
dataset. With our previous classification analysis, we set up the

regression model with the following preconditions: the prediction
horizon is 20min if not mentioned otherwise and the hypoglyce-
mia threshold is set to be 80mg/dL. We will show results without
transfer learning, i.e., we train the models on the dataset, which is
the union of other patients’ data except for the target patient and
then directly test on the target patient’s dataset. We focus on
comparing the model performance in predicting hypoglycemia vs.
no hypoglycemia by converting the real-valued prediction into two
labels: one label is “hypoglycemia”, meaning the prediction is
below 80mg/dL while the other is “no hypoglycemia”, meaning
the prediction is above or equal to 80mg/dL. We also carry out the
same conversion on the true BG values measured by the CGM.
With the conversion, we can then compare four classification
scores, sensitivity, positive predictive value, specificity, and
negative predictive value between different models.

Selection of loss functions. We tested the performance of four
different loss functions, i.e., mean absolute error, relative mean
absolute error, mean squared error and relative mean squared
error using the original training dataset without data augmenta-
tion. In particular, we examined the performance of models with
different loss functions using four classification metrics, i.e.,
sensitivity, positive predictive value (PPV), specificity and negative
predictive value (NPV). To compute these four classification
metrics, the real-valued blood glucose prediction is categorized
into two classes, i.e., “hypoglycemia” (positive class) and “no
hypoglycemia” (negative class). Figure 5a shows the comparison
of model performance using different loss functions. The result
suggests that the model using relative mean absolute error (REL.
MAE) outperforms models using the other three loss functions,
because the model using the relative mean absolute error
maintains a balanced high value for each of the aforementioned
four metrics. Figure 5b shows the scatter plot of true BG vs.
predicted BG also suggests high prediction accuracy with the
points clustering near the diagonal black line indicating the
perfect prediction. The red lines divide the whole domain into four
rectangular regions, i.e., the true positive region (TP) denoting that
the true BG is “hypoglycemia” and prediction is also “hypoglyce-
mia”; the false-positive region (FP) denoting that the true BG is “no
hypoglycemia” but the prediction is “hypoglycemia”; the false-
negative region (FN) denoting that the true BG is “hypoglycemia”
but the prediction is “no hypoglycemia”; the true-negative region
(TN) denoting that the true BG is “no hypoglycemia” and the
prediction is “no hypoglycemia”.

Data augmentation. In this part, we fix the loss function in our
model to be the relative mean absolute error (REL. MAE) and
compare the performance of our model when four different data

Fig. 3 Prediction accuracy for two classification tasks given different prediction horizons using the best CNN model. Prediction accuracy
for a binary classification, i.e., identifying the neural network output as hypoglycemia or no hypoglycemia, and b three-class classification, i.e.,
identifying the neural network output as hypoglycemia or normoglycemia or hypoglycemia, given different prediction horizons. No statistical
significance is observed for binary classification. *p-value ≤ 0.05; **p-value ≤ 0.01; ***p-value ≤ 0.001, in comparison to the prediction horizon
at 5 min; +p-value ≤ 0.05; ++p-value ≤ 0.01; +++p-value ≤ 0.001, in comparison to the prediction horizon at 10min and #p-value ≤ 0.05;
##p-value ≤ 0.01; ###p-value ≤ 0.001, in comparison to the prediction horizon at 15min. Error bars (standard deviation, s.d.) are computed over
all patients’ results.
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pre-processing techniques are implemented for data augmenta-
tion on the training data of the minority class and a prediction
horizon at 20 min.
For this data augmentation method, we repeat the minority

samples (the input-output pairs where the output BG is less than
80mg/dL) in the training dataset for k folds, i.e., for two-fold
oversampling by repeating, we duplicate the minority samples
once such that the minority data is doubled in the augmented
training dataset. Hence, for k-fold oversampling by repeating, we
augment the training data by adding k− 1 copies of the training
data labeled as hypoglycemia (output BG < 80 mg/dL) to the
augmented training dataset. Figure 6a shows that oversampling
by repeating only improved slightly in the sensitivity when the
minority augmentation fold increases, which is different from the
other three augmentation methods.
Adding Gaussian white noises to the training dataset has been

