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Abstract

Learning to avoid harmful consequences can be a costly trial-and-error process. In such sit-

uations, social information can be leveraged to improve individual learning outcomes. Here,

we investigated how participants used their own experiences and others’ social cues to

avoid harm. Participants made repeated choices between harmful and safe options, each

with different probabilities of generating shocks, while also seeing the image of a social part-

ner. Some partners made predictive gaze cues towards the harmful choice option while oth-

ers cued an option at random, and did so using neutral or fearful facial expressions. We

tested how learned social information about partner reliability transferred across contexts by

letting participants encounter the same partner in multiple trial blocks while facing novel

choice options. Participants’ decisions were best explained by a reinforcement learning

model that independently learned the probabilities of options being safe and of partners

being reliable and combined these combined these estimates to generate choices. Advice

from partners making a fearful facial expression influenced participants’ decisions more

than advice from partners with neutral expressions. Our results showed that participants

made better decisions when facing predictive partners and that they cached and transferred

partner reliability estimates into new blocks. Using simulations we show that participants’

transfer of social information into novel contexts is better adapted to variable social environ-

ments where social partners may change their cuing strategy or become untrustworthy.

Finally, we found no relation between autism questionnaire scores and performance in our

task, but do find autism trait related differences in learning rate parameters.

Author summary

People learn about dangers in their environment by directly interacting with it or indi-

rectly from social sources. While what is dangerous in an environment can change, many

times one’s social context is relatively stable. Surprisingly little work has investigated how

people learn to avoid dangers by combining their own experiences with social advice in

repeated settings. Combining behavioral testing and computational modeling, here we
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show that people blend social cues with information from their own experiences. When

entering a new environment, people utilize stored information about how good advice a

social partner gives to improve their choices. Crucially, however, we show that people

don’t entirely rely on social advice even when that is the only valid information they have

to base their choice on. Using simulations we show that while this tendency to not fully

rely on social advice is less than optimal in our experimental task, it might be adaptive

in settings where social partners become unreliable. Increasing our understanding of

how people learn to avoid dangers using individual experiences and social information

furthers the development of ecologically valid models of value-based learning and deci-

sion-making.

Introduction

Learning about threats and dangers in the environment is important for survival across spe-

cies. Many species, including humans, engage in social learning to leverage the knowledge

other conspecifics may have acquired about the environment [1–4]. This allows individuals to

avoid potentially costly trial-and-error learning and is under many conditions adaptive [2, 5]

and scaffolds general cognitive capacities for associative learning [1]. Trial-and-error learning

is not only costly in terms of time or energy expended searching for rewards, but can be espe-

cially so in a potentially dangerous environment where selecting the wrong action or holding

false beliefs may be detrimental to an individual’s survival. Social learning sometimes takes the

form of acquiring the behavior of a demonstrator, for example through imitation or teaching

[6–9]. Another way of learning about a conspecific’s past experiences is through paying atten-

tion to their gestures or other bodily expressions that might signal risks and rewards in the

environment [10–13]. In humans, the face is a particularly potent source of such signals, capa-

ble of carrying cues with varied informational content [14–16]. Little is known, however,

about how well humans can leverage such signals to improve their decision making to learn to

avoid harmful consequences and what the computational mechanisms underlying those abili-

ties are. To investigate this, we used an instrumental aversive learning task where participants,

prior to making decisions between two potentially harmful options, observed the gaze cues

and fearful facial expressions made by different social partners.

To date a small body of work has investigated how social advice in the form of gaze cues

and individual experiences are integrated during instrumental decision making [10, 13]. Social

information in instrumental learning tasks is instead commonly represented by indicating the

choice of a confederate demonstrator, sometimes coupled with an image of the demonstrator

[8, 9] and sometimes without [17, 18]. If the outcome of the demonstrator’s choice is not rep-

resented, the choice can be understood as presenting advice similar to how a gaze cue can be

interpreted as signaling about the cued option. In an early groundbreaking study researchers

investigated the effects of volatility in social advice [17]. Participants made choices between

two probabilistically rewarding options. Prior to each choice one option was highlighted repre-

senting the choice of a confederate. The confederate was performing another task to that of the

participants which entailed that sometimes their choice would be helpful and sometimes

unhelpful as advice to participants. Results showed that social and reward information were

tracked in separate neural substrates and then integrated during decision-making. Studies

investigating learning from gaze cues have also manipulated volatility [10, 13]. In these studies

the reliability of a single social partner’s gaze cues was manipulated while participants made

choices between different probabilistic alternatives. The key finding from these two studies

PLOS COMPUTATIONAL BIOLOGY Social cue integration

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008163 September 8, 2020 2 / 24

decision to publish, or preparation of the

manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pcbi.1008163


was that, especially under conditions of high volatility, participants with high levels of autistic

traits exhibited differences in how social information was integrated compared to participants

with lower levels and, consequently, performed worse on the task.

Humans are very skilled at ascertaining the target of others’ gaze [19], owing in part to the

physiological makeup of the human eye with a dark pupil and light sclera [20]. Indeed, previ-

ous work has shown that people automatically orient to gaze from an early age [21], and that

in adults, this orienting has effects on both attention [22, 23] and preferences [24, 25]. In a

standard gaze-cuing paradigm, a face is first presented facing and gazeing forward followed by

a gaze shift. A target then appears beside the face. If the target appears at the cued location, rec-

ognition is significantly faster indicating covert attentional shifts facilitated by the social cue.

Such immediate attentional effects have also been demonstrated using counter-predictive gaze

cues [23, 26]. While there is ample evidence for the immediate attentional and evaluative

effects of gaze cues, their use as inputs to evaluate decisions between options remain under-

studied, particularly in harmful contexts.

Previous work on learning from social advice and gaze cues has investigated the social

learning problem of estimating how reliable a single individual is in a fixed decision context

[10, 13, 17]. However, it does not address another feature of natural environments, namely

that people typically encounter social partners across multiple decision contexts. For example,

if a person is good at advising which stalls have safe food during the Feast of San Gennaro in

Little Italy, they might also be good at advising which dumpling spots in nearby Chinatown

are safe to visit. This suggests that remembering how likely it is that a social partner gives accu-

rate advice, or is able to signal safe options, is necessary to maximally leverage their knowledge

during repeated encounters. However, a study where participants could learn from from a

demonstrators’ choices found mixed results regarding if participants transfer information

about demonstrators to novel contexts [8]. In the current study, we allowed participants to

learn from multiple partners differing in their ability to reliably cue alternatives. Additionally,

partners were re-encountered multiple times during the experiment in contexts where partici-

pants faced novel choice options. This design allowed us to capture several crucial features of

the human social environment, one where we typically must learn to track the utility of multi-

ple individual partners and transfer that information to decisions about actions in novel

contexts.

Considerable research has investigated how the combination of emotional expressions and

gaze direction can confer values to objects, so-called social referencing [11, 12, 27]. This work

has shown that value can be transferred to objects being referenced [11]. However, how gaze

cues and emotional expressions interact to shape instrumental decisions has not been investi-

gated. Avoidance-oriented emotional expressions, such as fear, are more quickly identified

when gaze is also averted indicating that gaze direction and emotional expressions are contex-

tually processed [28]. Similarly, the attentional effects of gaze cues are amplified with fearful

expressions as these represent potentially more significant signals to the perceiver [12, 29].

Given these findings, we allowed some of the partners in the present study to express fear

while giving gaze cues. We reasoned that this is a naturalistic signal for danger [30, 31]. If par-

ticipants pay extra attention to gaze cues from partners with fearful expressions, then this

should bias their decisions.

