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1  | INTRODUC TION

Examining patterns of species co- occurrence has a long history in 
ecology. One of the earliest examples of statistical analysis in modern- 
day ecology was examining the independence of fish species in Illinois 
streams using a simple two- way contingency table (Forbes, 1907). 
Since then, there have been a large number of publications devoted 

to the development, and application, of statistical methods to evaluate 
the level of independence of species occurrence in an area of interest 
(e.g., Connor & Simberloff, 1979; Diamond & Gilpin, 1982; Dice, 1945; 
Manly, 1995; Pielou, 1977), and investigating possible covariate rela-
tionships (e.g., Kelt et al., 1995; Peres- Neto et al., 2001). Prior to the 
mid- 2000s, little attention had been devoted to the practical sampling 
issue of imperfect detection with species co- occurrence assessments, 
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Abstract
1. Patterns in, and the underlying dynamics of, species co- occurrence is of inter-

est in many ecological applications. Unaccounted for, imperfect detection of the 
species can lead to misleading inferences about the nature and magnitude of any 
interaction. A range of different parameterizations have been published that could 
be used with the same fundamental modeling framework that accounts for im-
perfect detection, although each parameterization has different advantages and 
disadvantages.

2. We propose a parameterization based on log- linear modeling that does not re-
quire a species hierarchy to be defined (in terms of dominance) and enables a 
numerically robust approach for estimating covariate effects.

3. Conceptually, the parameterization is equivalent to using the presence of species 
in the current, or a previous, time period as predictor variables for the current 
occurrence of other species. This leads to natural, “symmetric,” interpretations of 
parameter estimates.

4. The parameterization can be applied to many species, in either a maximum likeli-
hood or Bayesian estimation framework. We illustrate the method using camera- 
trapping data collected on three mesocarnivore species in South Texas.
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that is, species may occur at a surveyed location, yet be undetected by 
the field methods employed (but see Cam et al., 2000). This will lead to 
“false absences” that may result in misleading inferences about species 
co- occurrence patterns. MacKenzie et al. (2006) demonstrated that 
when the probability of species detection is unaffected by the pres-
ence of other species, the direction of any association between the 
two species (i.e., positive or negative effect on co- occurrence) may be 
correctly estimated using methods that do not account for imperfect 
detection, but the magnitude of the dependence will be underesti-
mated. Whereas, when detection probability of one species is different 
depending on the presence of the second species (e.g., due to behav-
ioral changes in the presence of a competing species), using methods 
that ignore imperfect detection may not even estimate the direction of 
any association correctly.

MacKenzie et al. (2004) developed a modeling approach to inves-
tigate co- occurrence patterns between two species, while account-
ing for imperfect detection. An important basis of their method is 
recognizing that with two species of interest, a surveyed location 
may be in one of four possible states defined by the presence or 
absence of each species (i.e., species A and B present, only spe-
cies A present, only species B present, or neither species present). 
MacKenzie et al. (2004) parameterized the co- occurrence compo-
nent of their model in terms of the joint probability of both species 
occurring at a unit (�AB) and the marginal, or overall, probabilities of 
each species occupying a unit (i.e., �A and �B). They suggested the 
level of co- occurrence could be quantified in terms of:

where a value of 1 would imply independence. They used a similar pa-
rameterization for the detection component, noting that which species 
could be detected in a survey of a unit would depend on the “true” 
state of the location. Potential covariate relationships with any of the 
parameters could be explored; however, it was found to be numeri-
cally unstable because of the constraints imposed upon possible pa-
rameter values (MacKenzie et al., 2006). Richmond et al. (2010) and 
Waddle et al. (2010) independently implemented an alternative pa-
rameterization (hereafter referred to as the RW parameterization) of 
the MacKenzie et al. (2004) model that was more numerically robust, 
particularly with covariates. The RW parameterization requires iden-
tifying a hierarchy between species where species A is defined as the 
“dominant” species and species B is the “subordinate” species, where 
the “subordinate” species is the focal species in an analysis (i.e., how is 
the occurrence of species B affected by the presence/absence of spe-
cies A). The model is parameterized in terms of the marginal occurrence 
probability of species A and the occurrence probability for species B 
conditional on species A being either present or absent from the unit 
(denoted here as �B |A and �B | a, respectively; with the lowercase “a” 
indicating absence of species A). A similar conditional parameterization 
was also implemented for the detection component of the model. The 
RW parameterization could be regarded as “asymmetric” as a direction 
to the interaction between species is assumed, while the MacKenzie 
et al. (2004) parameterization is “symmetric” as no direction is assumed. 