proved to be an effective way of data augmentation for CNNs27,
and specifically for CNNs using wearable sensor data62. In this part,
we tried different levels of Gaussian white noises distinguished by
the variance of the noise. In particular, we infused white noises
with variance at 5, 10, 50 mg/dL, respectively, to the input BG data
of minority class, whose output BG value is below the
hypoglycemia threshold, i.e., there are two copies of minority

training data in the augmented dataset, one is the original copy
collected by the CGMs, and the other is a copy generated by
infusing Gaussian noises. Figure 6b suggests that increasing the
variance of the infused Gaussian noise will increase the sensitivity
of the model.
We generated synthetic minority samples using TimeGAN49, by

training a TimeGAN using the original minority samples in our
dataset. TimeGAN combines the versatility of the unsupervised
GAN approach with the control over conditional temporal
dynamics afforded by supervised auto-regressive models, by
leveraging the contributions of the supervised loss and jointly
trained embedding network, and hence can generate realistic
time-series data. Our trained TimeGAN is validated by the PCA and
T-NSE plots for the original minority samples and synthetic
minority samples, see Supplementary Fig. 3. We then compared
the performance of models when different folds of synthetic
minority samples were added to augmented training dataset.
Figure 6c shows that adding more minority data generated by
TimeGAN could also improve model sensitivity but not as
monotonically as the other methods tested.
Zhang et al.48 recently introduced mixup to improve the

generalization of neural network architectures, by linearly inter-
polating between samples in the training dataset using the

Fig. 4 ROC curves for two classification tasks given prediction horizons at 5, 30, and 60min using the best CNN model. a, b Examples of
the ROC curves for the prediction horizon at 5min, in a binary classification and b three-class classification. c, d Examples of the ROC curves
for the prediction horizon at 30min, in c binary classification and d three-class classification. e, f Examples of the ROC curves for the prediction
horizon at 60 min, in e binary classification and f three-class classification. AUC, area under the ROC curve. Binary classification denotes
predicting hypoglycemia vs. no hypoglycemia. In three-class classification, we iterated over the labels (HYPO for “hypoglycemia”, NORMO for
“normoglycemia” and HYPER for “hyperglycemia”) to compute the ROC curves. The results by Transfer2 is comparable to those by Pretrain
while those by Transfer3 are worse than Transfer1 and Transfer2, hence we only show the results of Pretrain and Transfer1 for brevity.
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following formula,

~x ¼ λ xi þ ð1� λÞxj; ~y ¼ λ yi þ ð1� λÞyj; (1)

where ~x; ~y denote generated input and output, respectively; λ is a
hyperparameter following the Beta distribution, Beta(α, α); xi, xj
denote inputs from two different samples and yi, yj denote the
corresponding output of those two different samples. We note
that in the original mixup algorithm, yi, yj can be of different class,
while in our model we only perform mixup on the minority class,
i.e., yi, yj satisfy the condition that yi < 80 and yj < 80.
There have been some attempts to perform data augmentation

using mixup in time-series analysis of biosignals, such as
electroencephalogram (EEG) and electrocardiogram (ECG)63, gen-
erating virtual biosignals from real biosignals of different types64.
While in this work, we implement mixup for data augmentation on
minority class only to alleviate the effect of data imbalance. By
k-fold mixup, the size of the minority class is increased to k times
of its original size by adding k− 1 copies of synthetic data using
mixup for each training epoch. The original mixup algorithm does
not include k as a hyperparameter, i.e., in the original mixup, the
original training data is replaced by synthetic data generated by
linear interpolation in the beginning of each training epoch.
Figure 6d shows that increasing the folds of minority data by
mixup could help improve model sensitivity but the uncertainty in
the positive predictive value is relatively larger than other
augmentation methods.
The hyper-parameter α in the Beta distribution Beta(α, α) of

