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ABSTRACT: Data-driven soft sensors play an important role in
practical processes and have been widely applied. They provide real-
time prediction of quality variables and then guide production and
improve product quality. In practical chemical production processes,
nonlinear dynamic multirate data is widespread and challenging to
model. This paper innovatively proposes a temporal−spatial pyramid
variational autoencoder (TS-PVAE) model for the nonlinear
temporal−spatial feature pyramid extraction from multirate data.
This structure not only selectively utilizes multirate data but also
handles complex nonlinear time-series data. Based on this, integrated
with just-in-time (JIT) learning, an adaptive TS-PVAE (ATS-PVAE) model is developed. In this model, historical data are used for
real-time fine-tuning of the model, leading to the development of an adaptive model. Finally, the proposed models are validated by
an industrial case of a methanation furnace, demonstrating a superior estimation performance.

■ INTRODUCTION
As chemical processes develop, production processes become
increasingly intricate, with a heightened level of integration in
production equipment. Real-time monitoring is of great
significance for increasing production, reducing energy
consumption, and ensuring safety. At the same time, with
the development of Internet of Things (IoT) technology, data
acquisition has become easier. Therefore, there is a growing
focus and challenge in analyzing and modeling process data to
develop data-driven process monitoring models.1−4 Quality
variables are important indicators that can reflect the status of
the production process.5 However, their measurement is
usually expensive and has time delays. Establishing data-driven
soft sensor models for quality variables can predict them
quickly and at low cost and improve production efficiency.
In the collected process data, there are various types of data,

such as flow rate, pressure, temperature, and valve data. This
data is obtained from different devices with varying sampling
rates.6 However, most existing models downsample process
data according to the sampling rate of the quality variables.
Information from the process data is lost during down-
sampling. To effectively utilize a large amount of process
variable information, some scholars have proposed semi-
supervised learning methods.7−9 For example, Yao and Ge
proposed a hierarchical extreme learning machine based soft
sensor for semisupervised process data.10 These methods
involve establishing semisupervised learning models by
combining a large amount of unlabeled process data with a

small amount of labeled process data, further extracting more
data information and establishing more effective soft sensing
models. However, semisupervised learning can only handle
dual-rate data, remaining powerless when it comes to multirate
data. To address multirate data modeling problems, some
scholars have proposed multirate fault diagnosis models and
soft sensing models.11−13 Zhou et al. developed a multirate
principal component regression model for soft sensor
modeling.14 Shen et al. proposed a pyramid variational
autoencoder (PVAE) model for nonlinear multirate industrial
data.15

The application of deep learning models in the field of soft
sensing has become a highly regarded research direction.16−18

These models can extract complex feature information from
large-scale, high-dimensional process data and possess strong
nonlinear modeling capabilities. Depending on the specific soft
sensing problem and data characteristics, suitable deep learning
model architectures can be developed, including deep neural
networks (DNN), convolutional neural networks (CNN),19−21

stacked autoencoder (SAE), variational autoencoder
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(VAE),22−24 etc. Yuan et al. designed a variable-wise weighted
SAE for soft sensor modeling.25

In chemical processes, the process data often exhibits
dynamic temporal characteristics, requiring the establishment
of specific soft sensing models.26−28 As a result, deep time-
series soft sensing models based on methods such as recurrent
neural networks (RNN), long short-term memory networks
(LSTM),29,30 Hidden markov models (HMM),31,32 etc., have
been developed. Jiang et al. built a dynamic temporal
dependency model based on the similarities between the
short-term load forecasting and the transformer architecture.27

Dai et al. developed a time series denoising diffusion
probabilistic model to enhance time-series samples for
industrial soft sensing.28 Liu et al. proposed a soft sensor
based on correntropy long short-term memory for industrial
polyethylene process.33 Zheng et al. proposed a supervised
hybrid CNN-LSTM network for nonlinear dynamic data soft
sensor modeling.34 Geng et al. designed a gated convolutional
neural network based transformer regression model for
industrial dynamic processes.35

