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ABSTRACT

Identifying new indications for existing drugs (drug
repositioning) is an efficient way of maximizing
their potential. Adverse drug reaction (ADR) is one
of the leading causes of death among hospitalized
patients. As both new indications and ADRs are
caused by unexpected chemical-protein inter-
actions on off-targets, it is reasonable to predict
these interactions by mining the chemical-protein
interactome (CPIl). Making such predictions has
recently been facilitated by a web server named
DRAR-CPI. This server has a representative collec-
tion of drug molecules and targetable human
proteins built up from our work in drug repositioning
and ADR. When a user submits a molecule, the
server will give the positive or negative association
scores between the user’s molecule and our library
drugs based on their interaction profiles towards
the targets. Users can thus predict the indications
or ADRs of their molecule based on the association
scores towards our library drugs. We have matched
our predictions of drug-drug associations with
those predicted via gene-expression profiles,
achieving a matching rate as high as 74%. We
have also successfully predicted the connections
between anti-psychotics and anti-infectives,

indicating the underlying relevance of
anti-psychotics in the potential treatment of
infections, vice versa. This server is freely available
at http://cpi.bio-x.cn/drar/.

INTRODUCTION

More than 90% of drug candidates fail during develop-
ment (1), which makes pharmaceutical R&D extremely
expensive and time consuming. Identifying novel indica-
tions for existing drugs, or drug repositioning, can
enhance drug safety, maximize the potential of the drugs
and lower R&D costs (2,3). Many drugs such as sildenafil
citrate (Viagra®) and raloxifene hydrochloride (Evista®)
have already been repositioned for other indications
after reports of side effects in clinical trials (4). Adverse
drug reaction (ADR) has always been a world-wide
concern as one of the leading causes of death among
hospitalized patients (5,6). Since both new indications
and ADRs are caused by unexpected chemical-protein
interactions (7-14), which may be indirect or complex at
the mechanism level, it is reasonable to try to predict these
interactions based on mining the chemical-protein
interactome (CPI).

Understanding drug—drug associations can not only
benefit the discovery of novel indications and therapies
(15) but also prevent serious negative outcomes (16).
The use of a large database of transcriptional responses
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to identify connections between small molecules which
share the same mechanisms and processes within
diseases (17,18) can reveal unexpected similarities
between drugs so as to indicate potential repositioning
uses (19-23) or wunexpected adverse reactions (24).
Though high throughput technology such as microarray
has the potential to generate large quantities of data for
analyzing drug-drug associations, this methodology,
although robust, can also be costly (25,26) while reliability
and quality measures still need to be improved (27,28).

Here we introduce the DRAR-CPI server, for predict-
ing Drug Repositioning potential and ADR via CPI (29).
This server has a comprehensive collection of the 385
structural models of targetable human proteins and 254
active forms of small molecules with known descriptions,
indications and ADRs. When a user submits a molecule,
docking programs can be applied to calculate the binding
energy between the uploaded molecule and the targets.
The server will give the positive or negative association
scores between the user’s molecule and our library drugs
based on their interaction profiles across 385 human
proteins and will also suggest candidate off-targets that
tend to interact with it. Since our library drugs have a
comprehensive annotation of their indications and
ADRs, users can predict potential indications or ADRs
based on the association scores of their molecule across
our library molecules. We have matched our in silico pre-
dictions of drug—drug associations with those predicted
via gene-expression profiles, achieving a matching rate as
high as 74% while significantly reducing time and cost.
Information on drug-drug associations can lead to new
indications for existing drugs, such as the application of
anti-psychotics in the potential treatment of bacterial
infections, vice versa. The server is freely available at
http://cpi.bio-x.cn/drar/.