We present results from an experiment investigating instrumental learning under threat of

shock while viewing different partners giving either predictive or random gaze cues coupled

with either neutral or fearful facial expressions (see Fig 1). Participants were placed in one of

two conditions; in the naïve condition participants were not told anything about the role of the

social partners and simply told that at the start of each trial they would see a face on the screen.

In the instructed condition we informed participants that the faces represented social partners
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some of who would have information about what choice options were dangerous, although no

specific information was given. Participants were not otherwise told anything if the social part-

ners were human or computer controlled. Our design allowed us to explore if prior knowledge

about the potential relevance of the social partners impacted behavior in our task, although we

did not formulate any directional hypotheses concerning the effects of instruction. Participants

were also assessed on their autistic traits by filling out an Autism Questionairre (AQ) at the

end of the experiment [32]. We expected to find task related deficiencies consistent with previ-

ous findings in the literature related to participants’ AQ scores. We also explored if partici-

pants’ AQ scores related to parameters derived from a reinforcement learning model

describing their learning and decision making in our task.

We found that participants’ behavior was best explained by a reinforcement learning model

which assumed that they learned the probabilities of the options being safe as well as of the

partners accurately signaling safety. Participants then combined the resulting value estimates

to make decisions, while also following advice from partners making a fearful expression to a

greater degree through a fixed bonus to their decision making. Estimates of partners’ probabil-

ity of giving accurate cues was transferred into novel contexts. We additionally explored the

Fig 1. Methods overview. A: Example trial structure. Participants view a fixation cross, followed by the appearance of the partner of the

current block of 12 trials. The partner makes a gaze cue and shortly thereafter the two alternative options appear, randomly assigned to

the left or right side of the screen. Once participants have made their choice, the selected alternative remains onscreen, highlighted for

5.5s. At the end of this period the participants may receive a shock. Displaying KDEF images AF14NES, AF14AFS. B: The four social

partners used in the experiment, each was randomly assigned to one condition for each participant. Displaying KDEF images AF01NES,

AF14NES, AF26NES, AF29NES. C: A priori predictions of models 1-4 for the case when partners are predictive. Models 2-4 cache the

learned value of the social partner when transferring between blocks that feature novel choice options. This allows them to predict above

chance performance on the first trial by partially relying on the social partners’ gaze cue.

https://doi.org/10.1371/journal.pcbi.1008163.g001
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ecological validity of participants’ transfer of information between contexts, attempting to

explain apparent suboptimalities in participants’ learning strategy by simulating model out-

comes in a variety of environments.

Results

Choice behavior

We first analyzed choice behavior across all participants using a logistic generalized mixed

model with partner reliability (predictive or random), emotional expression (fearful or neutral)
and instruction condition (naïve or instructed) as predictors together with their interactions.

We defined a choice as being safe if the option with the lowest shock probability was chosen,

see Fig 2 for descriptive results. We found that participants made more safe choices when fac-

ing predictive compared to random partners (breliability = 0.67, SE = 0.10, 95% CrI = [0.48,

0.85], pd� 1.0) and this effect did not robustly interact with instruction (brel�instr = 0.11,

SE = 0.18, 95% CrI = [-0.25, 0.45], pd = .73). Indeed, we found no average difference in propor-

tion safe choices depending on instruction (binstruction = 0.0, SE = 0.14, 95% CrI = [-0.28, 0.28],

pd = 0.5). Together this shows that participants readily learned to use the predictive partners’

gaze cues to improve their decision-making but that receiving instructions about the partners

had no effect on this ability.

We found mixed results regarding the effects of partners giving fearful or neutral emotional

expressions. There was no general increase in safe choices based on partners’ emotional

expressions (bemotion = 0.08, SE = 0.071, 95% CrI = [-0.06, 0.22], pd = 0.87), but instead we

found an interaction between partner reliability and emotional expression (brel�emot = 0.51,

SE = 0.14, 95% CrI = [0.23, 0.78], pd� 1.0). The interaction showed that participants tended

to make more safe choices to fearful compared to neutral partners in the predictive condition,

while making fewer safe choices to fearful compared to neutral partners in the neutral condi-

tion. It is also probable that emotional expression increased safe choices more for participants

given additional instructions (bemot�instr = 0.26, SE = 0.14, 95% CrI = [-0.017, 0.53], pd = 0.97),

but we note that the credible intervals overlap with zero rendering strong conclusions inappro-

priate. Further, in light of the lack of effects on average performance, this increase of safe

choices to fearful partners appears to have been “compensated” by a decrease in safe choices to

neutral partners additionally complicating interpretation of this effect. In the remainder of the

paper, unless otherwise specified, we analyze data collapsed by participant instruction.

A key prediction was that if participants would retain and use previously learned informa-

tion about the social partner, they should be above chance choosing the safe option on the first

trial when facing reliable partners a second and third time. Therefore, we examined partici-

pants’ choices on the first trial of the second and third blocks to each partner. We found that

participants indeed were above chance on these trials when facing predictive partners. In the

second block, participants chose the safe option above chance when facing the predictive fear-

ful partner (M = 0.79, logistic regression b = 1.25, SE = 0.26, 95% CrI = [0.76, 1.78], pd� 1.0)

and when facing the predictive neutral partner (M = 0.68, b = 0.72, SE = 0.24, 95% CrI = [0.26,

1.20], pd = 0.999). In the third block, the same results were observed, with participants choos-

ing the safe option above chance both when facing the predictive fearful partner (M = 0.84,

b = 1.54, SE = 0.28, 95% CrI = [1.0, 2.12], pd� 1.0) and when facing the predictive neutral

partner (M = 0.70, b = 0.83, SE = 0.24, 95% CrI = [0.37, 1.30, pd� 1.0). In contrast, this was

not observed for the two random partners in block two (fearful,M = 0.47, b = -0.11, SE = 0.22,

95% CrI = [-0.54, 0.33], pd = 0.695; neutral,M = 0.52, b = 0.072, SE = 0.22, 95% CrI = [-0.35,

0.53], pd = 0.622) or in block three (fearful,M = 0.54, b = 0.17, SE = 0.22, 95% CrI = [-0.26,

0.61], pd = 0.778; neutral,M = 0.54, b = 0.17, SE = 0.22, 95% CrI = [-0.26 0.62], pd = 0.776).
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In sum, participants learned that some social partners were reliably predictive and used that

information to make more safe choices. Furthermore, they retained their learning about the

social partners and were able to benefit it when proceeding through the experiment and

encountering novel choice options. The next question was how they achieved this.

Computational modeling

To understand participants’ learning and decision-making in the experiment, we analyzed

their trial-by-trial decisions with the help of reinforcement learning (RL) models (see Methods

and Table 1). All models, except for the the null models 1-2, assumed that participants learned

Fig 2. Choice behavior. Average proportion of safe choices across all participants split by conditions and instruction.

Error bars are standard errors. Individual dots represent participant averages.

https://doi.org/10.1371/journal.pcbi.1008163.g002

Table 1. Overview of models compared and their respective free parameters. ELPD = expected log predictive density (larger is better). Winning model 9 highlighted in

bold.

Model Parameters Transfer # ELPD

Option only β, α+/−,opt - 1 -4634

Gaze only β, α+/−,partner Weak 2 -6219

Equal weighting β, α+/−,opt, α+/−,partner Weak 3 -4239

Strong 4 -4340

Variable weighting β, α+/−,opt, α+/−,partner, ω Weak 5 -4239

Strong 6 -4318

Emotion weighting β, α+/−,opt, α+/−,partner, ωn, ωf Weak 7 -4164

Strong 8 -4329

Emotion bonus β, α+/−,opt, α+/−,partner, ω, θ Weak 9 -4145

Strong 10 -4277

Arbitration β, α+/−,opt,α+/−,partner, γ Weak 11 -4188

Strong 12 -4306

Arbitration emotion bonus β, α+/−,opt,α+/−,partner, γ θ Weak 13 -4155

Strong 14 -4239

https://doi.org/10.1371/journal.pcbi.1008163.t001
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both the probability of each option being safe and the reliability of the social partners (the

probability of each social partner giving good advice). In the null models, by contrast, partici-

pants only learned from one source of information. We formulated a weak transfer and strong
transfer version of the different models. Transfer refers to how the learning about partners’

reliability affects choices between new options between blocks (see Fig 1C). Under weak trans-

fer, participants are assumed to cache the reliability of each social partner between blocks. By

contrast, under strong transfer, participants additionally allow the reliability of the social part-

ner influence their initial estimates of novel options.