Although dynamic network structures can retain long-term
data information, memorable information is limited. In a
prolonged dynamic process, it is necessary to combine existing
dynamic information with similar historical information to
adjust the model in real time to obtain the best adaptive soft
sensor model. Just-in-time (JIT) learning26,36 methods can
identify similar historical data for test data, establish local
models, and then achieve better prediction accuracy. Since JIT
models can build models based on the target data, they are
suitable for complex nonlinear data and multimode processes.
In recent years, soft sensor models based on JIT learning have
been widely developed and applied.37 Recently, Xie et al.
proposed a novel JIT model by combining with non-Gaussian
information on the operation data.38 Guo et al. developed a
JIT learning soft sensor based on evolutional multiobjective
optimization and VAE.39 In order to solve the modeling
problem of nonlinear dynamic multirate data, this paper needs
to establish complex deep temporal networks. However, due to
the complexity of the model and the abundance of data, JIT
learning methods can help select a small amount of data for
targeted adjustments and optimizations of existing networks.
In this paper, a temporal−spatial pyramid variational

autoencoder (TS-PVAE) model is proposed to deal with the
nonlinear dynamic multirate data modeling problem. The
existing PVAE model is capable of effectively learning and
establishing soft sensor models for multirate nonlinear data.

TS-PVAE further dynamically extends multirate data, capturing
the dynamic features of the data through LSTM and utilizing
them for soft sensor modeling. Since dynamic modeling
requires a large amount of data information, leading to the
forgetting of historical information, to address this issue the
concept of JIT learning is introduced, and an adaptive TS-
PVAE (ATS-PVAE) model is proposed. This involves selecting
historically similar data to adaptively adjust the existing model,
thereby obtaining a more accurate prediction model.
The remainder of this work is organized as follows. In the

Preliminaries, a brief introduction to LSTM and a review of the
PVAE model are provided. Subsequently, this article presents a
detailed introduction to the TS-PVAE model. Furthermore,
the ATS-PVAE model is introduced. Finally, an industrial
example is used to validate the effectiveness of the model.

■ PRELIMINARIES
LSTM. Long Short-Term Memory (LSTM) networks, a

variant of RNNs, are tailored for processing sequential data by
effectively capturing temporal dependencies with strong
nonlinear capabilities. Comprising input gates, forget gates,
output gates, and memory cells, LSTM architectures address
the vanishing or exploding gradient issues inherent in
traditional RNNs.
Mathematically, the behavior of an LSTM unit is described

as follows:

= + +i W x W h b( )t ix t ih t i1 (1)

= + +f W x W h b( )t fx t fh t f1 (2)

= + +o W x W h b( )t ox t oh t o1 (3)

= + +g W x W h btanh( )t gx t gh t g1 (4)

= +c f c i gt t t t t1 (5)

=h o ctanh( )t t t (6)

Here, xt is the input at time t; ht is the hidden state; ct is the cell
state; and it, f t, ot, and gt are the input gate, forget gate, output
gate, and cell gate activations, respectively. W is weight
matrices; b is bias vectors; σ denotes the sigmoid function; and
⊙ denotes element-wise multiplication. The structure of an
LSTM is given in Figure 1.
In the context of time series data, LSTM networks excel in

capturing intricate patterns and dependencies, even in the

Figure 1. Structure of a LSTM.
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presence of noise and irregularities. By leveraging their
inherent nonlinear processing capabilities and robust memory
management, LSTM networks offer a reliable framework for
extracting salient features from time-varying signals, while
preserving temporal dynamics.
Revisit of PVAE. The PVAE model first utilizes a multirate

filter to restructure irregular multirate data into regular
multiresolution data. Then, by utilizing VAEs to extract data
features from different resolutions, feature pyramids with
different resolutions are constructed for regression modeling.
Figure 2 illustrates a specific example with four resolutions. In
this figure, it is assumed that process variables x1−x4 are
sampled every minute; x5−x8 are sampled every 2 min; x9−x12
are sampled every 3 min; and quality variables y1 and y2 are
sampled every 6 min. In this example, starting from each
sampling rate, variables with higher sampling frequency at that
time are found and concatenated to form four multiresolution
data sets.
Afterward, multiresolution features are extracted from these

reorganized four multiresolution data sets. Feature pyramids
are constructed through these extracted features, along with
lower-resolution features, and are used separately for
prediction. The detailed model derivation and implementation
can be found in ref 15.