While both the MacKenzie et al. (2004) and RW models were initially 
presented in the context of co- occurrence between two species, they 
generalize to situations with a greater number of species, with the 
number of possible parameters to estimate increasing exponentially 
with the number of species (although constraints could be applied to 
reduce the number of parameters in the model).

Rota et al. (2016) developed a species co- occurrence model 
using a “multivariate Bernoulli distribution,” which has one 
Bernoulli random variable per species. However, this is essentially 
the same general approach used by earlier authors, where possi-
ble states are defined in terms of the combinations of which spe-
cies are present or absent. Therefore, the Rota et al. (2016) model 
can be considered as another parameterization, which, for the 
two- species situation, is in terms of the conditional probabilities 
�A | b and �B | a, and the odds ratio of co- occurrence v (MacKenzie 
et al., 2018, p. 530). The odds ratio v indicates how the odds of oc-
currence for one species is different given the presence or absence 
of the other species and is the same for either species. The Rota 
et al. (2016) parameterization is therefore symmetric (as with the 
MacKenzie et al. (2004) model), with the numerical robustness of 
the RW parameterization.

The underlying dynamic processes of species co- occurrence 
are also of interest to many ecologists, although methods to quan-
tify them have received much less attention than those examin-
ing co- occurrence patterns, particularly while also accounting for 
the imperfect detection of the target species (although see Fidino 
et al., 2019; Haynes et al., 2014; MacKenzie et al., 2006; Miller 
et al., 2012; Yackulic et al., 2014). As in the static co- occurrence sit-
uation, there are numerous ways in which such a model could be 
parameterized to quantify the level of interaction between spe-
cies in terms of co- occurrence dynamics (e.g., Fidino et al., 2019; 
MacKenzie et al., 2006, 2018).

In this paper, we first note the link between the “multivariate 
Bernoulli distribution” used by Rota et al. (2016) and the well- known 
statistical method of log- linear modeling used for analyzing contin-
gency table or count data (e.g., Poisson regression). Understanding 
this connection improves our ability to formulate, and interpret, 
models for more than two species. We also detail how a dynamic 
multispecies model could be defined using the log- linear framework, 
with a simple example application. In the following, we focus on how 
the models can be parameterized in terms of log- linear models and 
do not supply the details of the underlying modeling procedure, as 
that has been suitably described elsewhere (e.g., Fidino et al., 2019; 
MacKenzie et al., 2004, 2009, 2018; Richmond et al., 2010; Rota 
et al., 2016; Waddle et al., 2010).

2  | MATERIAL S AND METHODS

2.1 | General sampling situation

Throughout this paper, we assume a situation where s sampling units 
(e.g., grid cells, ponds, habitat patches) have been selected from the 

� =
�AB

�A�B
,
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wider population of units of interest for surveying, ideally using a 
probabilistic sampling scheme (to extrapolate to unsurveyed units). 
Units are surveyed for the presence of each species of interest, pos-
sibly at systematic points in time when co- occurrence dynamics are 
of interest. At each of the T survey periods (that shall be referred 
to as seasons henceforth), it is assumed that the species’ distribu-
tions are static or stable; therefore, the pattern of co- occurrence is 
assumed to be stable in each season. Changes in the distributions, 
and co- occurrence, are allowed between seasons. Due to imper-
fect detection, multiple surveys of each unit are conducted each 
season. The number of surveys may vary spatially and temporally 
(MacKenzie et al., 2004, 2018).