The models also differed in how option and partner information was combined and if the

partners’ emotional expression was taken into account or not. We assumed that participants

weighted option values according to a weighting parameter, ω, and combined this with the

value of the partners’ advice (1 − ω). The weighting parameter was fixed in models 3-4 and var-

iable in in models 5-14. Several of the models additionally modeled how participants’ decisions

might have changed in response to the partners’ emotional expression. In models 7-8, the

weighting parameter differed depending on the partners emotional expression. In models 9-

10 and 13-14 emotional expression was taking into account through a bonus parameter, θ,

conferring a fixed value bonus to the advised option from a partner making a fearful facial

expression.

To compare the models we used leave-one-out cross-validation (LOO-CV) to compute the

expected log predictive density (ELPD) of each model which quantifies the predictive accuracy

of the models [33], analogous to what information criteria estimate. The results of the model

comparison are summarized in Table 2. Model 9 emerged as the winning model. This model

used weak transfer and it further assumed that each participant varied in their relative weight-

ing of option and partner information and that fearful expressions conferred a fixed bonus to

the option advised (see Methods, Eq (7)). The distribution of the average per-participant esti-

mates of the weighting parameter ω ranged between 0.26 and 0.85, with a clear majority of par-

ticipants (72 of 81) being fit with a greater weighting for options over partner advice (ω> 0.5),

see also Fig 3. The emotion bonus parameter was positive for all participants, ranging from

0.038 to 0.44 (see Fig 3), meaning that all participants were on average estimated to be more

likely to follow the partners’ advice if they made a fearful expression. Estimated population

Table 2. Full model comparison. Δ ELPD is the difference in expected log predictive density (ELPD) between each model and the winning model. SE Δ approximates the

standard error of the difference between each model and the winning model. ELPD and SE ELPD give each model’s expected log predictive density and their standard

error. peff and SE peff estimates the effective number of parameters in each model and the standard error of this estimate.

Model # Δ ELPD SE Δ ELPD SE ELPD peff SE peff
9 0.00 0.00 -4144.84 167.26 275.81 8.20

13 -10.30 13.28 -4155.14 165.89 282.51 8.32

7 -19.17 9.76 -4164.01 164.33 291.55 8.70

5 -27.56 10.95 -4172.40 165.51 248.78 7.03

11 -42.75 16.90 -4187.59 164.61 246.28 7.53

3 -93.88 19.93 -4238.72 160.93 245.42 8.31

14 -120.99 25.59 -4265.83 164.07 326.08 10.61

10 -132.25 23.64 -4277.10 163.92 319.53 10.02

12 -160.74 30.47 -4305.58 162.24 298.84 10.10

6 -173.65 30.78 -4318.49 160.96 297.55 9.47

8 -184.41 31.01 -4329.26 161.88 330.51 9.66

4 -195.42 31.52 -4340.26 165.06 270.24 8.17

1 -488.73 53.87 -4633.57 178.26 155.05 5.32

2 -2074.57 138.57 -6219.41 92.31 118.03 7.24

https://doi.org/10.1371/journal.pcbi.1008163.t002
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parameter values for all parameters are presented in Table 3. In the S1 Text we report addi-

tional exploratory analyses of model parameters depending on instruction condition.

Model 13 came close second in the comparison, indeed, within one standard error of differ-

ence to the wining model 9 but with a higher amount of effective parameters. This model

implemented a dynamically changing weighting between option and partner information

based on past prediction errors (see Methods). In addition to this dynamic arbitration a fixed

bias parameter, γ was also applied. The per participant fitted values of γ were found to strongly

correlate with the per participant weighting parameter ω from model 9 (robust correlation, r =

-0.91, SE = 0.021, 95% CrI = [-0.94, -0.86], pd� 1.0), suggesting close similarities in the roles

that those parameters were playing in their respective models. While we discuss and interpret

model 9 in the remainder of the results, we return to the question of adjudicating between

these two models in the discussion.

Finally, we simulated decision trajectories from each participants’ best fitting parameters

from model 9 to new data, simulating each participant 500 times. These posterior model pre-

dictions are plotted by-block and trial-by-trial in Fig 4, and illustrate how the model captures

and generalizes the empirical data patterns including between block transfer of social informa-

tion and both average and trial-by-trial decision probabilities.

Between block transfer of partner information. Model comparisons bore out that mod-

els using weak transfer better described participants data than models using strong transfer. In

Fig 3. Parameter histograms. Histograms of the per participant average posterior parameter estimates of the weighting parameter ω
and the emotion bonus parameter θ from model 9. Dashed red line corresponds to the estimated population average parameter value.

https://doi.org/10.1371/journal.pcbi.1008163.g003

Table 3. Population-level average parameter estimates and 95% credible intervals from the posterior of the win-

ning model 9.

Parameter Mean 2.5% 97.5%

β 0.25 0.23 0.28

ω 0.68 0.62 0.73

α+,opt 0.53 0.43 0.63

α−,opt 0.19 0.13 0.27

α+,partner 0.45 0.35 0.56

α−,partner 0.33 0.26 0.41

θ 0.069 0.039 0.11

https://doi.org/10.1371/journal.pcbi.1008163.t003
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other words, participants cached partner reliability when transitioning into new decision con-

text, but did not let that influence their initial estimate of options’ safety. However, a priori
simulations (see Fig 1C) clearly indicated that strong transfer represents a better algorithm for

participants in this experiment (i.e. it makes more safe choices).

To explore the conditions under which weak transfer and strong transfer is better with

respect to partners’ reliability, we conducted simulations. We simulated each type of transfer

1000 times for all combinations of twelve evenly spaced samples of all learning rates α+,partner,

α−,partner, α+,option, α−,option in [0.1, 0.8] and of the temperature parameter β in [0.2, 1], using a

fixed ω of 0.5 (i.e. the equal weighing models 3 and 4).

We simulated four blocks of 12 trials, where the partner always cues the bad option during

the first two blocks and then cues the good option in the last two blocks (Fig 5). As in our

experiment, options are assumed to be novel in each block. This means that the first two blocks

simply simulate our experiment with a predictive partner. The transition between the second

and the third block in the simulation represents a situation where a previously trusted source

of information completely reverses its signals. This can arise, for example, if a partner loses

track of the environment but fails to realize it or if they continue to track the environment but

change how they communicate their information about it.