mixup is a very sensitive parameter controlling the diversity of the
synthetic samples, i.e., higher α produces samples more resem-
bling to the reference real data while lower α introduces samples
very different from the reference real data. With α= 1, Beta(1, 1) is
equivalent to a uniform random distribution. Here, we compare
the performance of our model given α= 0.4 and α= 2 in twofold
mixup, in terms of two classification scores, i.e., positive predictive
value (PPV) and sensitivity for the positive class (the minority class,
hypoglycemia samples), and examine the sensitivity of those two
classification scores for different prediction horizons. The results
for α= 0.4 and α= 2 are shown in Fig. 7. We note that mixup with
either α= 0.4 or α= 2 improves the model sensitivity over
different prediction horizons. Specifically, models trained on the

Table 1. Performance comparison between our best model and other
models using only blood glucose levels as the model input on
OhioT1DM dataset.

(a): Regression results for prediction horizon at 30 and 60min.

Metrics Ours Bevan
et al.59

Khadem
et al.58

Joedicke
et al.60

Ma et al.61

30min MAE 13.53 14.37 14.14 15.50 14.52

30min RMSE 19.08 18.23
(18.82a)

19.40 24.51 20.03

60min MAE 24.65 25.75 25.32 24.78 26.40

60min RMSE 33.80 31.10 33.91 38.66 34.89

(b): Binary classification results for prediction horizon at 30min.

Metrics Ours Bevan et al.59

Accuracy 95.98% 95.65%

F1 score 61.72% 57.40%

Sensitivity 59.19% 49.94%

Precision (PPV) 67.68% 69.00%

Specificity 98.15% 98.61%

NPV 97.55% 96.76%

MAE mean absolute error, RMSE root mean squared error, PPV positive
predictive value, NPV negative predictive value.
aDenotes the 30min RMSE of the model by Bevan et al.59 without imputing
missing values with the mean of training dataset.
(a) Our model outperforms other models in terms of mean absolute error
in both 30 and 60min prediction horizon. We report the mean of the
results over five different runs. (b) Our model for binary classification
(hypoglycemia vs. no hypoglycemia) outperforms that by Beven et al. in
terms of accuracy, sensitivity, and F1 score of the positive class (the
hypoglycemia class). The classification results are obtained by setting a
80mg/dL threshold to the blood glucose level, i.e., blood glucose level
80mg/dL with negative class (no hypoglycemia class). Our best model is
CNN+ Transfer2.

Fig. 5 Regression performance of the best CNN model on the original dataset (no augmentation on the training dataset), using four
different loss functions. a Performance comparison between four loss functions, i.e., mean squared error (MSE), relative mean squared error
(REL. MSE), mean absolute error (MAE) and relative mean absolute error (REL. MAE) in terms of four prediction scores, i.e., sensitivity, positive
predictive value (PPV), specificity and negative predictive value (NPV). The results suggest that the relative mean absolute error (REL. MAE)
serves as the best loss function in that it maintains good and balanced performance regarding the four scores shown. Hence, we keep the REL.
MAE as the loss function for the subsequent analysis. Error bars (standard deviation, s.d.) are computed over all patients’ results. b True blood
glucose values measured by CGM vs. the predicted blood glucose values using REL. MAE as the loss function. The blue scatter points denotes
the measurement-prediction pairs. The black diagonal line denotes the perfect prediction. The red lines denote the hypoglycemia threshold
80mg/dL.
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training dataset augmented by mixup show high sensitivity within
all the prediction horizons examined while the model without
data pre-processing shows decreased sensitivity over longer
prediction horizons. The model trained on the training dataset
augmented by mixup α= 0.4 shows different uncertainty in the
predictive scores for different prediction horizons; for example,
the standard deviation of sensitivity and PPV for prediction
horizon at 15 min are much larger than those for other prediction
horizons. However, the model trained on the training dataset
augmented by mixup α= 2 shows similar uncertainty in the
predictive scores among different prediction horizons, mainly
because samples generated by mixup α= 0.4 are relatively
distinct from the original samples collected while those by mixup
α= 2 is similar to the original samples, hence preserves the data
patterns. As the prediction horizon increases, the sensitivity of the
model decreases while the PPV increases when training on the
raw dataset. However, the models trained on datasets augmented
by mixup show high sensitivity and a gradual drop in the PPV,
regardless of the increase in the prediction horizon.
The results in Fig. 6 indicate that by adding more training data

