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Introduction

Due to the unique condition of being constantly exposed 
to air that contains pathogens, allergens, and pollutants, the 
lung has developed a highly specific local microenvironment 
where the combined actions of the epithelial barrier, innate 
defense molecules, and responses of both, the epithelium and 
professional phagocytes, help to maintain biophysical and 
immune homeostasis. Key cells mediating lung innate immune 
responses in the proximal respiratory tract include ciliated cells, 
goblet cells, Clara cells, and submucosal glands that together 

transport particles trapped in secreted mucus from more dis-
tally located airways toward proximal, a defense meachnisms 
known as mucociliary escalator. At the alveolar site pulmonary 
innate immunity is ensured by airway epithelial cells, alveolar 
epithelial cells (AEC) type I and II and alveolar macrophages 
that cofunction with surfactant-associated proteins belong-
ing to the C-type lectin superfamily as well as antimicrobial 
peptides (Fig. 1). Type II AEC synthesize, secrete and reup-
take pulmonary surfactant, a lipoprotein complex that reduces 
surface tension at the air-liquid interface of the lung, thereby 
allowing normal breathing, and protects the lung from con-
tinuous environmental exposures to pathogens and allergens.1-4 
Surfactant is composed of 90% phopholipids (dipalmitoylphos-
phatidylcholine) and 10% of proteins (SP) SP-A, SP-B, SP-C, 
and SP-D.2 The collectins SP-A, the most abundant one in the 
lung, and SP-D are both soluble pattern recognition receptors 
and sensing molecules not based on pattern recognition with 
important functions on lung immune homeostasis in vivo.1,4 
The small hydrophobic proteins SP-B and SP-C are essential 
for the functional structure of the surfactant lipid film at the 
air-liquid interphase.3 However, increasing evidence indicates 
that all surfactant proteins and distinct surfactant lipids regu-
late innate immune responses of the lung,5 partly by interact-
ing with alveolar macrophages. Under physiological conditions, 
resident alveolar macrophages account for approximately 95% 
of airspace leukocytes, constituting the sentinel phagocytic cell 
of the innate immune system in the lung. The natural micro-
environment of alveolar macrophages is pulmonary surfactant 
whose lipid and protein elements modulate their functional 
phenotype in humans, rats and mice in vivo.1,4,6

Cell surface and endosomal TLRs constitute one of the 
major cell receptors involved in innate immunity of the lung 
mediating immediate immune responses against microbial 
pathogens. TLR4, one of the most extensively studied TLR, is 
a type I transmembrane protein with an extracellular domain 
of leucine-rich repeats that provides, dependent on MD2, the 
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Lung infection by Gram-negative bacteria is a major cause 
of morbidity and mortality in humans. Lipopolysaccharide 
(LPS), located in the outer membrane of the Gram-negative 
bacterial cell wall, is a highly potent stimulus of immune 
and structural cells via the TLR4/MD2 complex whose func-
tion is sequentially regulated by defined subsets of adaptor 
proteins. Regulatory mechanisms of lung-specific defense 
pathways point at the crucial role of resident alveolar macro-
phages, alveolar epithelial cells, the TLR4 receptor pathway, 
and lung surfactant in shaping the innate immune response 
to Gram-negative bacteria and LPS. During the past decade 
intracellular spatiotemporal localization of TLR4 emerged 
as a key feature of TLR4 function. Here, we briefly review 
lung cell type- and compartment-specific mechanisms of 
LPS-induced TLR4 regulation with a focus on primary resi-
dent hematopoietic and structural cells as well as modifying 
microenvironmental factors involved.
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recognition of LPS, the invariant virulence factor of Gram-
negative bacteria. In recent years some unique regulatory 
mechanisms of defense pathways intrinsic to the lung have been 
identified which point at the critical role of resident alveolar 
macrophages, alveolar epithelial cells, the canonical TLR4 
receptor pathway and pulmonary surfactant in initiating and 
modulating initial immune responses to Gram-negative bacte-
ria and LPS. These normal lung defense mechanisms ensure 
that most host-microbe interactions do not lead to persistent 
pathological consequences. However, dependent on pathogen 
exposure time, load, virulence as well as age- and immune sta-
tus-related specific factors of individuals being at risk, pneumo-
nia may develop. Pneumonia caused by Gram-negative bacteria 
is a major cause of morbidity and mortality in humans with an 
increasing prevalence of community-acquired and early-onset 
ventilator-associated pneumonia.7

