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Abstract: We previously demonstrated that clinical administration of mobilized CD133+ bone marrow
stem cells (BMSC) accelerates hepatic regeneration. Here, we investigated the potential of platelets to
modulate CD133+BMSC homing to hepatic endothelial cells and sequestration to warm ischemic
livers. Modulatory effects of platelets on the adhesion of CD133+BMSC to human and mouse
liver-sinusoidal- and micro- endothelial cells (EC) respectively were evaluated in in vitro co-culture
systems. CD133+BMSC adhesion to all types of EC were increased in the presence of platelets
under shear stress. This platelet effect was mostly diminished by antagonization of P-selectin and its
ligand P-Selectin-Glyco-Ligand-1 (PSGL-1). Inhibition of PECAM-1 as well as SDF-1 receptor CXCR4
had no such effect. In a model of the isolated reperfused rat liver subsequent to warm ischemia,
the co-infusion of platelets augmented CD133+BMSC homing to the injured liver with heightened
transmigration towards the extra sinusoidal space when compared to perfusion conditions without
platelets. Extravascular co-localization of CD133+BMSC with hepatocytes was confirmed by confocal
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microscopy. We demonstrated an enhancing effect of platelets on CD133+BMSC homing to and
transmigrating along hepatic EC putatively depending on PSGL-1 and P-selectin. Our insights
suggest a new mechanism of platelets to augment stem cell dependent hepatic repair.

Keywords: platelets; bone marrow stem cells; CD133; liver regeneration; endothelial cells; P-selectin

1. Introduction

We have previously shown that CD133+ bone marrow stem cells (BMSC) can support hepatic repair
in a preclinical [1] as well as in a clinical setting of liver resection and regeneration [2–5]. We previously
demonstrated the mobilization of CD133+BMSC following extensive liver resection. The latter seems
to be both hepatocyte growth factor and stroma-derived factor-1 (SDF-1)-mediated [6]. Others showed
an important role of hematopoietic CD133+ stem cells interacting with platelets resulting in increased
SDF-1 expression [7]. Interestingly, we recently demonstrated CD133+BMSC when co-incubated with
platelets to control their thrombogenic responses in a CD39-dependent manner [8]. Furthermore,
a major role for platelets was described in the mediation of hepatic injury [9–11]. There is increasing
evidence that points to a crucial complex orchestrated role for platelets in various preclinical and clinical
scenarios of hepatic regeneration following injury and resection, respectively [12–19]. Interactions of
platelets with liver sinusoidal endothelial cells (LSEC) and release of ADP, serotonin and other platelet
growth factors seem to have crucial impacts in regulating the early phase of hepatic regeneration [20–22].

Other than platelets releasing granule contents, which directly stimulate hepatocyte
proliferation [23,24] or the transfer of RNA by platelets, which promotes hepatocyte proliferation either
by the translation of mRNA or by the action of regulatory RNAs, a potential mechanism underlying
platelet-mediated liver regeneration could involve facilitation of the inflammatory response [25].
In this instance, platelets would have the functionality of attracting inflammatory cells [26–31].
Recent accumulating evidence points to platelets playing a major role in stem and progenitor cell
homing along the vascular interface in the scenario of regeneration [29,32,33]. Furthermore, synergistic
effects of platelets and progenitor cells have been shown for regeneration following ischemic vascular
disease [34]. Recently, platelets have been reported to play a role in the repair following hepatic
damage by activating the hematopoietic-vascular niche to generate pro-regenerative endothelial
paracrine/angiocrine factors [35]. We have previously shown in a rodent model that BMSC mobilization
by CD39 facilitates liver regeneration and proliferation after partial hepatectomy [1].

Here, we propose that platelets play a role in modulating BMSC interactions with the regenerating
hepatic vasculature. Platelets were tested for their potential to boost CD133+BMSC recruitment to LSECs.
The underlying receptor–ligand interactions of platelet/endothelial cell interrelations were characterized
under flow conditions. Furthermore, we evaluated the impact of platelet-CD133+BMSC-interactions on
homing of these stem cells to the isolated single pass perfused rat liver (IPRL) following warm ischemia.

2. Results

2.1. Platelets Augment CD133+BMSC Adhesion to Human Micro-Endothelium under Shear Stress In Vitro

Since it was previously shown that platelets have a significant impact for hepatic injury and
regeneration, especially on LSEC [10–14,20,21], we further investigated CD133+BMSC-endothelium
interactions with respect to the role of platelets for local vascular homing under flow conditions.
We established a live cell imaging system (BIOFLUX) [36], in which human micro vasculature
endothelial cells (HMEC-1) were grown in capillaries of the BIOFLUX system under flow conditions and
subsequently co-cultivated with human platelet rich plasma (hPRP) and primary human CD133+BMSC
under different conditions before infusion to the BIOFLUX system. Under shear stress levels of
1.0 dyne, we could demonstrate that hPRP-co-culture increases the number of adhering CD133+BMSC
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to human micro-endothelium significantly (p < 0.01) by a mean of 2.6-fold (+/−1.5) if contrasted to
hPPP (Figure 1a).