■ PROPOSED TS-PVAE FOR SOFT SENSOR
MODELING

To address the modeling problem of dynamic nonlinear
multirate data, this paper proposes a TS-PVAE model. This
model extends the PVAE model to a dynamic version. LSTM

is embedded into encoders to learn and extract nonlinear
features from time series data.
First, the multirate data filter of the PVAE model is used to

reorganize the data into multiresolution data, and then the data
are dynamically expanded to time series multiresolution data.
Similar to the PVAE model, establishing a temporal−spatial
pyramid model requires extracting each resolution data point
separately to integrate low-resolution features into higher
resolutions. Taking an example from the PVAE model, after
restructuring, there are four resolution data sets. First, it is
necessary to construct a temporal−spatial feature extraction
model for temporal resolution 4. In this paper, LSTM is
employed to process the temporal resolution 4 data; then
temporal−spatial features for resolution 4 are extracted
through the VAE model. These temporal−spatial features are
used for data reconstruction, and a regression model is
established using a multilayer perceptron (MLP). The specific
training model diagram of TS-PVAE for the resolution 4 (TS-
PVAE-r4) data set is shown in Figure 3.
Detailed derivation of the marginal likelihood for TS-PVAE-

r4 in Figure 3 is shown in Appendix 1. The loss function of TS-
PVAE-r4 can be given as

=
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Figure 2. Diagram of the PVAE model.

Figure 3. Structure of the TS-PVAE-r4 model.
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where x(1:t) represents the process time series variables; y(1:t)
represents the quality time series variable; z(1:t) represents the
latent variables from time series input; subscript r4(1:t)
indicates time series resolution 4; and it is assumed that the
relationships of x(1:t) and y(1:t) are independent of each
other conditionally.
The trained TS-PVAE-r4 model provides temporal−spatial

features from the time series resolution 4 data set, serving as
the first layer of the feature pyramid. These top-level
temporal−spatial features are further introduced into the TS-
PVAE for resolution 3 (TS-PVAE-r3) for modeling. The
specific model structure is illustrated in Figure 4.
According to the model structure in Figure 4, the loss

function for TS-PVAE-r3 can be derived as
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where subscript r3(1:t) indicates the time series resolution 3
data set and subscript r3,i(1:t) represents time series resolution
3 − i (i = 1, 2). Detailed derivation of the marginal likelihood

for TS-PVAE-r3 is given in Appendix 2. To address the data
imbalance problem caused by different sampling rates in
different networks, a balance coefficient α is introduced into
this loss function.
In the TS-PVAE-r3 model, a two-layer temporal−spatial

feature pyramid is constructed and used for predicting quality
variables. Furthermore, the two-layer temporal−spatial features
are introduced into the TS-PVAE-r2 model to extract the third
layer temporal−spatial features and build the regression model.
The model structure is illustrated in Figure 5.
Then, the loss function of TS-PVAE for resolution 2 (TS-

PVAE-r2) in Figure 5 can be given as
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Here, r2(1:t) indicates the time series resolution 2 data set, and
subscript r2,i(1:t) represents time series resolution 2 − i (i = 1,
2, 3). Similar to the above derivation, β is introduced as a
balance coefficient. Detailed derivation of the marginal
likelihood for TS-PVAE-r2 is given in Appendix 3.

Figure 4. Structure of the TS-PVAE-r3 model.

Figure 5. Structure of the TS-PVAE-r2 model.
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In the TS-PVAE for resolution 1 (TS-PVAE-r1), a three-
layer temporal−spatial feature pyramid is introduced. The
model structure is shown in Figure 6.
Further, the loss function of TS-PVAE-r1 can be written as
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where subscript r1(1:t) indicates the time series resolution 1
data set; subscript r1,i(1:t) represents time series resolution 1 −

i (i = 1, ..., 6); and γ is also a balance coefficient. Detailed
derivation of the marginal likelihood for TS-PVAE-r1 is given
in Appendix 4.