2.2 | Log- linear models

Log- linear models are used to analyze count data, particularly to 
assess the independence of factors used to construct contingency 
tables, and possibly other predictor variables. Analyses can be con-
ducted on the counts in each cell of the table, or on the underly-
ing cell probability structure (as done here; i.e., the probability an 
observation has a particular combination of factor values). It is not 
possible to separately estimate parameter values for all combinations 
of factor levels, and constraints must be applied. One option is the 
“corner- point constraint” where the values for parameters associated 
with one row and one column are set equal to 0, with either the first, 
or last, row and column typically being used. For example, consider 
a 2 × 2 contingency table for factors U and V, and let i index the row 
and column of the table (i.e., i = {u, v}, where u = 1, 2 and v = 1, 2). The 
log- linear model for the cell probability �i could be defined as:

where K is a normalizing constant such that the �i's sum to 1.0. The �U

parameter defines the effect of level 2 of factor U on the probability 
when v = 1, the �Vparameter defines the effect of level 2 of factor V 
on the probability when u = 1. The �UVparameter defines the level of 
interaction, or dependence, between factors U and V on the proba-
bility structure. The two factors are independent when �UV = 0, and 
in many applications, it is the nature of the interaction between the 
factors on the cell probabilities (or counts) that is of interest. The cell 
probabilities for a 2 × 2 table are given in more detail in Table 1, where 
K = 1 + exp(�U) + exp(�V ) + exp(�U + �V + �UV).

An equivalent approach to using the corner- point constraint is 
to define the log- linear model in terms of binary indicator variables 
representing the levels of each factor of interest. For example, if a 
factor contains M levels, select one level to use as a reference cat-
egory, then define M−1 binary indicator variables for observations 
from the other levels for that factor. In the 2 × 2 contingency table 
case, using the first level of factors U and V as the “reference” levels, 
then the indicator variables zU

i
 and zV

i
 can be defined, which equal 1 

if the observed factor level was 2, and equal 0 otherwise (Table 1). 
The log- linear model can then be expressed as:

Hence, in a regression context, the indicator variables are pre-
dictor variables representing the combination of factor levels for an 
observation, and the α terms are regression coefficients quantify-
ing the magnitude of the effect for each factor level. Coefficients 
associated with an interaction between two (or more) factors, for 
example, the parameter �UV for the zU

i
zV
i
 interaction, quantify how 

the effect of one factor is different depending on the value of the 
other factor(s).

When there are more than 2 levels for a factor, then the log- 
linear model generalizes in the obvious manner. For example, if fac-
tor U had 2 levels and factor V contained 3, the indicator variables zV2

i
 

and zV3
i

 could be defined to equal 1 if the observed factor level was 2 
or 3, respectively. The log- linear model would then be:

Similarly, the approach easily generalizes to a greater number of 
factors. For example, with three factors (U, V, and W) with two levels 
each, then:

In all cases, K would be defined differently to ensure that the cell 
probabilities sum to one.

2.3 | Species co- occurrence data— single season

Species co- occurrence data, assuming perfect detection, can be rep-
resented as a contingency table. Each factor is a species, and in the 
absence/presence case, there are two levels for each species (hence-
forth denoted with lowercase and uppercase characters, respec-
tively). The structure of the possible observations for two species 
(species A and B), indicator variables, and associated cell probabil-
ity structure is given in Table 2. The log- linear model, expressed in 
terms of the indicator variables, would therefore be:

log
(
�i

)
= �U + �V + �UV − log (K) ,

log
(
�i

)
= �UzU

i
+ �VzV

i
+ �UVzU

i
zV
i
− log (K) .

log
(
�i

)
= �UzU

i
+ �V2zV2

i
+ �V3zV3

i
+ �UV2zU

i
zV2
i

+ �UV3zU
i
zV3
i

− log (K) .

log
(
�i

)
= �UzU

i
+ �VzV

i
+ �WzW

i
+ �UVzU

i
zV
i
+ �UWzU

i
zW
i

+ �VWzV
i
zW
i

+ �UVWzU
i
zV
i
zW
i

− log (K) .

log
(
�i

)
= �AzA

i
+ �BzB

i
+ �ABzA

i
zB
i
− log (K) ,

TA B L E  1   Example of cell probability (�i) structure for 2 × 2 
contingency table, using the corner- point constraint. U and V are 
the factors of interest, each with 2 levels. The binary indicator 
variables (zU

i
 and zV

i
) for the second level of each factor are also 

presented

U V zU
i

zV
i

log
(

�i

)

�i

1 1 0 0 0 − log (K) 1/K

2 1 1 0 �U − log (K) exp(�U)∕K

1 2 0 1 �V − log(K) exp(�V )∕K

2 2 1 1 �U + �V + �UV − log(K) exp(�U + �V + �UV)∕K
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where zA and zB are the binary- valued variables indicating the pres-
ence of each species. While covariates have not been considered here, 
the general cell probability structure is the same as that used Rota 
et al. (2016) where the set of indicator variables represent their “multi-
variate Bernoulli distribution,” with �A, �B, and �AB being equivalent to 
the f1, f2, and f12 parameters defined by Rota et al. (2016).