Figure 1. P-selectin/PSGL-1 dependent platelet interactions with CD133+BMSC promote adhesion
to human micro-EC under shear stress. Adherence of CD133+BMSC to human micro endothelial
cells (HMEC-1) co-incubated with human platelet rich plasma (hPRP) was tested by pairs under
different conditions: control and treatment at a time. (a) Increased CD133+BMSC adherence with
hPRP when compared to platelet poor plasma (hPPP). (b,c) Both Pre-incubation of platelets with
P-selectin-inhibitor KF38789 and CD133+BMSC with PSGL-1 antagonist IM2090 revealed a reduction
of adherence of CD133+ BMSC. (d–f): Co-incubation with PECAM-1-blocking antibody mPECAM-1.3
IgG (anti-PECAM-1), recombinant soluble human PECAM-1 (rhsPECAM-1) and CXCR4-inhibitor for
SDF-1 interaction AMD3100 respectively lacked a modulating effect on CD133+BMSC for adherence to
HMEC-1. Paired t-test: * p < 0.05; ** p < 0.01; + p = 0.067; n.s. p > 0.1.

2.2. The Relevance of the P-Selectin/PSGL-1-Axis for the Effect of Platelets to Improve CD133+BMSC Adhesion
to Human Micro-Endothelium

To investigate the role specific receptor-ligand interactions for the effect of platelets on the capacity
of human CD133+BMSC to adhere along human EC under flow, we first examined P-selectin and
its ligand PSGL-1 to that respect. Statistically as a trend (p = 0.067) pre-incubation of hPRP with the
P-selectin-specific antagonist KF38789 reduced adhesion levels when contrasted to non-antagonised
hPRP-co-culture of CD133+BMSC and to a similar level observed for platelet poor conditions
(48.3 +/− 24.4% vs. 39.3 +/− 26.1%; Figure 1b) in all paired experiments performed in this study.
Likewise, PSGL-1-blockage on CD133+BMSC revealed a reducing effect on the platelet depending
augmentation of adhesion of CD133+BMSC to EC under shear stress (p < 0.01; Figure 1c). Next,
we evaluated the effect of PECAM-1 on EC to bind platelets. Inhibition of PECAM, by either
pre-incubation of EC with PECAM-1-blocking antibody (Figure 1d) or with co-infused recombinant
soluble PECAM-1 (Figure 1e) had no modulating effect on platelet promoted CD133+BMSC adhesion
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to EC. As we demonstrated the SDF-1/CXCR4 interaction to be relevant for systemic mobilisation
of CD133+BMSC in the course of clinical liver regeneration subsequent to parenchymal loss [6],
we tested the CXCR4-inhibitor (AMD3100) for a modulatory impact on platelet promoted adhesion of
CD133+BMSC to HMEC1. However, there was no modulation of the adhesion rate of CD133+BMSC to
HMEC-1 subsequent to co-incubation with AMD3100 (Figure 1f). These results indicate that PSGL-1 on
BMSC interacting with its receptor P-selectin on platelets might be important for the augmentation of
platelet-mediated CD133+BMSC-homing along EC. In contrast, PECAM-1 and the SDF-1/CXCR4-axis
seemed to play only a minor part in that scenario.

2.3. Platelet Promoting Effect In Vitro on CD133+BMSC Adhesion to Endothelium is Conserved for Rodent
Micro Endothelium and LSEC Independent of Further Stimulation

Next, we tested the impact of platelets in an allogeneic rodent equivalent of our human shear-stress
co-culture model. Murine platelets (mPRP) had a similar adhesive enhancing effect for mouse (m)
CD133+BMSC to murine dermal micro-endothelial cells (dMEC) when contrasted to platelet-poor
conditions (mPRP vs. mPPP 1.44-fold (+/− 0.17); p < 0.01, Figure 2a). Further, stimulation of platelets
with the strong platelet activator ADP exhibited a little more pronounced effect on CD133+BMSC
adhesion (p < 0.001; Figure 2b). However, when directly compared to non-activated platelet
co-incubation, we noted only a non-significant trend (+ ADP vs. − ADP; p = 0.072). To prove
the platelet effect in the same setting for hepatic sinusoidal endothelial cells, we utilized mouse liver
sinusoidal endothelial cell (mLSEC) in our flow chamber system and observed a comparable positive
platelet effect of mCD133+BMSC adhesion to mLSEC (1.31 fold (+/− 0.09); p < 0.05; Figure 2c).