METHODS
Preparation of the target set and the library drugs

Using the criteria (29,30) and preparation method (31)
described in our previous research, we achieved 385
pocket models of 353 proteins with known functions
derived from UniProt. We then chose 254 active forms
of 166 small molecules from DrugBank (24) with known
descriptions, indications and ADR as our library drugs
based on the collection criteria of the background drugs
in our previous work (30). As all the proteins are human
proteins from third-party targetable protein databases,
and all drug molecules are from our previous study, we
did not add any subjectively selected protein or drug based
on our interest in drug repositioning, so as to make it a
representative set of the background distribution for both
proteins and drug molecules. We will continue to update
the targets and library drugs in DRAR-CPI, and users can
subscribe to our updates through RSS feeds.

Preparation of the library interactome

We prepared an in silico hybridization using the DOCK
program (32), generating a library interactome of 254
library ligands towards 385 protein pockets in the form
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of a docking score matrix of 254 x 385 elements. Docking
scores > (0 were treated as missing values according to our
previous scoring process pipeline (31). The two-directional
Z-transformation (2DIZ) was applied to process the
original docking-score matrix so that the docking scores
were normalized to the direction of drugs as Z-scores and
then to the direction of targets as Z’-scores to increase
accuracy (31).

Evaluation of the drug—drug associations

When one drug is uploaded, it is ‘hybridized” with all
targets using the DOCK program (32). The docking
scores of all the library drugs plus the uploaded drug
towards all the targets are transformed into a matrix of
Z'-scores containing 255 x 385 elements for the calcula-
tion of the enrichment score. We developed an algorithm
based on connectivity analytics (17) to calculate an asso-
ciation score S" and a P-value between the uploaded drug
and each library drug i. For one uploaded drug, after
2DIZ (31), we treat the targets towards the uploaded
drug with a Z'-score <—1 as the favorable targets and
those with Z’-score >1 as unfavorable targets. Both the
favorable and unfavorable targets construct the query sig-
nature at this stage. For each library drug, say drug i, we
compute an enrichment score for the set of favorable or
unfavorable targets in the signature, ks), and ks, . re-
spectively. To calculate ks, we set n as the total number
of all the targets and ¢ as the number of the favorable
targets. We sort the favorable targets by Z'-scores
towards the library drug 7/ in ascending order and get
their positions (1...7) as list 7. Then we sort all the
targets in the same way and get their positions (1...n)
as list N. For each favorable target, we get its position
in list 7 as j and its corresponding position in list N as
v, and calculate the following values:

¢ |j v
a=max|-——
=11t n

—1
b= mélx[z —]—:|

=1 |n t

Set ks' = a,if a>b or ks’ = —b if b> a. Then calculate
ksdown For the unfavorable targets in the same way. Set the
association score S’ = 0 if ks and ksdown have the same
algebraic sign. Otherwise, set st = ks p—ksdown Scan
across all the 11brdry drugs and get the maximum and
minimum of s" as s}, and s ., respectlvely Set the asso-
ciation score S’ = s /dex when s'> 0 or §'= —s'/s! . when
s' < 0. The association score S’ is calculated from ks’ and
ks, and the P-value is calculated using the
Kolmogorov—Smirnov statistic.

INPUT AND OUTPUT

Users need to upload a drug molecule in mol2 format with
charges and hydrogens added. When the user submits a
drug molecule, our server checks the format suitability
and calculates the interaction profile of this drug
towards all the targets in the database using DOCKG6
(32). The parameters of DOCK6 used in back end are
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listed in Supplementary Table S1, inherited from our
previous experience of constructing CPI (29-31). Users
can view the real-time progress online, and the page
showing the current docking status of the uploaded drug
will also be provided for bookmarking. It takes between 6
and 20 h to finish a one-molecule task and an email will be
sent on completion. The outputs comprise the two follow-
ing major elements:

(i) Library drugs which share similar (or opposite)
interaction profile with the user’s molecule, ranked
by the similarity (or disparity) with known indica-
tions and ADR information, suggesting the
underlying new indication and ADR of the user’s
molecule.

(i) The candidate off-targets that tend to interact with
the user’s molecule. The server will visualize the
drug-protein interactions, with amino acid residues
around 6 A of the molecule highlighted.