As shown by Rota et al. (2016), the model parameters are directly 
interpretable in terms of the probability of each species being pres-
ent, conditional upon the presence or absence of the other species. 
That is:

Therefore, �A and �B determine the probability of occupancy 
(on the logit- scale) for each species given the absence of the other 
species, and �AB is the effect that the presence of one species has 
on the other. Hence, �AB parameter is a symmetric measure of co- 
occurrence between the two species, where �AB = 0 indicates the 
species co- occur independently, while a negative value indicate 
some form of exclusion or avoidance and a positive value indicate 
the species tend to occur together. Inferences about the level of 
co- occurrence between species could be based on estimates of 
�AB (e.g., by considering confidence intervals), or one could “test” 
for independence of the species by comparing the fit of a model 
where �AB is estimated, to the fit of a model with the constraint 
�AB = 0. Note that the level of association can also be expressed 
as an odds ratio:

Therefore, this is similar to the RW parameterization, 
but the interaction between species is modeled as a symmetric 
relationship.

Heuristically, the presence or absence of one species is being 
used as a covariate on the probability of occurrence of the other 
species.

The extension to more than two species is therefore straightforward. 
For example, with three species a third indicator variable can be defined (zC) 
and the model for the contingency table cell probabilities becomes:

The parameters �AB, �AC and �BC quantify the two- way interac-
tions between species and �ABC the three- way interaction. As noted 
by Rota et al. (2016), and also MacKenzie et al. (2018, p. 555), it is 
not always necessary to estimate higher- order interaction terms 
between many species, and in fact, very large sample sizes may be 
required to obtain reliable parameter estimates. Furthermore, com-
plex interactions between many species will be difficult to interpret 
biologically. Therefore some higher- order interaction terms may be 
set equal to zero. In the log- linear modeling literature, this is known 
as conditional independence. For example, the occurrence of spe-
cies A and B may appear to be not independent, but that is because 
both species have a nonindependent co- occurrence relationship 
with species C. Given the presence or absence of species C, species 
A and B occur independently of each other (i.e., species A and B are 
conditionally, upon species C, independent). This hypothesis could 
be fit by constraining �ABC = 0 and �AB = 0.

2.3.1 | Covariates

The effect of potential covariates on the occurrence, or co- 
occurrence, for each species can be easily incorporated in the log- 
linear modeling framework, where the effect of such covariates may 
be the same, or different for each species. For example, if a covariate 
x1 is thought to affect the occurrence of species A, the covariate x2 
affect the occurrence of species B, but the level of co- occurrence 
interaction is unaffected by either covariate, the following model 
could be fit to the data:

If covariate x1 is also thought to affect the level of interaction 
between species, then another model could be fit:

Interpretation of the covariate effects would proceed exactly as 
normal.

2.4 | Extension to multiple seasons

To examine how species co- occurrences change over time, it 
is necessary to have data from multiple seasons, preferably at 

logit
(
�A|b) = �A,

logit
(
�A|B) = �A + �AB,

logit
(
�B|a) = �B,

logit
(
�B|A) = �B + �AB.

� =exp
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�AB

)

=
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(
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(
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=
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(
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�B|a∕
(
1−�B|a) .

log
(
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)
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+ �BzB

i
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i
+ �ABzA

i
zB
i
+ �ACzA

i
zC
i
+ �BCzB

i
zC
i
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i
zB
i
zC
i
− log (K) .

log
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�i

)
=
(
�A + �A

1
x1
)
zA
i
+
(
�B + �B

2
x2
)
zB
i
+ �ABzA

i
zB
i
− log (K) .

log
(
�i

)
=
(
�A + �A

1
x1
)
zA
i
+
(
�B + �B

2
x2
)
zB
i
+
(
�AB + �AB

1
x1
)
zA
i
zB
i
− log (K) .