Figure 2. Augmented CD133+BMSC adherence to endothelium subsequent to platelet co-incubation
in a murine shear-stress model Adherence of CD133+BMSC to murine endothelial cells co-incubated
with mouse platelet rich plasma (mPRP) was tested by pairs under different conditions: control
and treatment at a time. (a) Significant increase in adhering mouse CD133+BMSC to mouse dermal
micro-endothelial cells (dMEC) with mPRP when contrasted to mPPP (mouse platelet poor plasma).
(b) Platelet activation by ADP did not further enhance the mPRP effect. (c) Augmenting platelet effect
on mCD133+BMSC adhesion to mLSEC. Experiments were performed at shear levels of 1.0 dyne/cm2

followed by quantification of adherent CD133+BMSC in % of mPPP control conditions. Paired t-test:
* p < 0.05; ** p < 0.01; *** p < 0.001.

2.4. Platelets Promote Hepatic Homing and Extravasation of CD133+BMSC in the Course of Reperfusion
Subsequent to Warm Ischemia

Next, we questioned the effect of platelets on the hepatic homing capacity of CD133+BMSC to the
micro-architecture of the rodent liver following warm ischemia tested in a single pass xenogeneic IPRL
system (Figure 3). CD133+BMSC were tracked by in situ video microscopy to detect intra-sinusoidal
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adhesion to LSEC as well as co-localization of BMSC to the hepatic parenchyma as a marker of
extravasation (sample video-microscopy image: Figure 4a).

Figure 3. Ex vivo xenogeneic IPRL model with video-assisted in situ imaging. Direction of arrows
indicates buffer and cell flow in the in situ system. The black shades stripes within the analyzed liver
represent 70% hepatectomy. Portal vein of the rat liver was cannulated and left in situ and liver was
drained via the cannulation of the vena cava superior.

In order to prove and quantify the effect of platelets for BMSC-homing following warm liver
ischemia and reperfusion, CD133+BMSC injection to the IPRL was performed in three experimental
groups: Group I: CD133+BMSC only (-PRP), Group II: CD133+BMSC after platelet pre-infusion of the rat
liver with platelets (post PRP) and Group III: CD133+BMSC after co-incubation with platelets (with PRP).
After warm liver ischemia the total number of homing CD133+BMSC demonstrated a non-significant
trend towards higher numbers of homing BMSC in groups II and III if contrasted to group I (each n = 5;
Figure 4b). Compared to group I, the level of CD133+BMSC-extravasation, represented as relation
of parenchymal- to intra-sinusoidal-located BMSCs, was significantly increased in group II and III
(p < 0.05; Figure 4c). The positive trend of co-incubation with CD133+BMSC if contrasted to pre-infused
platelets prior to stem-cell-infusion was statistically not significant. Subsequently, absolute numbers of
extra sinusoidally detectable CD133+BMSC were significantly increased in group II (9.9 +/− 2.6 cells)
and group III (13.3 +/− 5.7 cells) per 10 high power fields when contrasted to group I (4.2 +/− 2.6;
p < 0.05; Figure 4d).

2.5. Localization of Human CD133+BMSC Homing during Hepatic Warm Ischemia Reperfusion Injury

Following warm ischemia and subsequent infusion of human CD133+BMSC via the portal vein,
immunofluorescence staining and confocal microscopy analysis were applied to characterize the
homing of CD133+BMSC to the rat liver. Serial liver tissue slides taken from the rat liver subsequent
to 2.5 h of continued reperfusion were stained for different cell-specific marker proteins as well as
for human CD45, which was specific for the infused CD133+BMSC. CD133+BMSC with a normal
nucleus-to-cytoplasm ratio were found within the liver tissue after 2.5 h of perfusion (Figure 5a).
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of at least 10 different visual fields. (b) IPRL: Increase of absolute numbers of CD133+BMSC homing 
to the liver (CD133+BMSC cell count per 10 visual fields) without platelet co-treatment (column 1; -
PRP) versus CD133+BMSC pre-infusion of PRP and subsequent infusion of stem cells to the rat liver 
(column 2; postPRP) versus CD133+BMSC co-incubated with PRP and subsequent co-infusion 
(column 3; withPRP). (c) Relation of parenchymal versus vascular located CD133+BMSC in these 3 
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n.s., not significant. 
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Figure 5. Characterization of hepatic homing of CD133+BMSC in IPRL by confocal fluorescence 
microscopy. Rat livers were perfused with CD133+BMSC, which were stained by anti-CD45 antibodies 