■ PROPOSED ATS-PVAE FOR SOFT SENSOR
MODELING

To further utilize historical data for adjusting and optimizing
the model, an ATS-PVAE model (Figure 7) based on just-in-
time (JIT) learning is proposed in this section. This model
adjusts and optimizes the trained model by searching for
similar data sets in historical data. For the TS-PVAE-ri model
(i represents the resolution, and nr di

data are selected by

comparing the Euclidean distance between the current process
data with prediction and the historical process data).

=D x x x x( ) ( )r r j r q
T

r j r q, , , ,i i i i i (11)

Figure 6. Structure of the TS-PVAE-r1 model.

Figure 7. Flowchart of the ATS-PVAE model.
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where q represents the current time-series test data to be
queried, while j represents the time-series data from the
historical training set.

■ CASE STUDY
Methanation Furnace. In the production process of

synthetic ammonia, nitrogen (N2) and hydrogen (H2) are the
main feed gases, typically mixed in a certain ratio and fed into
the reactor for the Haber−Bosch process. Hydrogen is usually
prepared from natural gas or other hydrocarbons through
methods such as steam reforming or partial oxidation, which
may produce carbon monoxide and carbon dioxide as
byproducts.
Before entering the ammonia synthesis reactor, it is

necessary to remove these byproducts through the methana-
tion furnace unit. In the methanation furnace unit, catalyzed by
nickel and under high-temperature conditions, the following
chemical reactions occur:

+ + +
+ + +

CO 3H CH H O Q

CO 4H CH 2H O Q
2 4 2

2 2 4 2 (12)

The purpose of this unit is to remove carbon monoxide and
carbon dioxide from the feed gases as much as possible,
making the residual levels of these gases at the outlet crucial
quality variables. In practical production processes, precise
measurement of carbon monoxide and carbon dioxide
residuals relies on expensive mass spectrometers in laboratory
settings, which is not feasible for large-scale synthetic ammonia
processes.
Hence, it is possible to establish a soft sensor model linking

easily measurable process variables with quality variables
representing carbon monoxide and carbon dioxide residuals,
enabling timely assessment and adjustment of the methanation
furnace unit’s production process and quality conditions.
Operators of this facilitation can adjust feed gas proportions

effectively based on the soft sensor to prevent production
accidents. Figure 8 illustrates the production process of the
methanation furnace unit, and Table 1 presents the process
variables collected from the methanation furnace unit.

Results and Analysis. In this process, due to the different
technical conditions of the measuring instruments and the
discrepant nature of the sensors, the process variables are in
multiple sampling rates. The time span of the collected data set
for modeling is 12000 min. Among the 11 variables, the U1, ···,
U5 are sampled every minute; U6, ···, Ux8 are sampled every 2
min; U9, ···, U10 are sampled every 3 min; and the quality
variable y is sampled every 30 min. In this case, the data of the
first 6000 min are used for training, while the rest of the 6000
data points are used for testing. Then, in total 6000 U1 to U5,
3000 samples of U6 to U8, 2000 samples of U9 to U10, and 200
samples of y are prepared for model training. The remaining
6000 samples of U1 to U5, 3000 samples of U6 to U8, 2000
samples of U9 to U10, and 200 samples of y are taken as the

Figure 8. Flowchart of the methanation furnace.

Table 1. Description of the Process Instruments in
Methanation Furnace

Tags Descriptions

U1 Flow rate of process gas at MF’s exit
U2 Pressure of process gas at MF’s entrance
U3 Pressure of process gas into F3’s entrance
U4 Temperature of upper bed at MF
U5 Temperature of middle bed at MF
U6 Temperature of lower bed at MF
U7 Temperature of process gas at MF’s exit
U8 Temperature of process gas at MF’s exit
U9 Temperature of synthesis gas at F2’s exit
U10 Liquid level of F2
Y Content of CO and CO2 at MF’s exit
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testing data set. The balance coefficients α, β, and γ are also set
to 1/2, 1/3, and 1/6, respectively. According to the principle of
the multirate data filter in the PVAE model, we selected the
least common multiple of the four sampling rates to partition
the data. In this vase, every 6 time steps form one group of
data. Since y is sampled every 30 min, 5 groups of data can be
used to predict y using a dynamic network. The specific
composition of the time-series data is shown in Table 2.