of minority class, either through duplication or synthesizing, will
increase the model sensitivity but decrease the positive predictive
value, i.e., the precision for minority class. Specifically, given the
same amount of minority samples in the training data, the
increase in model sensitivity and decrease in precision for minority
class is more significant in those with synthetic minority samples,
compared to the oversampling by repeating. These results prove a
recent finding that transforms (augmentations), which preserve
the labels of the data can improve estimation by enlarging the
span of the training data50. In our case, we preserve the labels of
the data by only augmenting the minority training data, which

consequently increases the span of minority data, by generating
synthetic data using Gaussian noise, TimeGAN or mixup. Our
results also suggest that synthetic minority data (data generated
by infusing Gaussian noise, TimeGAN or mixup) could increase the
span of minority data much more significantly than repeating the
original minority data.

DISCUSSION
Type 2 diabetes is considered an epidemic worldwide. Hypergly-
cemia selectively damages cells that are not able to reduce
glucose transport into the cell, such as capillary endothelial cells in
the retina, mesangial cells in the renal glomerulus, and neurons
and Schwann cells in peripheral nerves. High intracellular glucose
concentration leads to the exhaustion of the antioxidant path-
ways, altered regulation of gene transcription and increased
expression of pro-inflammatory molecules resulting in cellular
dysfunction and death65. On a clinical level, these cellular changes
translate into micro and macrovascular complications of diabetes
associated with poor outcomes and increased mortality66. Current
diabetes treatment regimens may decrease the occurrence of
complications associated with hyperglycemia, however, they also
suppose a risk of extremely low glucose levels. Hypoglycemia can
lead to permanent neurological damages if not treated promptly
and increased mortality13. The prediction of blood glucose
variations helps to adjust acute therapeutic measures and food
intake in patients with type 2 diabetes.
We developed transfer-learning methods to predict “hypogly-

cemia” vs. “no hypoglycemia” or “hypoglycemia” vs. “normogly-
cemia” vs. “hyperglycemia” for patients with type 2 diabetes. We
obtained state-of-the-art results by tackling two major

Fig. 6 Predictive scores by different data augmentation methods and different folds of minority data augmentation. Hypoglycemia (the
minority class, also the positive class) samples in the training data is augmented with a oversampling by repeating, b Gaussian noise infusion,
i.e., the size of the minority training data is doubled by adding a copy of the raw minority data contaminated by Gaussian noises of different
levels, c TimeGAN, and d mixup (α= 2), while “no hypoglycemia” (majority class, also the negative class) samples remain intact. The minority
data fold represents the number of copies of hypoglycemia samples in the training data after data augmentation. “Raw” denotes no data
augmentation on the training dataset; twofold denotes that the raw minority data is kept in the training data and another copy of minority
data is generated by either repeating or synthesizing in each training epoch. The mean and standard deviation of the classification metrics are
obtained with five different runs. A table recording the detailed numerical results can be found in Supplementary Table 5. Error bars (standard
deviation, s.d.) are computed over all patients’ results.
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challenges associated with the small data size for individual
patients as well as the imbalanced datasets, i.e., small samples
for hypoglycemia. To deal with small datasets, we considered
three neural network models, including recurrent neural net-
works (RNNs), convolutional neural networks (CNNs) and self-
attention networks (SANs). We also examined four transfer-
learning strategies, which enabled us to train the neural
networks with a small amount of individual’s recorded data.
We demonstrated the performance of our methods on the data
obtained from 40 patients. We achieved high prediction accuracy
for the task of predicting hypoglycemia vs. no hypoglycemia
with accuracy no less than 98% and AUROC greater than 0.9 for
all the prediction horizons examined. For the task of predicting
hypoglycemia vs. normoglycemia vs. hyperglycemia, the best
model among all tested models achieved high accuracy greater
than 89% and AUROC greater than 0.86, for all the prediction
horizons examined (up to 1 h). Our results suggest that as the
prediction horizon prolongs, the prediction accuracy, as well as
the AUROC decreases, as expected, in both classification tasks.
When comparing the model performance on predicting