Although lung cell-specific regulatory mechanisms of TLR4 
signaling are largely unknown, they are expected to maintain 
defense homeostasis of the lung. LPS-induced cell responses 
are tightly regulated via distinct pathways including subcellu-
lar TLR4 localization and thus ligand sensing, but the role of 
TLR4 localization specific for the lung is only beginning to be 
experimentally addressed. In the lung, TLR4 and TLR4 adap-
tors are expressed by all immune and structural cell types. The 
purpose of this article is to review lung cell- and context-specific 
mechanisms of TLR4 regulation with a focus on primary resi-
dent hematopoietic and structural cells, represented by alveolar 
macrophages and alveolar epithelial cells, respectively.

TLR4 signaling in gram-negative respiratory infections
The identification of TLR4 as signaling receptor for LPS 

is based on studies showing that LPS-resistant C3H/HeJ 
and C57BL/10ScCr mice have a mutation in the Tlr4 gene 
and was confirmed by data showing that cells isolated from 
TLR4-deficient knockout mice are hyporesponsive to LPS.8,9 
Subsequent in vivo studies in TLR4-deficient mice revealed 
impaired survival associated with higher bacterial loads, 
reduced activation of gene expression and diminished produc-
tion of inflammatory mediators indicating that TLR4 signaling 
is required to induce a protective pulmonary immune response 
against common Gram-negative respiratory pathogens, includ-
ing Klebsiella pneumoniae,10-12 Pseudomonas aeruginosa,13 and 
Haemophilus influenza.14 Of note, mice lacking the adaptor pro-
tein MyD88, TIRAP, or TRIF also showed strongly reduced 
clearance of bacteria from the lung due to impaired induction of 
early immune responses with a much more remarkable pheno-
type in MyD88-deficient mice infected with K. pneumoniae,15,16 
P. aeruginosa,17,18 or Haemophilus influenza19 indicating that 
MyD88-dependent signaling is especially important for mount-
ing the initial host response to Gram-negative infections. 
Additionally, TIRAP has been shown to be critically involved 
in early lung immune responses against E. coli LPS and viable 
E. coli.20 By adoptive transfer of bone marrow cells from TLR4-
deficient mice to wild type mice, it was demonstrated that 
TLR4 signaling in cells of hematopoietic origin, like lympho-
cytes and/or macrophages plays an important role in early host 

defense against K. pneumoniae.21 The combined studies clearly 
reveal the complexity and redundancy of the TLR4 signal-
ing pathway in inducing initial pulmonary immune responses 
toward Gram-negative pathogens and suggest a primary role of 
hematopoietic cells.

Cell compartment-specific regulation of TLR4 signaling
First evidence for the mechanistic link between LPS rec-

ognition and intracellular transport of LPS from the plasma 
membrane to intracellular sites of accumulation as well as the 
dependence of this traffic on the LPSd gene was demonstrated 
by Wright and colleagues.22-24 Mechanisms of how TLR4 sig-
naling is integrated into the cellular infrastructure have been 
uncovered in cell line-based studies, murine bone marrow 
derived macrophages and dendritic cells, murine splenic B-cells 
and dendritic cells, murine embryonic fibroblasts, as well as 
human monocytes, neutrophils, and peripheral blood mononu-
clear cells. In the past decade it has become increasingly evident 
that subcellular localization of TLR4 and TLR4 adaptors is an 
important regulatory mode of TLR4 signaling.25,26