TA B L E  2   Example of cell probability (�i) structure for a 2- species 
(A and B) co- occurrence application

Sp. A Sp. B
State 
(i) zA

i
zB
i

�u,v

Absent Absent ab 0 0 1/K

Present Absent Ab 1 0 exp(�A)∕K

Absent Present aB 0 1 exp(�B)∕K

Present Present AB 1 1 exp(�A + �B + �AB)∕K
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equally spaced intervals. A general approach to analyzing such 
data is to model how the combination of species present at each 
unit changes over time. A transition probability matrix (TPM) 
can be defined that provides the probability structure for which 
combination of species was present in season t + 1, given that 
combination of species present at a unit in season t (MacKenzie 
et al., 2018, §14.5). For example, in the two- species case, the TPM 
would be of the form:

where X → Y denotes the probability of transitioning from occupancy 
state X in season t to state Y in season t + 1 (where the states are de-
noted as above). Importantly, the elements of each row must sum to 1, as 
a unit must be in one of the four states by the next season. When there 
are l species of interest, then the dimension of the TPM will be 2l × 2l.

As noted by MacKenzie et al. (2018, §14.5), there are a range 
of possible parameterizations that could be used to estimate the 
parameters associated with the transition probabilities. Building on 
the log- linear parameterization outlined above for the single- season 
situation, the expected cell probabilities could be defined in terms 
of the binary indicator variables for the presence/absence of each 
species at both times t and t + 1 (Table 3).

Let zX
i
 denotes the presence of species X in given state in season 

t, zX
j
 denotes the presence of the species in season t + 1. The gen-

eral structure for the cell probability in row i and column j could be 
defined as:

where K is a normalizing constant defined to ensure the probabilities 
for each row of the TPM sum to 1.

This is a very general formulation, allowing complex relationships 
about the dynamic co- occurrence processes to be evaluated, providing 
sufficient data. However, the model can be simplified by applying con-
straints to some parameters. For example, the �, �, and � parameters are 
all associated with the effects of the presence of each species in the 
previous season (season t), on which combination of species are present 
in the current season (season t + 1). This represents a situation where 
changes in occurrence (and co- occurrence) can be represented as a 
Markov process. Constraining all these parameters to equal 0 represents 
a model where the probability of which species are present in season t 
+ 1 is independent of the combination of species that were present in 
season t (i.e., non- Markovian, or a random process). Alternatively, one 

may set only the � parameters to 0, representing a situation where the 
presence of each species in season t has an effect on the co- occurrence 
structure in season t + 1, but only as additive effects. If the constraints 
�AB = �B = �AB = �A = �AB = 0 are also enforced, that represents a 
model where the occurrence of each species changes as a Markov pro-
cess, but changes are independent for each species. Finally, in the model 
where � = � = 0, the � parameters indicate how the presence of species 
A in season t affects the co- occurrence between the species in the next 
season. Specifically, the parameters �B and �AB quantify what effect the 
presence of species A in season t has on the probability of species B 
being present in season t + 1. One could make a- priori predictions about 
the expected direction of such effects based on whether the species are 
considered to exclude one another, or not.

Generalizing to a greater number of species is achieved by defin-
ing the respective set of binary indicator variables for the presence 
of each species in seasons t and t + 1, with potentially a large number 
of parameters associated with the full model (including all interac-
tion terms among species). Regardless of whether it is possible to 
estimate many of those parameters for a given dataset, interpreta-
tion of the effects may be challenging. Hence, it is recommended 
that practitioners limit the number of interaction terms they include 
in a model when analyzing data and carefully consider the biological 
interpretation of the estimates.

2.5 | Modeling the detection component

An important consideration for modeling the detection component 
is that the possible number of categories, or types of detection, will 

�t =

⎡⎢⎢⎢⎢⎢⎢⎣

ab→ab ab→Ab ab→aB ab→AB

Ab→ab Ab→Ab Ab→aB Ab→AB

aB→ab aB→Ab aB→aB aB→AB

AB→ab AB→Ab AB→aB AB→AB

⎤⎥⎥⎥⎥⎥⎥⎦
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(
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)
=�AzA

j
+�BzB

j
+�ABzA

j
zB
j

+
(
�AzA

j
+�BzB

j
+�ABzA

j
zB
j

)
zA
i

+
(
�AzA

j
+�BzB

j
+�ABzA

j
zB
j

)
zB
i

+
(
�AzA

j
+�BzB

j
+�ABzA

j
zB
j

)
zA
i
zB
i

−log (K)

TA B L E  3   Binary variable coding for 2- species multiseason co- 
occurrence model