hypoglycemia vs. no hypoglycemia and predicting hypoglycemia
vs. normoglycemia vs. hyperglycemia, our results suggest that the
overall prediction accuracy and AUROC in the task of predicting
hypoglycemia vs. no hypoglycemia is always higher than those in
the task of predicting hypoglycemia vs. normoglycemia vs.
hyperglycemia.
More specifically, statistical significance was observed between

two short prediction horizons (5 and 10min) and the largest
prediction horizon (60 min) in the task of predicting hypoglycemia
vs. normoglycemia vs. hyperglycemia. We note that despite of the
statistical differences observed among different prediction hor-
izons, the model always maintained high accuracy.

Fig. 7 Sensitivity analysis of the prediction horizon on three predictive scores with twofold mixup data augmentation on minority
training data.We compare the performance of our CNN model trained on the raw training dataset and on the training dataset augmented by
two mixup models, one with α= 0.4 and the other with α= 2 for the Beta distribution Beta(α, α) implemented in mixup. The performance of
each model is calibrated in terms of a prediction accuracy, b positive predictive value (PPV, the precision of the positive class), and c sensitivity
(recall of the positive class). A table for the detailed numerical results is shown in Supplementary Table 6. Hypoglycemia (the minority class,
also the positive class) samples in the training data is augmented with twofold mixup. The purple-shaded bars denote the predictive scores by
mixup (α= 0.4), the red-shaded bars denote those by mixup (α= 2), and the gray-shaded bars denote those by the raw training data (no data
augmentation). Error bars (standard deviation, s.d.) are computed over all patients’ results.

Table 2. Baseline characteristics of the study participants and an
overview of the blood glucose data. Normally distributed variables are
presented in mean ± standard deviation form, otherwise as median
(first quartile, third quartile) and mean ± standard deviation form.

Demographics N= 40

Age, years 64.5 (58.8, 70.0), 65.1 ± 8.8

Female, no. (%) 21 (52.5)