Under resting conditions, TLR4 cycles between the Golgi 
and at the plasma membrane and translocates to the cell surface 
upon LPS exposure.27 Trafficking of TLR4 from the Golgi to 
the plasma membrane is regulated by the small TLR4 associated 
glycoprotein MD2.28 At the plasma membrane, TLR4 and its co-
receptor CD14 are recruited to phosphatidylinositol 4,5-bispho-
sphate (PIP2)-rich microdomains.29,30 Within these PIP2-rich 
microdomains TLR4 oligomerizes and engages MyD88 that 
is recruited by the sorting adaptor TIRAP.31 In addition to the 
MyD88-dependent pathway that leads to early NF-κB activation 
and production of pro-inflammatory cytokines, TLR4 subse-
quently activates a second pathway via interaction with TRAM, 
the sorting adaptor for TRIF. This second pathway is initiated 
upon receptor endocytosis and, from the endosomal compart-
ment, triggers nuclear translocation of IRF3 and delayed activa-
tion of NF-κB and AP-1.32,33 Both clathrin-mediated endocytosis 
as well as caveolae and lipid raft-mediated endocytosis of TLR4 
are involved in TLR4 signaling34 and are required for TRIF-
dependent interferon expression.32 From early endosomes, TLR4 
is sorted and targeted to a trans-Golgi network pathway35 and/
or to a lysosomal-degradation pathway,34 required for resolution 
of the inflammatory response (Fig. 1). Thus, LPS responsiveness 
is fine-tuned by the levels of TLR4 present on the cell surface 
membrane which is in turn determined by the amount of TLR4 
trafficking from the Golgi to the plasma membrane and the 
amount of TLR4 internalized into endosomes.26 Minimal per-
turbation of any of these steps causes an abnormal inflammatory 
response. Regulation of the fine-tuning of TLR4-induced signal-
ing by endocytosis and the factors that restrict these processes are 
only starting to be elucidated. A recent study described an LPS-
induced endocytic process that is CD14-dependent but TLR4 
signaling independent and involves the tyrosine kinase Syk and 
its downstream effector PLCγ2.36 In that study, cell type-specific 
responses to LPS are conferred by cell type-specific coexpression 
of TLR4 and CD14.36 The p110δ isoform of phosphatidylinosi-
tol-3-kinase has been ascribed to have an important regulatory 
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function in TLR4 endocytosis by promoting the transfer of TLR4 
to endosomes thereby controlling the balance between TIRAP-
MyD88-dependent pro-inflammatory and TRIF-dependent 
anti-inflammatory cytokine expression.37 Besides spatiotemporal 
localization of TLR4 itself, signaling is also dictated by subcel-
lular localization of the sorting adaptors TIRAP and TRAM. 
An example for how adaptor localization can regulate TLR4 sig-
naling was provided by recent data showing that TAG, a splice 
variant of TRAM, is directed to late endosomes, unlike TRAM 
that localizes to early endosomes, and thus, in association with a 
recently identified protein called TMED7, negatively regulates 
TLR4-induced IFN production.38,39 These seminal cell biological 
studies have revolutionized the understanding of compartmen-
talized TLR4 signaling and will pave the way for increasing the 
knowledge on regulation of TLR4 signaling in primary immune 
cells and identifying cell- and context-specific factors involved.

Rab-regulated TLR4 trafficking
Only recently, Rab (Ras related in brain) GTPases, known 

as pivotal regulators of phagocytic, endocytic, and exocytic 
trafficking in eukaryotic cells40 have been described to regulate 
receptor rafficking and thus signaling. Rab GTPases involved in 
regulating subcellular TLR4 localization are Rab7b, Rab10, and 
Rab11. Rab7b controls trafficking between endosomes and the 
TGN41 and has been suggested to negatively regulate TLR4 sig-
naling by promoting TLR4 lysosomal degradation in RAW264.7 
cells.42 Rab10 is essential for optimal macrophage activation 

upon LPS stimulation by promoting continuous replenishment 
of TLR4 to the plasma membrane of RAW264.7 cells and, when 
overexpressed in macrophages, enhances LPS-induced acute lung 
injury in mice.43 Rab11a is essential for the trafficking of TLR4 
and TRAM to Escherichia coli-enriched phagosomes in human 
monocytes and thereby controls IRF3 activation from this com-
partment.44 The regulation of Rab-mediated TLR4 trafficking in 
primary lung-specific cells is only beginning to be understood.

Emerging evidence indicates that lung-specific microenvi-
ronmental factors such as surfactant play a critical role in regu-
lating subcellular membrane trafficking. In 2006 Ferguson 
et al. were the first demonstrating that pulmonary C-type 
lectins can modulate Rab-regulated intracellular membrane 
trafficking. In that study, coating of Mycobacterium tuberculo-
sis with SP-D modified phagosome-lysosome fusion in human 
monocyte-derived macrophages.45 Furthermore, both SP-A and 
SP-D significantly increase the number of Legionella pneumo-
philia co-localized with lysosome-associated membrane protein-
1in THP-1 cells.46 Using primary rat alveolar macrophages, we 
could show that SP-A specifically and transiently modulates 
endocytic/phagocytic membrane trafficking via regulation of 
Rab GTPases thereby functionally enhancing the lysosomal 
delivery of GFP-labeled Escherichia coli in these cells.47 Together, 
these studies provide evidence for lung-specific mechanisms in 
modulating Rab-regulated receptor trafficking.