We examined the proportions of safe choices made during the second and third blocks by

calculating the differences and ratios between models. During the second block, replicating the

observations from Fig 1C, the difference between the models was on average 5.2 percentage

points (p.p.) (Q10 = −0.35p.p., Q90 = 10.2p.p.), confirming that the strong transfer model is

generally better when the partner’s ability to give good advice is stable. This translates to a

ratio of safe choices between the models of 1.06 (Q10 = 0.995, Q90 = 1.13). During the third

Fig 4. Posterior predictions. Average proportion of safe choices across all participants, split by block and condition (p = predictive,

r = random, F = fearful, N = neutral). Error bars are standard errors. Model predictions using full posterior of each participants’

parameter estimates each simulated to 500 times to new data matching the parameters of our experiment. Shaded regions represent 95%

predictive intervals.

https://doi.org/10.1371/journal.pcbi.1008163.g004
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block, by contrast, the relationship between the models was reversed, such that the difference

strongly favored the weak transfer model (M = 10.1p.p., Q10 = 0.46p.p., Q90 = 22.6p.p.). The

difference between the models in the third block was even starker when considering the ratios:

1.60 (Q10 = 1.0, Q90 = 2.0). As is evident from Fig 5a, differences between the weak and strong

transfer models diminished as agents learned about the environment. To illustrate this, we

restricted our comparison only to the first half of the third block. In this case the difference

between the models increases to (M = 14.7p.p., Q10 = 2.0p.p., Q90 = 29.9pp), with an average

ratio 2.08 (Q10 = 1.03, Q90 = 2.75). In the fourth block, as can be seen in Fig 5A, the strong

transfer model once again performs better owing to the stability in the partners’ signal. Finally,

as seen in Fig 5B, 5C and 5D, the differences between the models’ internal estimates lie not

with what is estimated about the partner, but what is learned about the options. This suggests

that differences between the models should be exacerbated especially for agents with low learn-

ing rates about options, in particular for negative prediction errors α−,opt. The reason for this is

that because following a reversal of the way the partner communicates, under strong transfer

the “bad” option will now have (wrongly) been assigned a high probability of being good. This

means that it will be chosen more often. When choosing the bad option the agent will experi-

ence negative prediction errors and if the learning rate from these is low, then it will take lon-

ger time for the new information to override the old. In Fig A in S1 Text we plot the

differences in proportion safe choices between the models for each simulated parameter com-

bination, and visually examining the resulting plots bears out this prediction.

We also simulated a second situation where partners instead of reversing their advice in the

third block instead begin guessing at random (Fig 6). In this situation differences between the

models are much smaller, but even in this case the weak transfer model makes slightly safer

choices on average (M = 1.6p.p., Q10 = −2.0p.p., Q90 = 5.6pp), with an average ratio 1.03

Fig 5. Simulation results, partner reliability reversal. A: Average difference in proportion safe choices between weak

(red, solid) and strong (blue, dashed) transfer models when social partners reverse advice (on trial 25). B: Each model’s

estimate of the partner. C-D: Each model’s estimate of the safety of the bad and good option respectively. For panels

B-D, estimates are plotted following learning on the trial depicted. Dotted vertical lines indicate new decision

environments (blocks) where novel options are presented. The horizontal dashed line represents chance performance.

https://doi.org/10.1371/journal.pcbi.1008163.g005
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(Q10 = 0.97, Q90 = 1.09). Like previously, restricting the comparison to the first half of the

block increases the differences between the models (M = 2.2p.p., Q10 = −1.6p.p., Q90 = 6.7pp),

with an average ratio 1.04 (Q10 = 0.97, Q90 = 1.11). In this simulation, the strong transfer

model has no advantage over the weak transfer model going into the fourth block and a slight

advantage remains for the weak transfer model, owing primarily to differences in option esti-

mates (see Fig 6B, 6C and 6D).

Choice response times

We analyzed participants choice response times throughout the experiment, as response times

provide additional information about cognitive processing not contained in decisions alone.

Participants’ response times when facing the Predictive Fearful partner wereM = 1.9s,

SD = 2.4; when facing the Predictive Neutral partnerM = 2.0s, SD = 2.8; when facing the Ran-

dom Fearful partnerM = 2.4s, SD = 3.8, and, when facing the Random Neutral partner

M = 2.2s, SD = 2.6, see also Fig 7.

We fit a regression model using an ex-Gaussian likelihood to account for the skewed nature

of response times [34], with partner partner reliability and emotional expression as predictors

on both the μ and τ components of the distribution. In the ex-Gaussian, μ reflects shifts in the

mean of the distribution and τ reflects both shifts in the mean and variance. We found that

partner reliability negatively affected both μ (bμ,reliability = -0.26, SE = 0.029, 95% CrI = [-0.32,

-0.21], pd� 1.0) and τ (bτ,reliability = -0.19, SE = 0.022, 95% CrI = [-0.24, -0.15], pd� 1.0). Par-

ticipants were faster when responding to predictive partners and showed less variance in their

response times. Additionally, we found an interaction between partner reliability and emo-

tional expression on the μ parameter (bμ,rel�emot = -0.15, SE = 0.067, 95% CrI = [-0.29, -0.03],

Fig 6. Simulation results, partner becomes random. A: Average difference in proportion safe choices between weak

(red, solid) and strong (blue, dashed) transfer models when social partners stop giving informative advice (on trial 25).

B: Each model’s estimate of the partner. C-D: Each model’s estimate of the safety of the bad and good option

respectively. For panels B-D, estimates are plotted following learning on the trial depicted. Dotted vertical lines

indicate new decision environments (blocks) where novel options are presented. The horizontal dashed line represents

chance performance.

https://doi.org/10.1371/journal.pcbi.1008163.g006
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pd = .99), capturing that responses were faster to fearful partners when they were predictive

but slower when partners were random.

AQ scores

We investigated if participants’ autism questionnaire scores (AQ) correlated with their perfor-

mance to either the partners who reliably gave predictive gaze cues or to the ones that didn’t.

Average AQ score wasM = 19.7, SD = 6.4, range = [8, 39]. We found no correlation between

AQ sores and average number of safe choices when facing predictive partners (robust correla-

tion, r = 0.06, SE = 0.11, 95% CrI = [-0.16, 0.28], pd = 0.702). Similarly, we found no correla-

tion when facing random partners (robust correlation, r = 0.05, SE = 0.11, 95% CrI = [-0.17,

0.27], pd = 0.651). In sum, we found no relationship between AQ scores and performance in

our task.

However, it is possible that participants acquire information about options and partners dif-

ferently in a way that correlates with the AQ scores [13]. To capture this we constructed a mea-

sure by subtracting the average partner learning rates (i.e. average of α+,partner and α−,partner)

from the analogous average of the option learning rates for each participant using the posterior

mean. We correlated this option-partner learning rate difference with participants’ AQ scores.

We found a small positive correlation, such that participants with higher AQ scores also exhib-

ited larger differences between option and partner learning rates (robust correlation, r = 0.19,

SE = 0.11, 95% CrI = [-0.04, 0.39], pd = 0.951), see also Fig 8A. As this finding was exploratory,

we assessed its robustness by computing similar correlations for other models and found con-

sistent results (see S1 Text).

Fig 7. Choice response times. Response times to the four partners. Boxplots show medians (circle) and 25th and 75th percentiles, while

hinges represent the interquartile range. Points represent participant average response times.

https://doi.org/10.1371/journal.pcbi.1008163.g007
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We further explored the relationship of AQ scores to the option-partner learning rate dif-

ference by considering the possible role of instruction condition. It is possible that the top-

down manipulation of instruction could affect the relative weights placed on learning from

options versus social partners. To test this possibility we regressed the option-partner learning

rate difference on standardized AQ scores and a variable indicating instruction condition. We

found a probable main effect of AQ scores (b = 0.024, SE = 0.015, 95% CrI = [-0.005, 0.053],

pd = 0.949) and no main effect of instruction condition (b = -0.003, SE = 0.029, 95% CrI =

[-0.058, 0.054], pd = 0.54). However, these effects were qualified by an interaction effect

(b = 0.046, SE = 0.029, 95% CrI = [-0.011, 0.103], pd = 0.945), which we plot in Fig 8B.

Together, these findings indicated that the relationship between option-partner learning rate

difference likely emerged only in the instructed condition and not in the naïve condition.