Body compositions

Body mass, kg 81.0 (71.3, 94.2), 84.1 ± 18.7

Height, m 1.64 (1.59, 1.73), 1.66 ± 0.10

BMI, kg/m2 29.7 (26.6, 33.1), 30.1 ± 5.1

Hormone levels

Cortisol, μg/dL 15.9 (13.0, 20.2), 16.1 ± 6.0

Leptin, ng/dL 19.8 (9.57, 31.1), 23.0 ± 17.8

Fasting glucose, mg/dL 117.5 ± 17.9

Insulin, μIU/mL 13.33 ± 13.29

HOMA1-IR 3.51 ± 3.47

Blood glucose data brief

Data reading length (h) 90 (82, 170), 117 ± 63

Model input BG length (min) 30

Hypoglycemia threshold (mg/dL) 80

Hyperglycemia threshold (mg/dL) 180

HbA1c (%) 7.33 ± 1.31

HOMA1-IR the homeostatic model assessment index for insulin resistance.
We choose 80mg/dL as the hypoglycemia threshold, because recent
results by Farrell et al.57 have revealed a measurement artifact, i.e., that the
real-time CGM underestimates the degree of hypoglycemia by a difference
of 10 mg/dL, as shown in Supplementary Fig. 1.
N, the number of participants.
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However, a closer examination on our dataset reveals that most
of the blood glucose levels are labeled as either normoglycemia or
hyperglycemia and hence only very few blood glucose levels are
labeled as hypoglycemia, making hypoglycemia the definite
minority class, resulting in models with sensitivity around 77%
and positive predictive value around 75% for a prediction horizon
at 20min. Given the need to detect hypoglycemia more accurately
and robustly, data augmentation on the minority class, i.e.,
augment the hypoglycemia samples in our training dataset, is an
effective way of enforcing the neural networks to learn the
underlying patterns of the hypoglycemia data at a finer scale
compared to learning on the dataset without data augmentation.
Our tests suggest that data augmentation on the minority class
using synthetic data (not oversampling by repeating) increases
the model sensitivity in detecting hypoglycemia, from more than
80% to less than 96% depending on the specific augmentation
method for a prediction horizon at 20 min. This allows early
treatment intervention and prevention of potential hypoglycemic
events and hence is a significant improvement preferred in clinical
diagnosis given the fatal consequences of hypoglycemia for
patients with serious complications caused by type 2 diabetes.
However, given the imbalance nature of our dataset, the increased
sensitivity, i.e., the recall of the minority class, observed from
models trained on the augmented dataset also comes with a
decrease in the positive predictive value, i.e., the precision of the
minority class. Although the trade-off between the precision and
recall for imbalanced datasets is a commonly observed dilemma,
with minority data augmentation of different folds, we could still
achieve a good balance between those two metrics such that they
are acceptable in practical scenarios.
Despite the high accuracy and a few training data demanded

by our method, there are some limitations to current work.
Different from other physiologically derived approaches, this
method is purely data-driven with no physiological knowledge,
and performs prediction merely based on the blood glucose
history. It is recognized that data-driven methods are double-
edged swords. On one side, data-driven methods relieve
physicians from exhausting all possible combinations of physio-
logical inputs given large samples or data. On the other side, it is
not an easy task to incorporate domain knowledge to data-driven
methods, especially in neural network-based models. In our study,
we identify nutritional intake, exercise or stress conditions in
dysglycemia prediction as the domain knowledge, the appro-
priate incorporation of which could possibly improve the model
accuracy. Hence, we will propose the development of
physiologics-informed neural network models in our future work.
This and similar methods in the future are expected to have
important clinical implications in terms of preventing and
avoiding this potentially lethal complication, e.g., through alerts
generated directly to the patient or by linking the prediction
algorithms to the programmable insulin pumps.

To summarize, we proposed a new method for predicting
hypoglycemia vs. no hypoglycemia and predicting hypoglycemia
vs. normoglycemia vs. hyperglycemia, and the method shows
remarkable performance characterized by high prediction accu-
racy and AUROC as well as other metrics, including specificity and
sensitivity. In particular, a combined approach of transfer learning
and data augmentation for imbalanced data can be proved a very
powerful new framework for short term predictions for type 2
diabetes. Here, we focused on time periods up to 60min, with a
notable sensitivity and positive predictive value of the model
observed during the first 15 and 30min. We believe that accurate
hypoglycemia prediction over this period of time offers the most
in terms of having potential warning signs and preventing adverse
events by hypoglycemia. By incorporating transfer learning, this
method could provide patient-specific results in both predicting
hypoglycemia vs. no hypoglycemia and predicting hypoglycemia
vs. normoglycemia vs. hyperglycemia with relatively few patient-
specific training blood glucose samples. For example, in our case,
we used 1000 time segments, equivalently 83 h long, from the
target patient.