Figure 1. Simplified overview of TLR4 signaling in primary lung cells. within the alveolus LPS is recognized by the TLR4 receptor complex that 
is constitutively expressed by primary alveolar macrophages and epithelial cells. Upon receptor binding TLR4 sequentially activates the MyD88-
dependent pathway from the plasma membrane resulting in NF-kB activation and the TRAM/TRiF-dependent pathway from the endosomal com-
partment leading to activation of iRF3. Cell type-specific regulation of LPS-induced TLR4 signaling in the lung is modified by microenvironmental 
factors, including the pulmonary surfactant lipids and proteins that partly regulate signaling through modulation of subcellular TLR4 localization. 
AeCi, type i alveolar epithelial cells; AeCii, type ii alveolar epithelial cells; iFN, interferon; iL, interleukin; iRAK, interleukin-1 receptor-associated kinase; 
iRF, interferon regulatory factor; LPS, lipopolysaccharide; MyD88, myeloid differentiation primary response gene 88; NF-κB, nuclear factor κB; SP-A, 
surfactant protein A; SP-D, surfactant protein D; TiRAP, toll-interleukin 1 receptor (TiR) domain containing adaptor protein; TLR4, Toll-like receptor 
4; TNF-α, tumor necrosis factor-α; TRAM, TRiF-related adaptor molecule; TRiF, toll/il-1R-domain-containing adaptor protein inducing interferon-β.
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Constitutive and LPS-modulated TLR4 gene and protein 
expression in primary alveolar macrophages

TLR4 signaling outcomes are partly generated through 
differences in TLR4 expression patterns by distinct cells. 
LPS-induced cytokine release by primary murine alveolar mac-
rophages depends on TLR4, MyD88, and TRIF.48 Constitutively 
expressed TLR4 mRNA and protein by primary murine and 
rat alveolar macrophages are significantly and transiently regu-
lated by LPS treatment in vitro and in vivo intranasal, inha-
lative, or intratracheal challenge depending on LPS dose and 
exposure time.49-53 Using chimeric mice separately expressing 
TLR4 on hematopoietic or structural lung cells, Hollingsworth 
et al. demonstrated a critical role of TLR4 expression on spe-
cifically alveolar macrophages for the biological response to 
inhaled LPS.54 Since the expression of TLR4 on structural lung 
cells is essential for neutrophil recruitment after systemic LPS 
exposure, the authors suggested the existence of lung-specific 
mechanisms for inhaled but not systemic exposure to LPS.54 
Furthermore, the inflammatory trafficking of monocytes into 
the alveolar space is associated with a significantly increased 
expression of TLR4 and CD14 mRNA supporting the assump-
tion that freshly recruited alveolar phagocytes substantially 
contribute to acute immune responses of the lung.55 By compar-
ing the constitutive and ligand-induced expression of TLR4 on 
human alveolar macrophages and autologous blood monocytes, 
it was demonstrated that the constitutive cell surface expression 
on alveolar macrophages is either significantly lower than on 
monocytes56 or equally low on both cells types.57 Comparably, 
the constitutive TLR4 mRNA expression is lower in alveolar 
macrophages than in autologous monocytes.57 Taken together, 
the TLR4 expression profile of autologous human alveolar mac-
rophages and monocytes is not identical and may thus provide 
specificity of immune responses to TLR4 ligation by LPS both 
in the lung and systemically. Exposure to LPS enhances TLR4 
surface expression already after 10 min and TLR4 mRNA after 
1 h on both cell types with a subsequent decrease of TLR4 
mRNA in both cell types after 24 h.57 Similarly, the low con-
stitutive TLR4 cell surface expression on human alveolar mac-
rophages is significantly increased after LPS treatment at the 
same concentration with staining of TLR4 being most distinct 
at the cell surface after 30 min and located more intracellularly 
after 3 h as shown by confocal microscopy.58 The combined data 
demonstrate that constitutive TLR4 expression in freshly iso-
lated primary human alveolar macrophages is low, but quickly 
and transiently upregulated at the gene and protein level by LPS 
in vitro. Inhalation of LPS by healthy humans decreases TLR4 
mRNA expression in alveolar macrophages after 6 h,59 whereas 
lung subsegmental instillation of LPS in healthy humans does 
not influence the cell surface expression of TLR4 or CD14 on 
alveolar macrophages recovered after the same time,60 suggest-
ing that LPS application procedures in humans differentially 
affect TLR4 abundancy in alveolar macrophages.