Partner helpfulness

Lastly we examined participants’ selections at the end of the experiment, where they made a

series of forced choices to, in order, select which partner they thought was the most helpful (of

4), the least helpful (of 3 remaining) and finally most helpful from the final pair. This produced

a rank ordering of partners for all participants. The results of participants selections can be

seen in Fig 9. Overall, participants were fairly accurate at classifying one of the predictive part-

ners as being most helpful (68%) and at classifying one of the random partners as least helpful

(63%).

We explored the extent to which participants’ experiences and model predictions explained

the rankings of the different social partners. We regressed social partner rank on each partici-

pants’ model derived final estimates of each social partner’s reliability together with the num-

ber of shocks each participant experienced from their choices in the presence of each partner

(z-scored) together with their interaction using a multi-level ordered probit regression. The

analysis indicated that both estimated partner reliability (b = 0.68, SE = 0.27, 95% CrI = [0.15,

1.21], pd = 0.993) and number of shocks experience (b = -0.18, SE = 0.065, 95% CrI = [-0.31,

Fig 8. AQ scores and learning rates. A: Correlation between option and partner learning rate difference and participant AQ-scores. B:

Interaction between AQ scores and instruction condition on option-partner learning rate difference. Bold line depict the regression line

derived from the mean posterior parameter estimates, and thin lines show regression line derived from 400 draws from the posterior

distribution of parameter estimates, indicating uncertainty around the mean estimate.

https://doi.org/10.1371/journal.pcbi.1008163.g008
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0.051], pd = 0.996) influenced rankings, but not their interaction (b = -0.084, SE = 0.30, 95%

CrI = [-0.68, 0.50], pd = 0.611).

We next considered if the each participant’s θ estimate from model 9 was associated with

ranking fearful over neutral partners. We constructed an index ranging between 0 and 2 indi-

cating if the fearful partner has been ranked over the neutral for only the predictive or random

partners, neither or both. We found a probable effect of θ indicating it that participants with

higher tendency to follow fearful partners’ advice also ranked fearful partners as being more

helpful (b = 0.26, SE = 0.15, 95% CrI = [-0.023, 0.55], pd = 0.965), but we note that the 95%

credible intervals include zero cautioning against strong conclusions. In the S1 Text we report

an additional analyses on rankings contrasting participants best fit by models 9 and 10.

Discussion

We investigated how human participants learn to avoid harmful choice options based on

information from two sources: social (gaze) cues from partners with different reliability and

trial-and-error learning. We found that participants readily acquired relevant predictive infor-

mation from gaze cues and used this to improve their decision making. Participants learned to

separately track and update multiple partners’ predictive value. Participants were, on average,

as adept at learning from gaze cues spontaneously as when they had prior knowledge that part-

ners would have predictive information, which is in line with research on human infants show-

ing that gaze following emerges early in development [21], as well as work showing that gaze

signaling frequently occurs in naturalistic context [16]. Using gaze cues as a source of social

information is likely highly over-trained in adults, and suggests that participants were already

highly prepared to attend to partners’ gaze cues as valid sources for social learning.

Participants’ learning and decision making was best explained by a reinforcement learning

model which assumed that participants independently track the probability that options have

good/bad outcomes and the reliability of the social partners’ advice. Participants weighted

these sources differently to combine them when making decisions, but generally put greater

weights on option information compared to partner information. The work presented here

contributes to a growing literature investigating how social information is acquired and com-

bined with experiential information [7–9, 13, 17, 18], and concords with a developing consen-

sus that basic associative learning principles can be applied to understand a wide variety of

adaptive social behaviors [35].

Fig 9. Ranking of partners at end of experiment. Proportion of participants selecting each partner at each stage of the forced choice

helpfulness task. rN = random Neutral, rF = random Fearful, pN = predictive Neutral, pF = predictive Fearful.

https://doi.org/10.1371/journal.pcbi.1008163.g009
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One question not settled in the present work arose from the close comparison between the

winning model 9 and model 13. This alternative model was an arbitration model which

assumed that weights between options and partner advice were partially determined from the

past prediction errors. In [18], where we derived model 13 from, arbitration was between

information gained from two different types of observational learning—imitation and emula-

tion. Imitation can be characterized as being more model-free while emulation as being more

model-based. In our task participants had to weigh one source of social information against

information derived from their own experience of the choice options, but both sources are

essentially model-free. This difference may account for why the arbitration model did not best

describe our participants data. Simulations similarly showed that the two models were not

strongly distinguishable (see S1 Text). However, further experimentation, potentially targeting

the neural correlates identified in [18] will be necessary to fully settle how participants weigh

information in tasks like ours.

Our results showed that participants cache the probability of a partner giving good advice

and use that information to guide decisions during subsequent encounters with that partner.

This allows for a gradual improvement in the quality of participants’ decisions over time, even

when facing choices between novel options. Indeed, participants decisions on the first trial

when facing a predictive partner they had learned about were above chance. Despite caching

partner estimates between blocks, participants did not fully capitalize on their previous learn-

ing when transitioning into a new context. Letting information from partners’ advice spill over

to initial option estimates, as formalized in the strong transfer models, would have been a bet-

ter strategy in our experiments. Why then didn’t participants adopt this strategy?

One reason for this apparent suboptimality in participants’ behavior might be that their

strategy is tuned to the possibility of partners’ reliability varying when transitioning between

choice environments. The way participants used cached social information, as formalized in

the weak transfer formulation of our models, was shown to be a better strategy in conditions

where partners could not be trusted to give reliable advice between contexts compared to that

of the strong transfer models. We argue that participants’ behavior likely reflects expectations

about social partners which they bring with them from their lives into the lab. If someone once

suggested to you which of two Italian food stalls were safest to eat from, it might be a good idea

to take their advice into consideration when choosing between two Chinese restaurants (as in

the weak transfer models). However, you might be hesitant to completely take their word for it

and assume that each restaurant is exactly as safe as they say it is (the strong transfer models).

Indeed, both theoretical results and empirical findings on the cultural evolution of social learn-

ing have indicated the importance of switching between learning from experience and social

learning [5, 36]. In volatile environments, reliance on social information can be maladaptive

and lead to fitness loss compared to reliance on individual experience. In stable environments,

the reverse is true. Our findings suggest that participants might not be switching between pure

social and non-social learning strategies but rather using both to inform their decisions.

Beyond understanding how participants solved this particular task, our findings highlight the

importance of considering the ecological factors which shape human decision makers beyond

the confines of the lab when interpreting the results from experimental tasks [37]. Addition-

ally, loss or risk sensitivity [38], in addition to prior social experiences, might contribute to

explaining why participants exhibit this particular transfer behavior by causing participants to

overweight the prospect of aversive experiences. By not fully transferring social information,

weak transfer models err on the side of caution. Nevertheless, further experimentation will be

necessary to pinpoint if these are the responsible psychological mechanisms.

In addition to manipulating partner reliability, we also introduced an emotional expression

manipulation. We expected that fearful facial expressions may improve decision-making,
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acting as ecologically valid signals of danger [12]. Our results supported this hypothesis. On

average, participants made more safe choices when facing the predictive fearful partners com-

pared to when face the predictive neutral ones. These tendencies appeared reversed for the

random partners. We also observed choice response time patterns supporting the conclusions

drawn from the choice data—participants responded fastest to the predictive fearful partners

and slowest to the random fearful partner. The model that best described participants’ behav-

ior included a fixed bonus applied to the value of the cued option. This bonus was positive

meaning that participants were more likely to follow a partner’s advice when they made a fear-

ful expression. Taken together, our results suggest that the subjective value of equally predic-

tive social cues can be enhanced by additional emotional cues, but that this effect likely is

variable among participants (see Fig 3). Nevertheless, we interpret our findings to demonstrate

that emotional cues shape instrumental decision making similar to how they serve to transfer

value in passive viewing tasks [11, 12].