Figure 4. Platelets increase CD133+BMSC binding and extravasation in an ischemia and reperfusion
injury model. CD133+BMSC were infused to the rat liver after 180 min of reperfusion. In Situ
Imaging by fluorescence microscopy of 10 different visual fields. (a) In situ Imaging: Extra-sinusoidal
(parenchymatous, red circle) vs. sinusoidal (intra-vascular, black circle) CD133+BMSC after liver
passage. Membranes of CD133+BMSC were labeled prior to in situ perfusion with PKH67 Green to
analyze amount and localization of human BMSC homing to the rat liver by fluorescence microscopy
of at least 10 different visual fields. (b) IPRL: Increase of absolute numbers of CD133+BMSC homing
to the liver (CD133+BMSC cell count per 10 visual fields) without platelet co-treatment (column 1;
-PRP) versus CD133+BMSC pre-infusion of PRP and subsequent infusion of stem cells to the rat liver
(column 2; postPRP) versus CD133+BMSC co-incubated with PRP and subsequent co-infusion (column
3; withPRP). (c) Relation of parenchymal versus vascular located CD133+BMSC in these 3 groups.
(d) Absolute numbers of CD133+BMSC located to the extra-sinusoidal parenchyma. * p < 0.05; n.s.,
not significant.
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Figure 5. Characterization of hepatic homing of CD133+BMSC in IPRL by confocal fluorescence
microscopy. Rat livers were perfused with CD133+BMSC, which were stained by anti-CD45 antibodies
(green). (a) Cell nuclei were stained by DAPI (blue). (b) Demonstration of CD133+BMSC (green)
co-localization with hepatocytes visualized by actin-staining of hepatocytes with TRITC-labelled
phalloidin (red). Nuclear staining with DAPI (blue). (c,d) CD133+BMSC (green) co-localization to
hepatocytes, specifically detected by Sodium taurochlate cotransporting protein- (Ntcp-) staining (red).
Ntcp is exclusively expressed in hepatocytes. (e,f) Confirmation of CD133+BMSC (green) extravasation
with distance to LSEC. Latter is specifically detected by the endothelial cell marker RECA-1 (red).
(g,h) CD133+BMSC (green) are predominantly localized to hepatic zone 1 and 2 but rarely co-located to
the inner zone 3 indicated by staining of glutamine synthetase (GS; red). The latter is mainly expressed
in hepatocytes of zone 3 close to the central venule of the acinus. Nuclear staining with DAPI (blue).

CD133+BMSC were not only located in areas of connective tissue, but were especially found in
close contact to hepatocytes, evidenced by their proximity to F-actin- and Ntcp-positive hepatocytes
(Figure 5b–d). BMSCs entered the parenchyma subsequent to extravasation located with distance to
hepatic endothelial and sinusoidal structures, detected by co-staining for the rat endothelial cell marker
RECA-1 (Figure 5e,f) However, a certain disruption of the endothelial layer on the level of sinusoids to
some extend due to warm ischemic hepatic damage cannot be excluded. CD133+BMSC were detected
on the acinar and anatomical lobular level in hepatic zones 1 and 2, whereas cells were rarely detectable
in the peri-central-venular zone 3, indicated by zone 3 glutamine synthetases co-staining (Figure 5G,H),
suggesting that the cells exited the blood along most parts of the sinusoidal conduit.

3. Discussion

In the present study, we provide evidence that platelets promote CD133+BMSC interaction with
human endothelium under flow conditions dependent on P-selectin/PSGL-1 interactions. In the
autologous rodent model, we confirmed the adhesion promoting effect of platelets under shear stress
to micro-endothelium as well as to LSEC in vitro. Furthermore, in a chimeric human to rat model,
co-administration of platelets with CD133+BMSC following hepatic warm ischemia increased local
vascular homing and extravasation of the stem cells within the liver.

The contribution of BMSCs to liver regeneration is complex as some authors hypothesize that
stem cells reconstitute the regenerating liver by transdifferentiation into primary hepatocytes [37–43].
Contrarily, this has been challenged in subsequent reports [44]. Others advocate that extrahepatic
BMSC undergo cell fusion [45,46] or function as external or anti-inflammatory regulators required for
successful liver restoration [38,47,48]. Overall, the contribution of hematopoietic stem cells (HSC) to
liver repair seems generally to be related to the presence and severity of liver injury. BMSC have the
potential to enter different organs from the circulation to induce organ repair. However, the exact
mechanisms and cellular processes remain unclear. It has been observed that extrahepatic CD133+HSC
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mobilization is augmented in response to large liver resections that induce adequate liver regeneration
experimentally [1] and clinically [3,6,49].

We have previously provided evidence for cytokines and chemoattractants to serve as mediators
to enable adequate CD133+BMSC mobilization. This promotes regeneration after large liver resections
and levels of mobilization that correlate with the magnitude of clinical liver regeneration after
hepatectomy [6]. In the same study, evidence was provided for liver injury to induce the expression of
signaling mediators that facilitate the recruitment and homing of HSC to the damaged liver [6,50–58].