Constitutive and LPS-modulated TLR4 gene and protein 
expression in human (AECI and AECII)

Together with alveolar macrophages, alveolar epithelial cells 
are the first to encounter LPS. Recently, distinct roles of AECI 

and AECII in immunomodulation begin to emerge and addi-
tionally point to positive or negative impacts of both alveolar 
macrophages and surfactant on the functional status of AECs. 
Primary rat AECI, which have been shown to express TLR4,61 
produce more pro-inflammatory cytokines upon LPS treatment 
than AECII and, equally important, AECI-released cytokines 
are significantly enhanced by co-cultured alveolar macrophages 
and decreased by co-incubation with surfactant.62 Confirming 
and extending previous data,63,64 Guillot et al. demonstrated the 
constitutive expression of TLR4 mRNA and protein in human 
alveolar (A549) and bronchial (BRAS-2B, CFT-2, and NT-1) 
epithelial cell lines as well as MD2 mRNA expression in A549 
and BEAS-2B cells65 and provided first evidence for an intra-
cellular compartmentalization of TLR4 in lung epithelial cells. 
LPS treatment does not alter TLR4 mRNA or protein expres-
sion or localization in BEAS-2B cells though it induces a strong 
cytokine release.65 The constitutive expression of TLR4 mRNA 
and protein by primary human AECII is significantly upregu-
lated by LPS treatment accompanied by an enhanced cytokine 
release.66 Likewise, LPS induces a marked increase in TLR4 pro-
tein expression in primary human AECII after 30 min which 
increases further after 3 h of exposure.58 However, in contrast 
to the staining pattern of TLR4 in autologous primary alveo-
lar macrophages, TLR4 staining in AECII is most prominent 
intracellulary. LPS-induced increases of TLR4 expression are 
functionally relevant as determined by enhanced TNFα release 
by both cell types. Thorley et al. suggested that this differential 
expression of TLR4 by alveolar epithelium and macrophages 
is important in coordinated responses to inhaled pathogens.58 
In addition, the LPS co-receptor CD14, that facilitates TLR4 
responsiveness to very low levels (< 1 ng/ml) of LPS67 and con-
trols the LPS-induced endocytosis of TLR4,36 is constitutively 
expressed on the cell surface of primary human AECII and 
immortalized AECI.58

Lung cell-specific microenvironmental regulation of TLR4 
receptor and adaptor localization