Finally, we investigated how AQ scores related to performance on our study. We found no

correlations between task performance (safe choices) and AQ scores irrespective of if partici-

pants were facing predictive partners or not. This was surprising as past research has indicated

that people high in autistic traits may be impaired in tasks involving the integration of social

cues [10, 13]. In one recent study [13], the reliability of the social cue was volatile, unlike in

our study where different partners had different but fixed levels of volatility. In [10], both a vol-

atile and a stable condition were used and correlations with participants’ AQ scores were

found in both conditions, even if the correlations were smaller in the stable condition. This

suggests that our findings cannot be explained by the stability of the partners. However,

another difference between our study and previous ones is that we use an aversive decision

making setting, where participants receive motivationally salient punishers (shocks) as feed-

back to their decisions. Past research, in non-social settings, has shown that persons with high-

functioning autism spectrum disorder can perform better in risky decision making tasks by

adopting safer and more risk averse strategies [39]. Therefore, a possible explanation for our

findings might be that certain deficiencies associated with AQ scores are not as readily

expressed in aversive settings. Consistent with this proposed explanation, we found a correla-

tion between AQ scores and the difference in learning rates about the options and learning

rates about the partners. Follow up analyses showed that this relationship appeared uniquely

for participants in the instructed condition. This result was surprising and may indicate that

participants with greater autistic traits regulate their attention to favor non-social information

when they are informed that they will be in a situation where social information may play a

role. This regulation of attention might compensate for the deficits in integrating social infor-

mation they otherwise might have exhibited. While our sample size was large compared to that

of previous studies investigating gaze cues and instrumental learning, our findings relating to

AQ scores are nevertheless to be considered exploratory and should be replicated and

extended in future investigations. In particular, it will be important to compare reward and

punishment feedback conditions within-subjects to determine the role, if any, played by the

type of feedback for social cue integration.

There are additional limitations and possible extensions to the present work that future

studies should address. One concerns the relative anonymity of the partners. Ecological valid-

ity could be improved by giving participants more information about the partners, such as

group belonging, status or trustworthiness, information that is typically available during real

life interactions and that is known to affect the influence of social information. For example,

people might be more inclined to use information from partners about whom they have more

(positive) knowledge [40], hence it would be important to understand how this affects their

learning. Further, by giving participants information about partners, it would be possible to
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better understand if and how such information shapes how participants use partner reliability

in novel choice contexts. Another interesting extension of the current research is to increase

realism by porting the task to a virtual reality setting. In such a setting it would be easy to create

situations where participants interact with multiple social partners who could be controlled by

other participants or confederates. Such a setting would come closer to modeling the richness

of everyday interactions while still allowing for large degrees of experimental control [41].

Finally, in our experiment social partners were either fully predictive or fully random. While

this design allowed us to clearly contrast the two and consider how learned information about

social partner transferred between contexts, future work should explore how varying levels of

partner reliability are learned and integrated.

Taken together, our findings demonstrate that people mix socially derived information

with individual experiences to make decisions in aversive environments and are capable to

track the value of multiple individuals across decision contexts. Using a reinforcement learn-

ing framework we show that participants cache social values and use these to inform their

choices in novel context. The manner in which participants use previously learned social infor-

mation likely reflects an ecologically valid risk-minimizing strategy. When facing uncertainty

about what is the safest course of action, social advice can rapidly improve one’s chances of

avoiding harmful consequences. Overreliance on social partners entails a risk of being

deceived or misled if the source of advice is no longer valid and consequently diminishes one’s

opportunities to learn about options for oneself. On the other hand, ignoring social informa-

tion wastes accumulated knowledge and can overexpose oneself to dangers. Our findings indi-

cate that people navigate this dilemma by opting for a middle-of-the-road strategy.

Materials and methods

Ethics statement

The experimental procedures were approved by the regional ethical committee at Karolinska

Institutet (2012/340-31/4), and was carried out in accordance with the principles of the revised

Helsinki Declaration. Written consent was obtained from all participants.

Participants

We recruited 81 participants from the student population at Karolinska Institutet and from

the local community. 40 participants were assigned to the naïve condition and the remainder

to the instructed condition. Participants were give two cinema vouchers in exchange for their

participation.

Equipment and materials

The experiment was presented using PsychoPy [42]. The four faces used to represent the part-

ners providing the gaze cues were taken from the Karolinska Directed Emotional Faces data-

base (KDEF; [43]; Fig 1B). We used the neutral and fearful versions of each of the faces, and

were edited in Adobe Photoshop to provide the gaze cues. The following KDEF image IDs

were used in the study: AF01ANS, AF01NES, AF14ANS, AF14NES, AF26ANS, AF26NES,

AF29ANS, AF29NES. Twenty-four fractal images were used as choice stimuli. All stimuli, frac-

tals and faces, were presented in greyscale and modified to be isoluminant with the back-

ground color (RGB: 192 192 192).

Mild electric shocks, consisting of a single 100ms DC pulse, were administered using a Bio-

pac STM200 module (Biopac Systems Inc.) applied to the lower forearm of participants’
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dominant side. The strength of the electric shocks was individually calibrated so that partici-

pants experienced the shocks as being “unpleasant but not painful”.

Experimental procedure

Participants entered the lab and were given general information about the experiment and

consent forms to sign. They were the introduced to the shock delivery equipment and shock

level was calibrated individually. Participants were informed during calibration that they

would receive shocks based on their performance, but that they should expect around forty

shocks due to the probabilistic nature of the reinforcement.

The main experiment consisted of a two-alternative forced choice task between two aversive

options. Participants were told that the options differed in the likelihood of giving them an

electric shock, but not what the objective probabilities were and had to learn these to perform

optimally in the task. One option always terminated with shock if chosen with P = .8 and the

other with P = .2.

The experiment was divided into twelve blocks of twelve trials. Each block featured novel

options (fractal images). To prevent spatial decision strategies left/right position of options

varied randomly between trials. Additionally, on each trial the face of a partner was shown.

The identity of this partner was the same within a block. There were four unique partners in

the experiment, meaning each participant met all partners in three separate blocks, therefore

creating the opportunity for repeated encounters of a social partner in a new context. Two of

the partners were predictive and two were random. Predictive partners alwaysmade a gaze cue

towards the bad option. The direction of random partners’ gaze cues was determined on each

trial with equal probability ensuring their cues had no predictive validity. Additionally, two of

the partners, one predictive and one random, made their gaze cue with a fearful emotional

expression, while the other two partners retained a neutral expression. All partners were

encountered once before before participants re-encountered them.

Participants were additionally in one of two possible instruction conditions. In the naïve
condition participants were only told that the face of a partner would be seen on each trial. In

the instructed condition, in contrast, participants were additionally told that the some partners

would have knowledge about what option was the safe one. Participants were not led to

believe, however, that the social partner was being controlled by a confederate.

Each trial had the same structure, see also Fig 1A. First, a fixation cross was presented

onscreen for 3s. After this a face of one of the four partners was displayed in the center of the

screen. After 1.3s the partners gaze shifted to the left or right direction, thus providing a gaze

cue. After 0.5s two fractals appears on each side of the partner, hence one fractal would appear

in the cued direction and one in the non-cued direction. Participants were given free amount

of time to choose, by pressing the left or right arrow keys, one of the fractals. Following their

choice, the selected fractal was highlighted with a yellow frame and the non-selected fractal dis-

appeared. The face of the partner remained onscreen. After 5.5s the trial terminated with either

a shock or no feedback. The experiment consisted of 12 blocks of 12 trials each, resulting in

144 trials total.