The observed platelet mediated augmentation of CD133+BMSC adhesion to the sinusoidal
micro-vasculature in this study may be facilitated by cell-cell-interactions. Latter was demonstrated
for human peripheral blood derived CD133+ endothelial progenitor cells (EPC), monocytes and
CD133+BMSC respectively when co-incubated with platelets [29,30]. We noted this adhesion enhancing
effect under shear stress conditions closer to the physiological environment of the micro-vasculature
of the liver. Our data are in line with reports on platelet interaction with neutrophils, lymphocytes,
CD39+ cells and CD133+EPC respectively under flow [27,32,59].

The functional blockage of P-selectin on platelets mainly abolished the enhancing effect of platelets
binding to human micro-EC. This observation goes along with reports on P-selectin to play a critical
role for binding leucocytes along vasculature like monocytes, CD34+ cells, bone marrow mesenchymal
stem cells and EPC [29,32,59]. The impact of P-selectin for hepatic platelet and leucocytes homing
was shown in an in vivo warm liver ischemia model, demonstrating polymorphonuclear leucocytes
adhesion to be significantly decreased in P-selectin-deficient mice if contrasted to wild-type animals [28].
PSGL-1 antigen is known to be expressed on hematopoietic stem cells and other lines of leukocytes
as the major ligand for P-selectin [60,61]. Here, we demonstrated that interactions with PSGL-1 on
CD133+BMSC is critical for the platelet-mediated boost of adhesion along EC as it was observed for
EPC binding to vascular injury sites [59]. PECAM-1 is known to be expressed by a wide range of cell
lines and types including leucocytes, monocytes, hematopoietic stem cells, platelets, and endothelial
cells [62–65]. This adhesion molecule was demonstrated to play a role for recruitment, migration on and
transmigration along vasculature for leucocytes like neutrophils and monocytes [66,67]. We observed
no substantial role for PECAM-1 for a modulatory effect on CD133+BMSC homing to vasculature
under flow. Still, we cannot exclude an effect of PECAM-1 for endothelial transmigration processes as
described for various types of vasculature [68]. Among other factors located on or known to be derived
from platelets that are discussed to play a role for hematopoietic stem cell and progenitor cell homing
to locally bound platelets at sites of vascular and heart injury is stroma derived factor 1 (SDF-1) [69–71].
The lack of a modulatory effect of CXCR4-inhibition for vascular homing of CD133+BMSC under shear
force here suggests the SDF-1/CXCR4-axis plays a minor role in local endothelial homing in contrast to
our previous report on SDF-1 to be relevant for peripheral CD133+BMSC-mobilisation in the scenario
of pronounced hepatic regeneration [6].

The ameliorating effect of human platelets for human CD133+BMSC under flow in a rodent model
with murine micro EC and LSEC is in agreement with the observations of Lalor et al., who demonstrated
in a study on hepatic vasculature deploying static as well as flow conditions that platelets bind to LSEC
even more effectively than to human umbilical vein endothelial cells (HUVEC). Under shear stress,
platelets promoted leucocyte adhesion to LSEC which was shown to be in part P-selectin-dependent [27].
In the rodent setting, pre-stimulation of platelets prior to co-incubation with CD133+BMSC resulted in
a non-relevant effect on platelet-dependent improvement of CD133+BMSC homing to EC. A former
study demonstrated significantly enhanced interaction of platelets with endothelial progenitor cells
after pre-stimulation with various platelet activators such as ADP [59]. A study on whole blood with
thrombin receptor activating peptide as platelet stimulator revealed superior platelet activation upon
broad leucocyte platelet interaction [72]. Other platelet stimulators were not tested to that respect.
Our group previously demonstrated a regulatory effect of CD133+BMSC for ADP-dependent platelets
aggregation in co-incubation of these two cell-types characterized as NTPDase1 (CD39) dependent [8].
This is in line with a report on eosinophils to directly inhibit platelet aggregation among others due
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to ADP-stimulation [73]. This mechanism of interaction of stem cells and platelets in the course of
regenerative interactions with vasculature paralleled by a control of excessive thrombogenic processes
may add to explain the missing effect of platelet stimulation in the here presented study.