In general, the role of lung cell-specific microenvironmental 
factors in regulating expression and intracellular TLR4 local-
ization in response to LPS is only beginning to be experimen-
tally addressed. The so far best-studied microenvironmental 
factor modulating TLR4 signaling in the lung is pulmonary 
surfactant. Pulmonary SP-A modulates the alveolar mac-
rophage threshold of LPS activity both in vitro and in vivo 
through various mechanisms. SP-A does not affect constitu-
tive TLR4 surface expression on human monocyte-derived 
macrophages as determined by f low cytometry.68 Likewise 
under basal conditions, SP-A has very little effect on TLR4 
mRNA expression during monocyte differentiation into mac-
rophages.68 We observed that SP-A alone transiently decreases 
TLR4 staining at early time points (15 min and 30 min) of 
exposure and antagonizes LPS-enhanced TLR4 protein expres-
sion in primary rat alveolar macrophages.53 The combined data 
suggest that SP-A, under resting conditions, only transiently 
affects TLR4 abundancy, but can persistently decrease TLR4 
expression levels in the presence of LPS. First evidence for spe-
cifically coordinated TLR4 positioning and thus functioning 
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through surfactant protein-mediated alterations in membrane 
trafficking was provided by a study showing that Survanta, a 
clinical surfactant extract that contains SP-C, inhibits LPS sig-
naling in vitro by blocking translocation of TLR4 to lipid rafts 
in A549 cells.69 Data from our group demonstrated that SP-A 
modulates the spatiotemporal compartmentalization of LPS-
induced TLR4 in primary alveolar macrophages in vitro and 
in a mouse model of intratracheal LPS challenge. SP-A reduces 
the LPS-induced colocalization of TLR4 with early endo-
somes and promotes TLR4 localization with the Golgi thereby 
inhibiting LPS-induced TLR4 signaling.53 Furthermore, the 
lack of direct SP-A/TLR4 co-localization, the SP-A-mediated 
upregulation of β-arrestin 2 protein expression and the SP-A-
enhanced β-arrestin 2/TLR4 interaction suggest that SP-A-
modulated cellular distribution of TLR4 in primary alveolar 
macrophages is mediated indirectly by integrating β-arrestin 2 
scaffolding interactions. However, the underlying mechanisms 
are unknown but one could speculate that SP-A either decel-
erates the LPS-induced transport of TLR4 from the Golgi to 
the plasma membrane or accelerates the retrograde transport 
of TLR4 from endosomes to the Golgi.53 The combined studies 
provide first evidence for a critical role of surfactant lipids and 
proteins in regulating TLR4 subcellular localization thereby 
fine tuning the quantity of LPS-induced immune responses of 
the lung. Among numerous negative TLR4 regulators is IL-1R-
associated kinase-M (IRAK-M) that is highly expressed in 
resting human alveolar macrophages.70 IRAK-M inhibits TLR-
induced NF-κB activity by binding to MyD88 and TRAF71 and 
can suppress sepsis-induced lung innate immunity.72 Both SP-A 
and surfactant lipids (Survanta) upregulate IRAK-M expression 
in human alveolar macrophages over 24 h leading to reduced 
LPS-stimulated cytokine release.73 The host defense peptide 
cathelicidin LL37 inhibits TLR4 responses in myeoloid cells74 
but enhances the LPS-induced activation of primary human 
bronchial epithelial cells by facilitating the delivery of LPS to 
TLR4-containing intracellular compartments.75 The combined 
data provide evidence for lung cell type-specific effects of LL37 
on TLR4 activation. Likewise, the host defense peptide CLP-19 
inhibits LPS-induced microtubule-dependent translocation of 
TLR4 from the endoplasmic reticulum to the cell surface in the 
mouse macrophage cell line RAW264.7 functionally inhibiting 
TNF release and phosphorylation of IκB-α.76 The tetraspanin 
CD9 prevents LPS-induced TLR4 localization at lipid-enriched 
membrane microdomains in RAW264.7 cells and pro-inflam-
matory cytokine release by alveolar macrophages after in vivo 
LPS challenge thereby preventing LPS-induced lung inflamma-
tion.77 In vivo oxidative stress induces the formation of a surface 
TLR4 receptor complex within lipid rafts of rat alveolar mac-
rophages resulting in an augmented responsiveness to LPS.78 
This was the first study showing that oxidative stress alters sub-
cellular TLR4 distribution in vivo. Actin depolymerization is 
required for multiple steps of endocytic receptor trafficking.79 
The actin depolymerization protein glia maturation factor-γ 
(GMFG) is highly expressed in endothelial cells derived from 
human lung.80 Recent data demonstrated that GMFG func-
tions as a negative regulator of LPS-induced TLR4 signaling 

by promoting TLR4 trafficking from early endosomes to late 
endosomes in primary human macrophages without affecting 
TLR4 expression levels.81 Activated adenylyl cyclases mediate 
the conversion of ATP to cAMP whose compartmentalized 
signaling regulates central cellular processes in the lung.82 The 
AC6 isoform, expressed in lung structural and immune cells,82 
promotes a shift of TLR4 endocytosis via the clathrin-depen-
dent pathway toward the lipid-raft-mediated pathway resulting 
in an accelerated degradation of TLR4 with subsequently sup-
pressed downstream signaling in RAW264.7 cells and bone-
marrow-derived macrophages.83 The combined studies provide 
evidence for a critical role of lung-specific microenvironmental 
factors in TLR4 trafficking and thus signaling.