The prediction performances of the proposed TS-PVAE
model and ATS-PVAE model are compared with dimension-
ality-reduced LSTM and LSTM trained on all multirate data
(Mr-LSTM). The detailed model structure and parameters of
the proposed models and comparison models are shown in
Table 3. The mean absolute error (MAE) and root means
square error (RMSE) are taken as indicators to measure the
experimental results.

= | |
=

y y NMAE /
i

N

i i
1 (13)

=
=

y y NRMSE ( ) /
i

N

i i
1

2

(14)

where yi is the real value; yi is the prediction value; N is the
length of query samples; L is the length of labeled samples; and
yl is the mean value of the labeled outputs. MAE and RMSE

can measure the predicted error. Generally, the best
predictions correspond to the lowest MAE and RMSE.
The ATS-PVAE model and the TS-PVAE model share the

same network structure, but the network parameters are fine-
tuned for the TS model based on 50 selected similar data sets.
The evaluation indices are listed in Tables 4−Table 6. The
prediction results of TS-PVAE-r4, TS-PVAE-r2, ATS-PVAE-r4,
and ATS-PVAE-r2 are shown in Figures 9−12.

From Figures 9−12 and Table 5, it can be observed that as
the temporal−spatial feature pyramid is constructed the TS-
PVAE-r2 model achieves the best estimation results when
using a three-layer pyramid. The LSTM model only uses
down-sampled data, and the model with less data is worse. The
MR-LSTM model uses all the multirate data, although the
model effect has been improved, but the data has not been
reorganized. The temporal−spatial relationship of the data is

Table 2. Reorganized Time Series Multi-Resolution Data

Subresolution 1:t = 1:5
Reorganized

data

Time Series
Resolution 4

T6, T12, ···, T30 U1−U10

Time Series
Resolution 3

Resolution
3−1

T3, T9, ···, T27 U1−U5,
U9−U10

Resolution
3−2

T6, T12, ···, T30 U1−U10

Time Series
Resolution 2

Resolution
2−1

T2, T8, ···, T26 U1−U8

Resolution
2−2

T4, T10, ···, T28 U1−U8

Resolution
2−3

T6, T12, ···, T30 U1−U8

Time Series
Resolution 1

Resolution
1−1

T1−T25 U1−U5

Resolution
1−2

T2−T26 U1−U5

Resolution
1−3

T3−T27 U1−U5

Resolution
1−4

T4−T28 U1−U5

Resolution
1−5

T5−T29 U1−U5

Resolution
1−6

T6−T30 U1−U5

Table 3. Model Structure and Parameters

LSTM Encoder Latent variable Decoder Regression Epoch

TS-PVAE-r4 [20,10] [15,10] [8] [10,15] [10,5] 300
TS-PVAE-r3 [20,10] [10,8] × 2 [8] × 2 [8,10] × 2 [10,5] 300
TS-PVAE-r2 [20,10] [8,8] × 3 [8] × 3 [8,8] × 3 [10,5] 400
TS-PVAE-r1 [20,10] [8,8] × 6 [8] × 6 [8,8] × 6 [10,5] 500
LSTM [20,10] / / / / 1000
MR-LSTM [20,10] / / / / 1000

Table 4. MAE of the Proposed Models in the Methanation
Furnace

r4 r3 r2 r1

TS-PVAE 0.1218 0.1223 0.1209 0.1202
ATS-PVAE 0.1143 0.1131 0.1035 0.1092

Table 5. RMSE of the Proposed Models in the Methanation
Furnace

r4 r3 r2 r1

TS-PVAE 0.1489 0.1480 0.1465 0.1483
ATS-PVAE 0.1389 0.1426 0.1307 0.1329

Table 6. MAE and RMSE of LSTM and MR-LSTM in the
Methanation Furnace

MAE RMSE

LSTM 0.1703 0.2178
MR-LSTM 0.1617 0.1990

Figure 9. Prediction performance (TS-PVAE-r4).
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complicated, so the model effect is not good. Moreover, it can
be found that compared to TS-PVAE mdoels ATS-PVAE

models have achieved an overall improvement in performance.