Human CD133+BMSC homing and co-localization to rat hepatocytes in the micro-architecture
of the reperfused liver subsequent to warm ischemia goes along with in vivo observations in rodent
models of acute hepatic injury. Here, bone marrow derived mesenchymal and hematopoietic stem
cells locate to the damaged liver promoting regeneration processes [74,75]. Further verification of the
salutary effect of platelets was facilitated employing in situ video microscopy as previously utilized
for other rodent scenarios to track sinusoidal leucocyte homing and extravasation subsequent to
warm hepatic ischemia [76,77]. To facilitate tracing of infused cells we utilized GFP-tagging of the
CD133+BMSC. Such fluorescence staining concepts are routinely utilized in models of hepatic damage
and subsequent bone marrow stem cell treatment in the rat for tracking applicated cells [78–80].
Although tested under plasma-free conditions, the selected xeno-model of human CD133+BMSC
transfused to rat livers may bear some weakness due to xenogeneic effects. However, our observation
of pronounced extravasation from the sinusoidal space towards parenchymal structures secondary
to platelet interference is in line with previous studies on platelet interaction with neutrophils and
monocytes respectively at sites of inflammation that demonstrated accelerated leucocyte adhesion
followed by eased trans-endothelial migration due to P-selectin/PSGL-1 interaction dependent platelet
intervention [81,82]. Moreover, in a murine skin model, platelets exhibited a significant role for
trafficking of mesenchymal stem cells to the extravascular space at the site of inflammation for both,
venules as well as microendothelial capillaries [83]. In the therapeutic approach, platelet-stem-cell
linking antibodies have been reported to improve homing of administrated stem cells leading in
amelioration of their regenerating effect in a model of cardiac ischemia/reperfusion injury [84].

We have previously successfully applied human autologous CD133+HSC in a clinical scenario by
intraportal administration following portal venous embolization of right liver segments to expand
left lateral hepatic segments prior to extended liver resection [2–4]. Although the exact mechanisms
by which extrahepatic stem cells and their progenitor cells promote liver regeneration are not fully
elucidated [45,85,86], the liver proliferative effect of therapeutic stem cell applications in the clinical
and pre-clinical scenarios of ischemia or hepatic volume loss may in part be due to local accumulation
of administered BMSC prior to physiologically chemottractant-driven mobilization and homing.
Our observations here provide a key mechanistic distinction to deepen our understanding of the
proposed model of hepatic homing of CD133+BMSC subsequent to liver injury with platelets promoting
sinusoidal adhesion and subsequent transmigration to the extra-sinusoidal space, both forwarded
by P-selectin/PSGL-1 interaction (Figure 6). Alternatively, platelets may bind to the matrix of the
space of Disse in areas of disturbed sinusoidal vascular disintegrity with subsequent promotion of
CD133+BMSC accumulating to the space of Disse. Such platelet-space of Disse interactions were
demonstrated for ischemia-reperfusion scenarios as observed subsequent to liver transplantation
before (see [87,88]). Further studies on the diverse variants of hepatic damage need to be conducted in
order to elucidate the exact mechanisms of platelets to support extravasation of homing CD133+BMSC
to the liver.

In light of the data presented here, this study may lead to new approaches to accelerate
efficacy of BMSC treatment strategies in the regeneration, protection, and treatment of various
liver diseases. Platelets might be a useful strategy to that respect in order to maximize the effectiveness
of therapeutically applied BMSC. Various constellations of acute and chronic hepatic injury may benefit
from such treatment concepts based on BMSC. These may include liver transplantation, conditions after
extensive hepatic resection, hepatitis, and acute-on-chronic episodes in the context of liver cirrhosis.
However, further studies are needed to explore the exact mechanisms of platelet supported local
homing of BMSC into the liver and resultant regeneration and proliferation.
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Figure 6. Model of platelets to increase hepatic homing of CD133+BMSC to the injured liver. In response
to shear stress in the liver, platelets promote sinusoidal adhesion of CD133+BMSC and subsequent
transmigration to the extra-sinusoidal space, both forwarded by P-selectin/PSGL-1 interaction.

4. Materials and Methods

4.1. Cells and Cell Isolation

Primary human CD133+BMSC were purified from bone marrow aspirates from patients
undergoing abdominal surgery following written informed consent with approval from the local ethics
committee (Ethics Committee of the Heinrich-Heine-University, Duesseldorf, Germany; approval
no. 2852 and no. 2853, 2 February 2007). All methods were carried out in accordance with relevant
guidelines and regulations. For purification, magnetic activated cell sorting (Miltenyi Biotec, Bergisch
Gladbach, Germany) according to manufacturer’s instructions was utilized. Purity was assessed by
FACS analysis of each preparation using a BD FACSCanto (Becton Dickinson, Heidelberg, Germany)
flow cytometry system. The following antibodies were used: human CD133/2-PE (293C3, Miltenyi
Biotec, Bergisch Gladbach, Germany), human CD45-APC (APC anti-human CD45, Becton Dickinson,
Heidelberg, Germany), and human CD 34-PE-Cy7 (PE-Cy7 mouse anti-human CD34, Becton Dickinson,
Heidelberg, Germany). Primary murine CD133+BMSC were purified from bone marrow flushed from
murine tibiae and femori (male C57BL/6 mice) utilizing phase separation for mononuclear cells and
adjacent FACSorting (anti-Prominin-1-PE, Miltenyi Biotec, Bergisch Gladbach, Germany; anti-mouse
CD34-eFluor 660, eBioscience, Dreieich, Germany; anti-CD 45-FITC, Miltenyi Biotec, Bergisch Gladbach,
Germany). The animal research was performed conform to national guidelines and with approval of
the local committee. All experimental protocols were approved by the named licensing committee of
the District Government Düsseldorf, Germany (internal no O/56/06 ).