Dysregulation of TLR4 spatiotemporal localization associ-
ated with Gram-negative human lung diseases

Two frequently occurring84 single nucleotide polymorphisms 
(SNPs) in the human TLR4 ecto-domain, the missense muta-
tions Asp299Gly (D299G) and Thr399Ile (T399I), are associ-
ated with LPS hyporesponsiveness and enhanced susceptibility 
to infection with Gram-negative bacteria.85 Another study on 
human individual genetic variations revealed a combination 
of D299G and T399I within the TLR4 and Ser180Leu within 
the TIRAP/MAL gene is associated with a significantly higher 
risk for developing sepsis and pneumonia.86 Recent data pro-
vide structural and biological evidence of the functionality of 
the mutant TLR4 carrying T399I and D299G, respectively.87,88 
First evidence for a mechanism by which a TLR4 polymor-
phism alters TLR4 signaling was provided by Figueroa et al. 
demonstrating that the D299G polymorphism impairs the 
recruitment of MyD88 and TRIF to TLR4 and subsequent 
pathway-specific signaling.88

Studies on TLR4 subcellular localization and signaling 
employing primary alveolar macrophages from patients suffer-
ing from lung diseases induced by or associated with Gram-
negative infection are limited. One disease, for which first 
data relevant to this subject are provided, is cystic fibrosis 
(CF). Uncontrolled inflammatory response to infection with 
Pseudomonas aeruginosa is associated with morbidity and mor-
tality in patients with CF.89 Abnormal trafficking and degrada-
tion of TLR4 in macrophages results in elevated inflammatory 
responses in both murine CF models and patients suffering 
from CF.90 Untreated CF transmembrane conductance regulator 
CFTR−/− bone-marrow derived macrophages display signifi-
cantly higher levels of plasma membrane-associated TLR4 than 
wild-type macrophages.90 Upon LPS stimulation, the function-
ally hyperresponsive phenotype of CFTR−/− macrophages is 
associated with a prolonged retention of TLR4 in early endo-
somes.90 Similarly, differentiated human monocytes from CF 
patients are hyperresponsive to LPS.90 Kelly et al. examined the 
intracellular trafficking of TLR4 in primary nasal epithelial 
cells from non-CF controls and CF patients after LPS chal-
lenge. They found a sustained gene expression of Rab10 in CF 
epithelium and an abolished TLR4 targeting to the lysosome in 
CF airway epithelial cells.91 The combined data imply that in 
pulmonary and immune cells from CF patients TLR4 spends 
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a prolonged time in the early endosome resulting in enhanced 
signaling.

Because pneumonia induced by Gram-negative bacteria fre-
quently develops postoperatively,92 Chalk et al. recently started 
a pilot study to characterize lung-cell specific alterations of the 
immune profile after cardiac surgery.93 Patients who postop-
eratively developed pneumonia revealed a stronger reduction of 
TLR4 expression on alveolar macrophages than patients who 
did not93 suggesting that a local cell-mediated immunosuppres-
sion in the lung might be a risk factor for postoperative pneu-
monia. The expression of TLR4 on alveolar macrophages from 
patients with ARDS is suppressed and, compared with control 
cells, does not change after ex vivo stimulation of the cells 
with LPS.94 Comparably, though employing blood monocytes, 
decreased TLR4 expression on these cells is associated with 
mortality in elderly patients with severe pneumonia.95 Together, 
these studies suggest that TLR4 expression profiles on hema-
topoietic cells are linked to pulmonary diseases induced by or 
associated with Gram-negative bacteria.

Conclusions

Emerging evidence demonstrates the functional signifi-
cance of subcellular TLR4 receptor and adaptor localization in 
regulating cellular responses to LPS. It is, however, unknown 
whether cell type-specific differences in TLR4 compartmen-
talization are associated with individual responses to TLR4 
ligation by LPS and thus LPS signaling specific for the lung 
is only beginning to be experimentally addressed. Pulmonary 
surfactant-modulated trafficking of the TLR4 receptor in pri-
mary alveolar macrophages provides first evidence for lung-
specific regulation of TLR4 signaling. Future studies are likely 
to focus increasingly on whether defined surfactant composi-
tions can switch subcellular TLR4 localization in response to 
LPS. Further investigations on lung cell type-specific TLR4 
responses and the impact of unique pulmonary microenvi-
ronmental factors on intracellular TLR4 positioning and thus 
ligand sensing will help to potentially improve the qualitative 
and quantitative outcome of innate immune responses of the 
lung to Gram-negative bacteria.
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