Additionally, ATS-PVAE-r2 achieves the best prediction

performance. In other words, fine-tuning the model with a

small amount of similar time series data can enhance the

prediction performance of the model.

■ CONCLUSIONS

In this paper, a TS-PVAE model is proposed to build a soft

sensor for nonlinear dynamic multirate data. The multirate

data can be reorganized through the basic PVAE model. Then,

the TS-PVAE model extracts nonlinear temporal−spatial

features from multiple-time series resolution data. These

features construct multiple temporal−spatial feature pyramids

for regression modeling. As the feature pyramid expands, the

prediction accuracy of the regression model improves. When

there is sufficient temporal−spatial feature information, the

model achieves an optimal prediction performance. However,

when there is information redundancy, the model prediction

performance deteriorates. To obtain the best prediction

performance of the model, this paper integrated the JIT

strategy, utilizing a small amount of similar data for model fine-

tuning, and developed the ATS-PVAE model. Finally, a real

industrial case has validated the effectiveness and superiority of

the ATS-PVAE model. Furthermore, this model can be used

for a quality related model. Related feature selection can be

carried out through the correlation with quality variables in

model building.

■ APPENDIX

1. The detailed derivation of the marginal likelihood for TS-

PVAE-r4 can be given as
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2. The detailed derivation of the marginal likelihood for TS-
PVAE-r3 can be given as

Figure 10. Prediction performance (TS-PVAE-r2).

Figure 11. Prediction performance (ATS-PVAE-r4).

Figure 12. Prediction performance (ATS-PVAE-r2).

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.4c02681
ACS Omega 2024, 9, 23021−23032

23028

https://pubs.acs.org/doi/10.1021/acsomega.4c02681?fig=fig10&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c02681?fig=fig10&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c02681?fig=fig10&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c02681?fig=fig10&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c02681?fig=fig11&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c02681?fig=fig11&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c02681?fig=fig11&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c02681?fig=fig11&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c02681?fig=fig12&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c02681?fig=fig12&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c02681?fig=fig12&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c02681?fig=fig12&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.4c02681?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅ É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑ

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅ É
Ö
ÑÑÑÑÑÑÑ

= =

×
|

|
=

×

|
=

×

+ | =

+ |

= ×

= ×
| |

+ |

=
|

+

× | + [ | ]

| + [ | ]

=

=

=

=

=
|

=
|

p t t p t t t q t

q t
p t t t t t

q t q t

p t t t t

q t

p t t t t

q t
t t q t

q t
p t t t t t

q t q t
t t

q t
p t t t t

q t
t q t

q t
p t t t t t

q t q t
t t

q t p t t t t r t

q t p t t t t r t

q t q t
p t t t t t

q t q t
t t

q t q t
p t t p t p t t p t

q t q t

p t t t p t t t

q t
p t t p t

q t
t q t

q t p t t t t t C p t t

D q t t p t p t t t

x y z x x y z z

z
x x y z z z

z z

z x x y z

z

z x x y z

z
z z z

z
x x y z z z

z z
z z

z
z x x y z

z
z z

z
x x y z z z

z z
z z

z z x x y z

z z x x y z

z z
x x y z z z

z z
z z

z z
x z z x z z

z z

y z z z z z z

z
x z z

z
z z

z y z z z z z x z

z x z y z z z

ln ( (1: ), , (1: )) ln ( (1: ), (1: ), , (1: )) ( (1: ))

( (1: )) ln
( (1: ), (1: ), , (1: ), (1: ), (1: ))

( (1: )) ( (1: ))
ln

( (1: ) (1: ), (1: ), , (1: ))

( (1: ))

ln
( (1: ) (1: ), (1: ), , (1: ))

( (1: ))
d (1: )d (1: ) ( (1: ))