METHODS
Dataset
The use of blood glucose (BG) history of patients with T2D in this study were
approved by the institutional review board (IRB) of the Beth Israel Deaconess
Medical Center. Informed consents were obtained from all human
participants. The BG level was measured every 5min by a Continuous
Glucose Monitoring System. We analyzed data obtained from 40 outpatients
with diabetes (19 males; age 65 ± 8 years; BMI at 30 ± 5; with a mean HbA1c
level at 7.33%), who contributed a mean of 130.6mg/dL blood glucose level
through CGM (BG ranging from 40 to 400mg/dL). Individuals were eligible
for inclusion if they were adults with a diagnosis of T2D patients using CGM.
We present the blood glucose history of four selected patients in
Supplementary Fig. 2. Ten patients (25% of the participants) were treated
with insulin while 27 (67.5% of the participants) were receiving oral or (non-
insulin) injectable antidiabetic drugs. The rest of the patients (3 patients,
7.5% of the participants) were treated without oral nor insulin medications.
We identified all level 1 hypoglycemic (BG level <80mg/dL) and
hyperglycemic (BG level >180mg/dL) episodes from the CGM recordings.
To facilitate the network training, the BG levels were scaled by 0.0167, and
we applied a smoothing step on the BG measurements to remove any large
spikes that may be caused by patient movement, as suggested in ref. 68. An
overview of the dataset used in this work can be found in Table 2.

Predictors and outcome
The primary outcome of interest in this study is the BG values in the future,
e.g., 5 min to 1 hr later. We take the BG measured in 30min (7 BG values)
as one input data segment and predict the future BG level after a
prediction horizon, a time period from the most recent CGM measurement
in the input BG values, as shown in Fig. 1.

Table 3. Details of the neural network architectures and transfer-learning models.

Models Details

Network architecture RNN GRU size 10, 2 GRUs; FNN width 10, 1 FNN layer

SAN 8 self-attention units; FNN width 10, 4 FNN layers

CNN 1-D convolutional kernel size 4, 4 conv seq2seq units; FNN width 10, 3 FNN layers

Transfer-learning method Transfer1 Reuse weights of feature block and FNN block, retrain both blocks

Transfer2 Reuse weights of feature block and FNN block, retrain FNN block

Transfer3 Reuse weights of feature block, reinitialize FNN block, retrain FNN block

GRU gated recurrent unit, FNN fully connected neural networks, RNN recurrent neural networks, SAN self-attention networks, CNN convolutional neural
networks, conv seq2seq convolutional sequence to sequence.
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Neural network architectures
We developed new deep-learning methods for patient-specific blood
glucose level prediction. We considered three different neural network
architectures, including recurrent neural networks (RNNs)44,69, gated
convolutional neural networks (CNNs)45, and self-attention networks

(SAN)46, as well as three different transfer-learning strategies. We also
implemented Gaussian process regression (GP), fully connected feedfor-
ward neural networks (FNNs), and support vector machine (SVM) as the
baseline models. We implement GP and SVM with the sklearn library70.
For GP, we use a combined kernel consisting of a constant kernel, a radial
basis function kernel and a white noise kernel. For SVM, we use the default
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hyperparameters. For FNN, we use a 10-neuron-width, 3-layer-depth
network. The detailed hyperparameters of the baseline models are
optimized via grid search and can be found in the released code
repository. To tackle the important issue of data imbalance, we tested four
different data augmentation methods, i.e., oversampling by repeating,
infusing Gaussian noises, TimeGAN and mixup, on the minority class.
The dominant deep learning method used for sequence learning is the