At the end of the experiment, participants were asked to rank the partners by first selecting

the partner they thought was most helpful, then selecting who they thought was the least help-

ful from the remaining three, and, lastly, selecting from the final two who was most helpful of

those. Finally, participants filled in a 50 item Autism Questionnaire (AQ; [32]). Participants

were then thanked, paid and debriefed.

PLOS COMPUTATIONAL BIOLOGY Social cue integration

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008163 September 8, 2020 18 / 24

https://doi.org/10.1371/journal.pcbi.1008163


Computational models of behavior

To understand participants trial-by-trial choices we formulated several reinforcement learning

models and compared their fit to participants’ data. Here we detail 14 different models (see

Table 1). Some additional variations are reported in the S1 Text as explained below. We first

give a general description of our modeling framework and then outline how each model differs

from the others.

We assumed that participants learn the probabilities of options being safe, pi, pj, and the

probability of each social partner giving good advice—signaling the safe option, ppartner. We

assumed that participants used these learned probabilities to calculate the expected value of

each option as well as the expected value of the partner’s advice, by taking a shock as having

reward value of −1 and the absence of shock reward value of 1. Hence the equation for

expected values of partners’ advice and of each option is given by:

EVx ¼ px � 1þ ð1 � pxÞ � � 1 ð1Þ

The expected values were combined such that the EV of the partners’ advice was combined

with the EV of the option the partner was not looking at (i.e. signaling was safe by virtue of

how the gaze cues were set-up in this experiment). Choices were generated with a softmax:

Qx ¼

(
oEVx þ ð1 � oÞEVpartner if x advised

oEVx otherwise
ð2Þ

Pi j i advised ¼
eQi=b

eQi=b þ eQj=b
ð3Þ

where β is an inverse gain parameter. Lower β implies more deterministic choices in favor of

the option with the currently highest EV. In Eq (2) ω is a weighting parameter determining the

relative influence of social advice versus self-experienced information about the options. As

detailed below the different models differed in how ω was determined.

Updating followed a simple Rescorla-Wagner delta rule [44]. For options, r = 1 if the chosen

option was safe and 0 otherwise:

d ¼ rt � p̂x;t ð4Þ

For learning about the partner, r depended on if the participant chose according to the part-

ner’s advice or not, and ensures that the learning is congruent with the reinforcement received

relative to the gaze direction of the partner:

dpartner ¼

( rt � p̂partner;t if advice followed

ð1 � rtÞ � p̂partner;t if advice not followed
ð5Þ

Finally, the chosen option and the partner’s estimated probabilities were updated:

p̂x;tþ1 ¼ p̂x;t þ

(
aþ;x � d dx > 0

a� ;x � d dx < 0
ð6Þ

where α is the learning rate. We allowed the learning rate to vary between learning from expe-

rience and social learning, as well as for positive and negative prediction errors (α+,opt/α−,opt

and α+,partner/α−,partner respectively), implying a total of four possible learning rate parameters.

In the S1 Text we report additional comparisons based on models containing fewer learning
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rate parameters (see Table A in S1 Text)., however all these models exhibited worse fits to the

data.

Option only. The option only model (model 1) was a null model that assumes that partic-

ipants only learn about the options but not about the reliability of social partners’ advice. In

this model, (α+,partner/α−,partner were clamped to 0 and ω fixed to 0.5.

Gaze only. The gaze only model (model 2) was a null model that assumes that participants

only learn about the reliability of social partners’ advice but not about the options. In this

model, α+,opt/α−,opt were clamped to 0 and ω fixed to 0.5.

Weak and strong transfer. Models that incorporated learning both about options and

about social partners differed in how social information was cached and transferred between

blocks. In our experiment, each block entailed novel choice options. In the weak transfer class

of models (models 3,5,7,9,11,13), between blocks, pi, pj are reset to their starting value of 0.5—

implying EV = 0—since options are novel. Crucially, ppartner is cached, allowing information

learned about the social partner’s usefulness to continue to influence decision making when

facing a new, unknown environment.

By contrast, in the strong transfer class of models (models 4,6,8,10,12,14). pi, pj are set to

ppartner and 1 − ppartner on the first trial of each block, according to the advice given by the part-

ner on that first trial. In environments where partners are continuously reliable (see Fig 1C,

like that in our experiment, this algorithm efficiently scaffolds earlier learning.

Equal weighting. In models 3-4 participants learned both about options and social part-

ners. In these models expected values of options and of partners’ advice was assumed to be

weighted equally, hence ω was fixed to 0.5.

Variable weighting. Models 5-6 relaxed the assumption of equal weighting and allowed ω
to vary freely.

Emotion weighting. Models 7-8 tested the possibility that participants weighted the social

partners’ advice differently if it came from a partner with a fearful expression compared to a

partner with a neutral expression. To achieve this we introduced two weighting parameters ωf
and ωn which took the place of ω in Eq (3) depending on the social partners’ emotional

expression.

Emotion bonus. The emotion bonus models (models 9-10) tested another way partners’

emotional expressions might influence decision making. These models expanded on models

5-6 by adding a static bonus parameter, θ to the softmax, replacing Eq (2) with:

Qx ¼

(
oEVx þ ð1 � oÞEVpartner þ y if x advised

oEVx otherwise
ð7Þ

θ could assign a positive or negative value to the option advised by partners who were making

a fearful expression and took the value 0 for neutral partners.

Arbitration. The arbitration models (models 11-12) incorporated an alternative method

of determining ω in Eq (2) by allowing it to vary on a trial-by-trial basis as suggested in recent

work [18]. The key idea is that the weighting between different sources should be determined

by their relative reliability. In this instance reliability was determined by comparing the abso-

lute prediction errors from the chosen option (|δ|) and partner (|δpartner|) from the preceding

trial. Arbitration was implemented as a softmax:

o ¼
eð1� jdjÞ

eð1� jdjÞ þ eðð1� jdpartner jÞþgÞ
ð8Þ

Arbitration was biased by an additional parameter γ. This parameter reflected a bias

towards the advice of the partner if γ< 0 and a bias towards the option if γ< 0. In the S1 Text
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we report variations of the arbitration models without the bias parameter as well as using a dif-

ferent arbitration scheme based on computing entropy rather than using absolute prediction

errors [18]. These variations showed worse fit to our data (see Table B in S1 Text).

Arbitration emotion bonus. Models 13-14 used the same emotion bonus parameter θ as

in models 9-10 by using Eq (7) but determined ω as in models 11-12.

Hierarchical Gaussian Filter. In the S1 Text we additionally report on fitting the Hierar-

chical Gaussian Filter [45] to our data, as this model has previously been used to model data

from experiments similar to ours [13].

Model fitting and comparison

All our computational models were implemented in the Stan probabilistic programming lan-

guage and fit with MCMC sampling using the NUTS sampling algorithm [46]. All parameters

were fit hierarchically to each participant as deviations from an estimated population average.

Parameters were fit in logit space and then back-transformed to their native space. Priors for

all parameters were set as Normal(0,1) except for population-level learning rates were weakly

informative Normal(0,0.5) were used to assist convergence.

Learning rate (α) and weighting (ω) parameters were constrained in the interval [0, 1] and

the temperature parameter (β) constrained in the interval (0,2]. All p’s were initially set to 0.5.

The emotion bonus (θ) and arbitration bias (γ) parameters were constrained to the interval

[-1, 1].

Model comparison was performed using leave-one-out cross-validation (LOO-CV) by esti-

mating the pointwise out-of-sample prediction accuracy from the log-likelihood evaluated

using the full posterior of the model [33]. Since individual observations are not independent in

trial-by-trial computational models, we follow [47] and use the pointwise log-likelihood

summed to the participant level as an input to the leave-one-out cross-validation procedure.

See Table 2 for full model comparison.