( (1: )) ln
( (1: ), (1: ), , (1: ), (1: ), (1: ))

( (1: )) ( (1: ))
d (1: )d (1: )

( (1: ))ln
( (1: ) (1: ), (1: ), , (1: ))

( (1: ))
d (1: ) ( (1: ))

( (1: )) ln
( (1: ), (1: ), , (1: ), (1: ), (1: ))

( (1: )) ( (1: ))
d (1: )d (1: )

D ( ( (1: )) ( (1: ) (1: ), (1: ), , (1: ))) ELBO ( (1: ))

D ( ( (1: )) ( (1: ) (1: ), (1: ), , (1: ))) ELBO ( (1: ))

( (1: )) ( (1: )) ln
( (1: ), (1: ), , (1: ), (1: ), (1: ))

( (1: )) ( (1: ))
d (1: )d (1: )

( (1: )) ( (1: )) ln
( (1: ) (1: )) ( (1: )) ( (1: ) (1: )) ( (1: ))

( (1: )) ( (1: ))

ln ( (1: ), (1: ), (1: )) ( (1: )) d (1: )d (1: )

( (1: ))ln
( (1: ) (1: )) ( (1: ))

( (1: ))
d (1: ) ( (1: ))

( (1: )) ln ( (1: ), (1: ), (1: ))d (1: )d (1: ) ln ( (1: ) (1: ))

( ( (1: ) (1: )) ( (1: ))) ln ( (1: ), (1: ), (1: ))

r r r r r r r
t t

r

r
r r r r r r

r r

r r r r r

r

r r r r r

r
r r

t t
r

r
r r r r r r

r r
r r

i t
r

r r r r r

r
r

t t
r

r
r r r r r r

r r
r r

i
r r r r r r

i
r r r r r r

t t
r r

r r r r r r

r r
r r

t t
r r

r r r r r r

r r

r r r r r r r

i t
r

r r r

r
r

t t
r

r r r r r r r
i

t q t t r r

i
KL r r r t q t t t t r r r r

z z

z z

z z z

z z

z z

z z z

z z x

z z z z z

(1: ) (1: )

(1: ) (1: )

1

2

(1: ) (1: ) (1: )

1

2

KL TS PVAE 3

1

3

KL TS PVAE 3

(1: ) (1: )

(1: ) (1: )

1

2

(1: ) (1: ) (1: )

1

2

(1: ) ( (1: ) (1: ))

1

2

(1: ) ( (1: ) (1: ), (1: ), (1: ))

r r

r r

r i
i

i

i
i

r r

i i

i i

r r

r r

r i
i

i i i

i
i

r r

r i r i r i i i

i i i r r r r r

3 4 4 3,1 3,2 4 4
3,1 3,2

3,1

3,2

3,1 3,2 4 3,1 3,2 4

3,1 3,2

3,1 3,1 3,2 4 4

3,1

3,2 3,1 3,2 4 4

3,2
3,1 3,2

3,1 3,2
3,1

3,2

3,1 3,2 4 3,1 3,2 4

3,1 3,2
3,1 3,2

3,
3,

3, 3,1 3,2 4 4

3,
3,

3,1 3,2
3,1

3,2

3,1 3,2 4 3,1 3,2 4

3,1 3,2
3,1 3,2

3, 3, 3,1 3,2 4 4

3, 3, 3,1 3,2 4 4

3,1 3,2
3,1 3,2

3,1 3,2 4 3,1 3,2 4

3,1 3,2
3,1 3,2

3,1 3,2
3,1 3,2

3,1 3,1 3,1 3,2 3,2 3,2

3,1 3,2

4 3,1 3,2 4 4 3,1 3,2

3,
3,

3, 3, 3,

3,
3,

3,1 3,2
3,1

3,2 4 3,1 3,2 4 3,1 3,2 3, 3, 3, 3, 3,

3, 3, 3, 3 3 3,1 3,2 4 4 3,1 3,2 4 (16)

3. The detailed derivation of the marginal likelihood for TS-
PVAE-r2 can be given as
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4. The detailed derivation of the marginal likelihood for TS-
PVAE-r1 can be given as
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