For co-cultivation experiments with thrombocytes, platelet rich plasma (PRP) and platelet poor
plasma (PPP) was prepared from 1012 mL of blood from respective BMSC donors by blood centrifugation.
For PRP, the blood was centrifuged for 10 min at 20◦ at 180× g before PRP was collected from the
supernatant. For PPP, the blood was centrifuged for 5 min at 20◦ at 600× g before PPP was collected
from the supernatant. Human dermal microvascular endothelial cells (HMEC-1) were kindly provided
by the Department of Anesthesiology, Intensive Care and Pain Medicine, Experimental and Clinical
Hemostasis, University of Muenster, Germany and cultivated in Endothelial Medium (PAA, # U15-002)
with Glutamine, Penicillin/Streptomycin and growth factors Hydrocortison (1 µg/mL) and endothelial
growth factor (10 ng/mL) at 37 ◦C and 5% CO2. Mouse primary dermal microvasculature endothelial
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cells (dMEC) and mouse hepatic sinusoidal endothelial cells (mLSEC) were commercially available
(C57BL/6, PeloBiotech, Planegg, Germany) and cultivated in Endothelial Cell Medium (PeloBiotech,
Planegg, Germany; # PB-M-1168) at 37 ◦C and 5% CO2.

4.2. Co-Culture Live Cell Assay

Human and mouse endothelial cells (HMEC-1, dMEC, and mLSEC) were cultured in
fibronectine-coated capillaries of a live cell imaging system (BIOFLUX 200, Fluxion). We established
a heterologous live cell imaging system for co-cultivation of human and mouse endothelial cells
respectively, co-cultured under shear stress with CD133+BMSC and platelet rich or poor plasma as
control prepared from respective BMSC donors under different test conditions before infusion to
the BIOFLUX system. We tested in both species to evaluate conservation of effects across species to
justify coming preclinical studies and ones in systems modified for relevant genes. The BIOFLUX
System contains microfluidic flow channels that connect two wells of a 14-well microtiter plate.
Air pressure is applied to induce flow conditions in capillaries at a physiological shear force of
1 dyn/cm2. All experiments were performed in duplicate testing treatment versus control (DMSO/H2O)
conditions parallel with the same preparation of BMSC for 1 h at 1 dyn/cm2 followed by quantification
of adherent CD133+BMSC. In human experiments, we performed different blocking experiments by
pre-incubation of different cell types with inhibitors or blocking antibodies: 20 min pre-incubation of
platelets with the selective P-selectin antagonist small-molecule KF38789 (Tocris, Bio-Techne GmbH,
Wiesbaden, Germany; 10 µM) [89] at room temperature, 10 min pre-incubation of CD133+BMSC
with 10 µg/mL PSGL-1 antagonist for SDF-1 interaction IM2090 (Beckman Coulter, Krefeld, Germany;
Clone 3E2-25-5-PL1) at 37 ◦C, 20 min pre-incubation of HMEC-1 with 10 µg/mL PECAM-1 blocking
antibody mPECAM-1.3 IgG (kindly provided by Prof. P. Newman, Blood Research Institute, Milwaukee,
WI, USA) at 37 ◦C. As a second PECAM-1 inhibiting strategy, we performed co-culture experiments
under shear force co-incubating with recombinant truncated PECAM-1 protein (R&D Systems,
Bio-Techne GmbH, Wiesbaden, Germany; 3.0 µg/mL). This soluble form encompasses the extracellular
fraction of PECAM-1 being in competition with cell bound PECAM-1 for binding. To evaluate the role of
the SDF-1/CXCR4 axis we performed experiments under CXCR4 inhibiting conditions, pre-incubating
CD133+BMSC with the CXCR4-inhibitor AMD3100 (5 µg/mL) as previously performed [6]. To test the
effect of pre-stimulation of platelets for adhesion of CD133+mBMSC, murine PRP was pre-stimulated
with 0.5 µM ADP monitored by aggregometry utilizing the Born-light-transmission aggregometry (LTA)
method in a Lumi-Aggregometer (Chronolog). Latter prevented over-stimulation with clot-formation.