We also simulated data from a subset of our candidate models (models 1-3, 5, 7, 9, 11, 13)

and fitted the models to the simulated data. The resulting confusion matrices are reported in

the S1 Text (Fig A and Fig B). Generally, models with emotion expression components distin-

guish themselves well compared to other models. However, models 9 and 13 produce very

similar data patterns to each other, which is also reflected in their fit similarity to our data (see

Table 2).

Statistical analysis

All analyses were performed in the R statistical language using the brms package [48]. Where

appropriate we analyzed the data using Bayesian multi-level regression including varying

intercepts and slopes by participant and correlations between intercept and slopes. All categor-

ical regressors were deviation coded (-0.5/0.5) and all continuous regressors were standard-

ized. In addition to the parameter estimate, its standard error and 95% credible intervals we

also report the probability of difference (pd) [49]. The quantity pd is the proportion of the pos-

terior distribution of the parameter that has the same sign as the parameter itself.

Supporting information

S1 Text. Supplementary methods and results.

(PDF)
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21. Gredebäck G, Fikke L, Melinder A. The development of joint visual attention: a longitudinal study of

gaze following during interactions with mothers and strangers. Developmental science. 2010; 13

(6):839–848. https://doi.org/10.1111/j.1467-7687.2009.00945.x

22. Friesen CK, Kingstone A. The eyes have it! Reflexive orienting is triggered by nonpredictive gaze. Psy-

chonomic bulletin & review. 1998; 5(3):490–495. https://doi.org/10.3758/BF03208827

23. Driver J IV, Davis G, Ricciardelli P, Kidd P, Maxwell E, Baron-Cohen S. Gaze perception triggers reflex-

ive visuospatial orienting. Visual cognition. 1999; 6(5):509–540. https://doi.org/10.1080/

135062899394920

24. Bayliss AP, Paul MA, Cannon PR, Tipper SP. Gaze cuing and affective judgments of objects: I like what

you look at. Psychonomic bulletin & review. 2006; 13(6):1061–1066. https://doi.org/10.3758/

BF03213926

25. Bayliss AP, Frischen A, Fenske MJ, Tipper SP. Affective evaluations of objects are influenced by

observed gaze direction and emotional expression. Cognition. 2007; 104(3):644–653. https://doi.org/

10.1016/j.cognition.2006.07.012

26. Friesen CK, Ristic J, Kingstone A. Attentional effects of counterpredictive gaze and arrow cues. Journal

of Experimental Psychology: Human Perception and Performance. 2004; 30(2):319–329.

27. Walden TA, Ogan TA. The development of social referencing. Child development. 1988; p. 1230–1240.

https://doi.org/10.2307/1130486

28. Adams RB Jr, Kleck RE. Perceived gaze direction and the processing of facial displays of emotion. Psy-

chological science. 2003; 14(6):644–647. https://doi.org/10.1046/j.0956-7976.2003.psci_1479.x

29. Whalen PJ, Kagan J, Cook RG, Davis FC, Kim H, Polis S, et al. Human amygdala responsivity to

masked fearful eye whites. Science. 2004; 306(5704):2061–2061. https://doi.org/10.1126/science.

1103617

30. Blair R. Facial expressions, their communicatory functions and neuro–cognitive substrates. Philosophi-

cal Transactions of the Royal Society of London Series B: Biological Sciences. 2003; 358(1431):561–

572. https://doi.org/10.1098/rstb.2002.1220

31. Mineka S, Cook M. Mechanisms involved in the observational conditioning of fear. Journal of Experi-

mental Psychology: General. 1993; 122(1):23–38. https://doi.org/10.1037/0096-3445.122.1.23

32. Baron-Cohen S, Wheelwright S, Skinner R, Martin J, Clubley E. The autism-spectrum quotient (AQ):

Evidence from asperger syndrome/high-functioning autism, malesand females, scientists and

PLOS COMPUTATIONAL BIOLOGY Social cue integration

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008163 September 8, 2020 23 / 24

https://doi.org/10.1007/s10803-014-2311-7
https://doi.org/10.1093/scan/nsu085
https://doi.org/10.1523/JNEUROSCI.3048-05.2006
https://doi.org/10.1523/JNEUROSCI.3048-05.2006
https://doi.org/10.1016/j.biopsych.2019.09.032
https://doi.org/10.1016/S0959-4388(02)00301-X
https://doi.org/10.1016/j.cub.2015.05.052
https://doi.org/10.1016/j.evolhumbehav.2014.01.005
https://doi.org/10.1038/nature07538
https://doi.org/10.1016/j.neuron.2020.02.028
https://doi.org/10.1016/j.neuron.2020.02.028
https://doi.org/10.2307/1419779
https://doi.org/10.1006/jhev.2001.0468
https://doi.org/10.1111/j.1467-7687.2009.00945.x
https://doi.org/10.3758/BF03208827
https://doi.org/10.1080/135062899394920
https://doi.org/10.1080/135062899394920
https://doi.org/10.3758/BF03213926
https://doi.org/10.3758/BF03213926
https://doi.org/10.1016/j.cognition.2006.07.012
https://doi.org/10.1016/j.cognition.2006.07.012
https://doi.org/10.2307/1130486
https://doi.org/10.1046/j.0956-7976.2003.psci_1479.x
https://doi.org/10.1126/science.1103617
https://doi.org/10.1126/science.1103617
https://doi.org/10.1098/rstb.2002.1220
https://doi.org/10.1037/0096-3445.122.1.23
https://doi.org/10.1371/journal.pcbi.1008163


mathematicians. Journal of autism and developmental disorders. 2001; 31(1):5–17. https://doi.org/10.

1023/A:1005653411471

33. Vehtari A, Gelman A, Gabry J. Practical Bayesian model evaluation using leave-one-out cross-valida-

tion and WAIC. Statistics and computing. 2017; 27(5):1413–1432. https://doi.org/10.1007/s11222-016-

9696-4

34. Heathcote A, Popiel SJ, Mewhort D. Analysis of response time distributions: An example using the

Stroop task. Psychological bulletin. 1991; 109(2):340–347. https://doi.org/10.1037/0033-2909.109.2.

340

35. FeldmanHall O, Dunsmoor JE. Viewing adaptive social choice through the lens of associative learning.

Perspectives on Psychological Science. 2019; 14(2):175–196. https://doi.org/10.1177/

1745691618792261

36. Kameda T, Nakanishi D. Does social/cultural learning increase human adaptability?: Rogers’s question

revisited. Evolution and Human Behavior. 2003; 24(4):242–260. https://doi.org/10.1016/S1090-5138

(03)00015-1

37. Newell A. In: Chase WG, editor. You can’t play 20 questions with nature and win: Projective comments

on the papers of this symposium. New York: Academic Press; 1973.

38. Tversky A, Kahneman D. The framing of decisions and the psychology of choice. Science. 1981; 211

(4481):453–458. https://doi.org/10.1126/science.7455683

39. South M, Chamberlain PD, Wigham S, Newton T, Le Couteur A, McConachie H, et al. Enhanced deci-

sion making and risk avoidance in high-functioning autism spectrum disorder. Neuropsychology. 2014;

28(2):222–228. https://doi.org/10.1037/neu0000016

40. Izuma K, Adolphs R. Social manipulation of preference in the human brain. Neuron. 2013; 78(3):563–

573. https://doi.org/10.1016/j.neuron.2013.03.023

41. Schilbach L, Timmermans B, Reddy V, Costall A, Bente G, Schlicht T, et al. Toward a second-person

neuroscience 1. Behavioral and brain sciences. 2013; 36(4):393–414. https://doi.org/10.1017/

S0140525X12000660

42. Peirce JW. PsychoPy—psychophysics software in Python. Journal of neuroscience methods. 2007;

162(1-2):8–13. https://doi.org/10.1016/j.jneumeth.2006.11.017
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