Row Column
State 
t(i)

State 
t + 1 ( j) zA

i
zB
i

zA
j

zB
j

1 1 ab ab 0 0 0 0

1 2 ab Ab 0 0 1 0

1 3 ab aB 0 0 0 1

1 4 ab AB 0 0 1 1

2 1 Ab ab 1 0 0 0

2 2 Ab Ab 1 0 1 0

2 3 Ab aB 1 0 0 1

2 4 Ab AB 1 0 1 1

3 1 aB ab 0 1 0 0

3 2 aB Ab 0 1 1 0

3 3 aB aB 0 1 0 1

3 4 aB AB 0 1 1 1

4 1 AB ab 1 1 0 0

4 2 AB Ab 1 1 1 0

4 3 AB aB 1 1 0 1

4 4 AB AB 1 1 1 1
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vary depending on which combination of species are present at a 
unit. For example, if only one species of interest is present at a unit, 
then there are two types of detections (nondetection/detection of 
that species), while if two of the target species are present there 
are four possible detection outcomes from a survey. This is demon-
strated in Table 4 for the two- species case. The number of possible 
observations can be accounted for by defining the detection com-
ponent to be both a function of the true (but unknown) presence/
absence of the species (zX

i
 indicator variables) and binary indicator 

variables based on the observed outcomes of each survey, which 
will be defined as hXk .

Detection probability can therefore be defined using a log- linear 
modeling framework as:

where,

2.6 | Example— mesocarnivores in Texas

The motivation for developing this parameterization of the multisea-
son co- occurrence model was a 7- year camera trap dataset of bob-
cats (Lynx rufus), ocelot (Leopardus pardalis), and coyote (Canis latrans) 
collected in South Texas (Lombardi et al., 2020). This dataset is part 
of a long- term ocelot monitoring study on the East Foundation's El 
Sauz Ranch in Willacy and Kenedy counties, Texas. Although ocelot 
share a geographic overlap with bobcats and coyotes from South 

Texas to Central Mexico (Hody & Kays, 2018; Horne et al., 2009; 
Sánchez- Cordero et al., 2008), interactions among this commu-
nity are poorly understood in this region. Coyote interactions with 
bobcats are well studied across their shared geographic range and 
often do not exhibit spatial or temporal segregation (Lesmeister 
et al., 2015; Thornton et al., 2004). Studies on bobcat– ocelot in-
teractions have indicated the two species share a dietary overlap 
(Booth- Binczik et al., 2013), temporally segregate movement rates 
(Leonard et al., 2020), and may exhibit resource partitioning at the 
shrub level (Horne et al., 2009). Ocelots and coyote interactions are 
poorly known, with co- occurrence likely facilitated by high availabil-
ity of food resources and abundant cover (Lombardi et al., 2020).

From 8 May 2011 to 24 March 2018, 56 camera traps 
(Cuddeback® white- flash Expert Scouting Cameras and Cuddeback® 
X- Change Color cameras (NonTypical, Isanti, WI, USA)) were de-
ployed at 28 paired camera stations in the northwestern and 
southwestern regions of the El Sauz Ranch. Camera traps were set 
in forests containing live oak (Quercus virginiana), honey mesquite 
(Prosopis glandulosa), and thornshrub (lime prickly ash [Zanthoxylum 
fagara], huisache [Acacia farnesiana], and spiny hackberry [Celtis pal-
lida]). Camera stations were spaced 1 km apart, which was based 
on the mean minimum distance moved for ocelots in the region 
(Lombardi et al., 2020). At a station, cameras were placed facing 
each other and offset 1– 2 m, with each camera attached to a tree 
or wooden stake about 30 cm above the ground. Camera stations 
were maintained all year, and cameras were replaced if they mal-
functioned (Lombardi et al., 2020).

A sampling season was defined to be a 20- week period, either 
8 May to 23 September (hot season) or 8 November to 24 March 
(cool season). A survey was defined to be a 4- week period, that is, 
a species was detected (hXk = 1) if it was photographed at least once 
at a station during the 4- week period, and undetected (hXk = 0) oth-
erwise. Hence, each season was comprised of 5 surveys. Surveys 
were defined to be a 4- week period such that detections of bobcats 
and coyotes within a survey period could be assumed independent 
(Lombardi et al., 2020, i.e., aggregating the camera data at a tempo-
ral scale of 4 weeks effectively removes the effect of any short- term 
behavioral interactions between species).