4.3. Isolated Perfused Rat Liver (IPRL)

We established a single pass, xenogeneic in situ IPRL model-system in combination with
video-assisted in situ imaging to evaluate an impact of platelets for homing of CD133+BMSC to
the liver following warm ischemia ex vivo (Figure 3). A serum-free single pass xeno-perfusion model
of human platelets and BMSC, respectively transfused to the rat liver was selected to test human
blood-born components with the liver micro architecture, as a test system incorporating human liver is
not available at present. In this system, human primary CD133+BMSC, human platelet rich plasma
(PRP) and platelet poor plasma (PPP) were prepared from the same donors. Rat livers of male Wistar
rats (120–160 g) were linked to an isolated perfused rat liver model (IPRL). We performed portal vein
cannulation of the rat liver left in situ and secured hepatic venous flow via cannulation of the vena
cava superior. Additional cannulation of the ductus choledochus allowed drainage of bile. After stable
flow was established with Krebs–Henseleit Buffer at 37 ◦C at a flow rate of 250 µL/min a warm hepatic
ischemia was achieved by pausing the hepatic flow for 30 min. The ischemic phase was followed by a
reperfusion period of 3 h length. Hereafter, 2 × 10E5 human CD133+BMSC were infused as a bolus to
the liver perfusing portal venous flow.

To analyze the impact of platelets for homing of CD133+BMSC to the rat liver we determined three
experimental groups and performed five independent IPRL experiments in each group. The following
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groups were analyzed. In Group I, 2× 10E5 CD133+BMSC were resuspended in Krebs-Henseleit–Buffer
and directly injected to the IPRL (CD133+BMSC -PRP). In group II, primary injection of 3 mL PRP to the
rat liver and subsequent application of 2 × 10E5 CD133BMSC resuspended in Krebs–Henseleit Buffer
to the IPRL (CD133+BMSC following PRP). In Group III, 15 min incubation of 2 × 10E5 CD133+BMSC
in 1 mL PRP and subsequent injection to the IPRL via 1 mL syringe (CD133+BMSC co-incubated with
PRP). Quantification of total hepatic homing and the proportion of extravasation of BMSC were realized
by fluorescence cell membrane labeling (PKH67 Green, Sigma Aldrich, Munich, Germany) and in situ
imaging of the IPRL (Figure 2). Extra-sinusoidal (parenchymatous) vs. sinusoidal (intra-vascular)
CD133+BMSC were analyzed after liver passage. Fluorescence staining of CD133+BMSC with PKH67
Green was performed to analyze amount and localization of human BMSC homing to the rat liver by
fluorescence microscopy of 10 different visual fields. Quantitative image analyses were performed
blinded to the investigator concerning treatment group.

4.4. Confocal Fluorescence Microscopy and In Situ Imaging

Characterization of human CD133+BMSC homing to the rat liver was carried out by
immunofluorescence staining and (confocal) microscopy analysis of serial liver tissue slides.
Immunofluorescence staining and confocal fluorescence microscopy (20×magnification) was performed
for human CD45 (human CD45: mouse monoclonal IgG, clone 35-Z6, Santa Cruz, Heidelberg, Germany)
conjugated to Alexa Fluor 488 goat anti-mouse (Biolegend, London, United Kingdom), for the
endothelial cell marker RECA-1 [90], for the hepatocytes-specific sodium taurocholate cotransporting
polypeptide (Ntcp) with a rabbit anti-rat Ntcp (K4) [91], rat Phalloidin (Phalloidin-TRITC) staining of
F-Aktin filaments in the rat liver and additional nuclear DAPI-staining. Extravasation of CD133+BMSC
was characterized by human-specific CD45 immunofluorescence staining. To differentiate hepatic zone
distribution of zone 1 and 2 vs. 3, we detected for tyrosine synthetase, known to predominantely being
detectable peri-central-venular in zone 3 hepatocytes of rat livers [92]. Cells located to the parenchymal
bars delineating sinusoids were determined as “parenchymal”. Cells located to the free sinusoids were
determined as sinusoidal. Extravasation was similarly demonstrated in our study as performed by
others for tumor cells utilizing in-situ-imaging in the rat-liver [93].

4.5. Statistics

Statistical analysis and graphing were performed using MS Excel, Systat 13 and SigmaPlot 14.
All results are expressed as mean ± standard deviation. Statistical significance was determined by
Student’s two sided and paired t test respectively and significance was defined as * p < 0.05, ** p < 0.01,
*** p < 0.001.
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Abbreviations

BMSC bone marrow stem cells
dMEC dermal microvasculature endothelial cells
EC endothelial cells
EPC endothelial progenitor cells
HMEC-1 human dermal microvascular endothelial cells
h hours
hPPP human platelet poor plasma
hPRP human platelet rich plasma
HSC hematopoietic stem cells
IPRL isolated perfused rat liver
LSEC liver sinusoidal endothelial cells
MEC micro-endothelial cells
min minutes
mLSEC mouse hepatic sinusoidal endothelial cells
mPPP mouse platelet poor plasma
mPRP mouse platelet rich plasma
n.s. not significant
PECAM-1 platelet-endothelial-adhesion-molecule-1
PPP platelet poor plasma
PRP platelet rich plasma
PSGL-1 P-Selectin-Glyco-Ligand-1
SDF-1 stroma-derived factor-1
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