RNN, which is a class of neural networks that allow previous outputs to be
used as the inputs of the current step. The cell units in RNNs are usually
chosen as long short-term memory units (LSTMs)69 and gated recurrent
units (GRUs)44, which deal with the vanishing gradient problem
encountered by traditional RNNs. In addition to RNNs, CNNs and self-
attention networks were proposed recently for time series forecasting, and
achieved better performance than RNNs for certain tasks. In the gated
CNNs, one-dimensional (1-D) convolutional kernels create hierarchical
representations over the input time series, in which nearby BG
measurements interact at lower layers while distant BG measurements
interact at higher layers. The mechanism of attention was first proposed in
ref. 71 for machine translation, and it has been shown that the network
architecture based solely on self-attention mechanism can also be used
successfully to compute a representation of the sequence46. Self-attention
is an attention mechanism to compute a representation of the sequence
by relating different positions of a sequence. In the RNNs, the input
sequence is fed into the network sequentially, while in CNNs and self-
attention networks, the input sequence is fed into the network
simultaneously, and thus an embedding of the position of input elements
is required45. For the hyperparameters in the networks, e.g., the depth and
width, we perform a grid search to obtain an optimal set of
hyperparameters, see Table 3 for more details. The details of the network
architectures used in this study are shown in Fig. 8.

Transfer learning
To address the difficulty of obtaining a sufficient large dataset for each
patient, we implemented transfer learning33–36 on the three aforemen-
tioned neural network architectures. In transfer learning, the training
procedure of neural networks includes two steps: first, we pre-train the
networks on other patients’ data by excluding the data from the target
patient, and then we further fine-tune the network on one part of the
target patient’s data, i.e., re-train the network on the training data of
the target patient’s blood glucose history. Finally, we test the network on
the rest of the data from the target patient. Two commonly used further-
training approaches are based on initialization and feature extraction72. In
the initialization approach, the entire network is trained, while in the
feature extraction approach the last few fully connected layers are trained
from a random initialization while other layers remain unchanged. In this
study, in addition to these two approaches, we consider a third approach
by combining these two approaches, i.e., the last few fully connected
layers are further trained while other layers remain unchanged. The details
of the four transfer learning methods can be found in Fig. 8 and Table 3.

Imbalanced data
Imbalanced data has been an ubiquitous issue in many fields, causing most
methods to yield erroneous predictions strongly biasing towards the
majority class. To reduce the hazardous effect of imbalanced data, we can
improve the method with various techniques: (i) modifying the imbalanced
data set by some mechanisms such as oversampling or undersampling or
both to provide a balanced distribution; (ii) designing problem-specific
cost matrices to describe the costs for misclassifying any particular data
example; (iii) using boosting methods73,74. Here, we tested several

methods for data augmentation on the training data of the minority class
only, i.e., oversampling by repeating, adding Gaussian white noises to the
input data, generating synthetic minority samples using TimeGAN49 and
mixup48, respectively. We compared the performance of these preproces-
sing techniques in terms of four classification metrics, i.e., sensitivity,
positive predictive value, specificity and negative predictive value.

Model validation
For model validation, if the networks are trained on multiple patients, then
we used a Leave-one-out cross-validation (LOOCV), i.e., we randomly
selected the dataset of one patient to be the test dataset and used the
dataset of the remaining patients to train the model. The outcome
variables indicate whether or not hypoglycemia or hyperglycemia
occurred. The model performance is measured in terms of the prediction
accuracy, which is defined as follows,

Accuracy ¼ TPþ FN
TPþ FNþ TNþ FP

; (2)

and the area under the receiver operating characteristic curve (AUROC). To
calibrate the data augmentation effect on the imbalanced dataset, we
computed four classification metrics, sensitivity, positive predictive value (PPV),
specificity and negative predictive value (NPV) from the following formulas:

Sensitivity ¼ TP
TPþFN ; PPV ¼ TP

TPþFP ;

Specificity ¼ TN
TNþFP ; NPV ¼ TN

TNþFN :
(3)

where TP denotes the number of true positives, FP denotes that of false
positives, TN denotes the number of true negatives, and FN denotes that of
false negatives.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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