The log- linear parameterization discussed above provides a great 
deal of flexibility for examining the patterns and dynamics of co- 
occurrence between multiple species, especially given the ability 
to incorporate spatial and temporal covariates. However, given the 
number of camera stations deployed (i.e., 28 surveyed units), only 
relatively simple models are fit to the data here to illustrate some 
key concepts. Lombardi et al. (2020) conduct a fuller analysis of the 
dataset examining the effect of covariates.

Due to the lack of hunting pressure (for coyotes and bobcats) in the 
area, we expected a natural dynamic between the three species and 
defined overarching hypotheses: (a) probability of ocelot and bobcat 
occurrence and detection will be negatively influenced by the pres-
ence/detection of coyotes, (b) ocelot and bobcat will exhibit positive 
co- occurrence values, and (c) the presence of species will be influenced 
by the presence of another the previous season. Five models were fit to 
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TA B L E  4   Possible observations admitting imperfect detection. 
Lowercase characters for the true state or survey observation (Obs) 
indicate the absence or nondetection of that species, respectively, 
while uppercase characters indicate the presence or detection of 
that species. zX

i
 is the binary indicator variable for the presence or 

absence of species X and hX
k
 is the binary indicator variable for the 

detection or nondetection of species X in a survey

True State (i) zA
i

zB
i

Obs (k) hA
k

hB
k

Ab 0 0 ab 0 0

Ab 1 0 ab 0 0

Ab 1 0 Ab 1 0

aB 0 1 ab 0 0

aB 0 1 aB 0 1

AB 1 1 ab 0 0

AB 1 1 Ab 1 0

AB 1 1 aB 0 1

AB 1 1 AB 1 1
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the dataset, each representing a different set of hypotheses about co- 
occurrence patterns and dynamics (Table 5). While model parameters 
could be season- specific, they have been assumed to be season invari-
ant. Additional information about the exact parameterization is supplied 
in the Supplemental Material. The same detection component was as-
sumed for all models, where a separate detection probability was esti-
mated for each species, which was assumed to be independent of both 
the presence and detection of other species. Model 1 assumes species 
occur near camera trap stations independently of each other, and the 
probability of occurrence is the same each season and independent of 
the species being present near a station in the previous season. Model 
3 also assumes species occur independently of each other, although the 
probability of occurrence after season 1 depends on the presence of 
the species in the previous season. This is equivalent to modeling the 
occurrence of each species as independent single- species multiseason 
models (MacKenzie et al., 2003), where changes in occurrence are as-
sumed to be a first- order Markov process.

The species co- occurrence models were fit using maximum 
likelihood techniques (e.g., MacKenzie et al., 2004, 2009, 2018; 
Richmond et al., 2010; Waddle et al., 2010) using custom- written 
R code, although Bayesian methods could also be used (e.g., Fidino 
et al., 2019; Rota et al., 2016). Models were compared on the basis of 
Akaike's information criterion (AIC).

3  | RESULTS

3.1 | Example— mesocarnivores in Texas

Table 6 presents a summary of the five models fit to the mesocar-
nivore data. On the basis of AIC, Model 4 had the majority of the 
support with 79% of the AIC model weight, and Model 5 also has 
some support with 21% AIC model weight. The results provide 
strong evidence that the probability of a species occurring near a 
station is dependent on the presence of the species near the station 
in the previous seasons (given ranking of Models 3– 5), and affected 
by the presence of other species in the same season (Models 4 and 
5 ranked highest). There is some indication that occurrence may also 

depend on the presence of other species in the previous season 
(Model 5 ranked second).

From Model 4, the estimated probability of detecting ocelots, 
bobcats, and coyotes during 4 weeks of camera trapping was esti-
mated to be 0.43 (0.02), 0.49 (0.01), and 0.51 (0.01), respectively 
(standard error in parentheses). For each of the three species, the 
probability of occurrence in the current season is estimated to be 
higher if they were present in the previous season, particularly for 
ocelots, although the effect is small for bobcats (Table 7; param-
eters �O, �B, and �C). Note that under the parameterization used 
here, the β parameters determine the probability of occurrence 
given the absence of the species in the previous season, that is, 
the probability of colonization. Therefore, the �O, �B, and �C param-
eters are the difference between the colonization and persistence 
probabilities (on the logit- scale) for the respective species. The 
estimated 2- way interaction terms (parameters �OB, �OC, and �BC) 
are all positive, indicating that if one species is present, the other 
species are more likely to be also present. The odds ratio for the 
co- occurrence of ocelots and bobcats is estimated to be 4.16, 5.31 
for ocelots and coyotes, and 5.88 for bobcats and coyotes. The 
confidence intervals for each of the odds ratios are relatively wide, 
which is a reflection of the number of surveyed stations, although 
the intervals are all greater than 1.0 suggesting strong evidence of 
a positive correlation.

4  | DISCUSSION

The log- linear parameterization outlined here for the multiseason, 
multispecies co- occurrence model is not unique, and other pa-
rameterizations are possible (e.g., Fidino et al., 2019; MacKenzie 
et al., 2006, 2018). The log- linear parameterization provides the abil-
ity to directly estimate, and interpret, how the presence of species 
is affected by the presence of other species in either the current, 
or the previous, season. With this structure, the presence of each 
species is essentially being used as a predictor variable for the pres-
ence of other species, although the general framework that accounts 
for imperfect detection allows for the fact that the presence of any 
species may not be known with certainty. Furthermore, the param-
eterization can also be applied to the detection process, to allow for 
nonindependent detections of each species.

Complexity breeds complexity. As practitioners attempt to ad-
dress more complex questions of ecological data, more complex 
methods of analysis are generally required to provide quantita-
tive inspections of those data. Such is the case with multiseason, 
multispecies co- occurrence models. Irrespective of the preferred 
parameterization to be used, proper analysis should involve care-
ful consideration of hypotheses of interest, which species inter-
actions should be included and whether such interactions change 
over time, effect of potential covariates for co- occurrence-  and 
detection- related parameters. Proper analysis will require time, and 
some degree of skill in fitting and interpreting model results. While 
tools can be developed to simplify certain aspects of the process, 

TA B L E  5   Summary of effects included in each model fit to the 
Texas camera- trapping data. “2- way interaction” is interaction 
effects between pairs of species; “Depends on zX

i
” and “Depends 

on zY
i
ε indicate whether occurrence in the current season depends 

on the presence of the focal (X), or other (Y) species in the previous 
season

Model
2- way 
Interactions Depends on zX

i

Depends 
on zY

i

1 N N N

2 Y N N

3 N Y N

4 Y Y N

5 Y Y Y
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practitioners should have a realistic expectation that such analyses 
require a substantial investment of time and effort.

Practitioners are strongly encouraged to gain a realistic expecta-
tion of the type, and quantity, of data required to achieve their ob-
jectives, before embarking on any data collection. Complex models, 
with a large number of biologically relevant parameters to estimate, 
will require relatively large datasets to produce accurate estimates 
with suitable levels of precision. Simulation studies are an incredibly 
useful approach to evaluating the expected quality of the results from 
a proposed study design. The outcome will often be enlightening, and 
sometimes, sobering. While the exact outcome will depend on the spe-
cifics of the situation, in general we suggest that typically the number 
of sampling units required to be surveyed will be in the 100's rather 
than the 10's of units. This is based on our experience with similar mod-
els, and on the simple premise that there is not a lot of information in 
binary observations, and therefore, a large number of them tend to be 
required to obtain adequate precision of parameter estimates.

Log- linear modeling can be used in situations where a factor of 
interest has m levels (with m ≥ 2), by defining m − 1 indicator vari-
ables. In this paper, we have focused on situations where m = 2 (i.e., 
species presence or absence), although as alluded to above, this pa-
rameterization extends naturally to situations where the occurrence 

of species may be defined using a greater number of categories (e.g., 
absent, present without breeding, present with breeding). The log- 
linear modeling parameterization therefore provides a framework 
for assessing relevant questions about co- occurrence patterns and 
dynamics for these more complex situations, in combination with 
multistate occupancy models (e.g., MacKenzie et al., 2009; Nichols 
et al., 2007; Royle & Link, 2005).

This parameterization of a many- species co- occurrence model 
is currently being incorporated into Program PRESENCE and the 
RPresence R package. The data and R code used for the mesocar-
nivore example are available from the Dryad repository https://doi.
org/10.5061/dryad.59zw3 r26t.
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