RESULTS
Prediction of the drug—drug associations

Drug—drug associations based on gene-expression profiles
can be used in drug repositioning (19). To test whether the
CPI-based docking score profiles corresponded with drug—
drug associations, we input the drugs used by Lamb et al.
(17) in our server to generate query signatures and
compared our result with their reports as the gold
standard to test the associations among the drugs. Of
the 87 associations in our server, we found that 64 asso-
ciations (74%) matched with the correlations indicated in
their article (Supplementary Table S2).

The data sets used by us are completely independent as
we inherited our method from the algorithm in
Connectivity Map (cMap) for connectivity analytics
without training it with any experimental data. To
evaluate our method, the 74% matching rate towards

Table 1. Associations of library drugs towards rosiglitazone

true positive of the gene-expression profiles measured
the sensitivity; however, the specificity can not be accur-
ately scaled since it is difficult to define which two drugs
are totally not associated with each other.

Case study 1: predicting drug—drug associations for
rosigliazone

Rosiglitazone is an anti-diabetic drug of the
thiazolidinedione class. Under the stimulation of insulin,
it binds to the peroxisome proliferator-activated receptors
(PPARs) in fat cells to make the cells more responsive
(33). To find the potential indications and ADRs for
rosiglitazone, we uploaded an active form of the drug
and checked the results (Table 1). We found that

(1) The drug sharing the closest similarity (association
score of 1 and P-value 0.0270) to rosiglitazone is
fulvestrant, a known anti-estrogenic drug (34),
which is used in the treatment of hormone
receptor positive metastatic breast cancer in
post-menopausal women (35). As rosiglitazone’s
binding target PPARY is significantly related to
human primary and metastatic breast adenocarcin-
omas (36), our server suggested a new indication for
rosiglitazone in the treatment of breast cancer.

(i) The seventh nearest drug to rosiglitazone is
pravastatin (association score —0.909 and P-value
0.0590), which is used in the treatment of hyperchol-
esterolemia to reduce the risk of myocardial infarc-
tion. Since rosiglitazone was associated with a
significant increase in the risk of myocardial infarc-
tion (37), this opposite association suggested the po-
tential ADR of rosiglitazone for causing myocardial
infarction.

(ii1) After clicking on the ‘CPI’ button, we see that using
Z’-scores our server ranked PPARY to the top.

This prediction provides clues for further studies on
rosiglitazone’s new therapeutic applications to breast
cancer as well as a warning of rosiglitazone’s ADR in

Rank Library drug Indication ADR Association P-value
score
1 Fulvestrant For the treatment of hormone receptor positive metastatic breast N/A 1 0.0270
cancer in post-menopausal women with disease progression
following antiestrogen therapy.
2 Geldanamycin N/A N/A -1 0.0742
3 Rosiglitazone For the treatment of Type II diabetes mellitus LongQT 0.977 0.0000
4 Risperidone 4 For the treatment of schizophrenia in adults and in adolescents, Rhabdomyolysis —0.939 0.1215
ages 13 to 17, and for the short-term treatment of manic or
mixed episodes of bipolar I disorder in children and adolescents
ages 10 to 17.
5 17-allylamino-17- N/A N/A —-0.934 0.1066
demethoxygeldanamycin
6 Galantamine 2 For the treatment of mild to moderate dementia of the Alzheimer’s N/A —0.931 0.0122
type.
7 Pravastatin 2 For the treatment of hypercholesterolemia to reduce the risk of Rhabdomyolysis —0.909 0.0590

myocardial infarction.

Seven drugs are ranked by association scores at the top of the list.



relation to myocardial infarction. If these data are con-
firmed by specific experiments, the manufacturer would
have a more comprehensive guide as to which indication
is appropriate and whether to redesign or modify the drug
to weaken unexpected bindings on off-targets. With this
information, the drug development process can be made
quicker and less costly and unexpected lawsuits can be
avoided.

Network analysis of drug associations

Based on the fact that the drug—drug associations pre-
sented by docking results matched the correlations
indicated by gene-expression profiles in as many as 74%
of cases, we selected the pair-wise associations among all
254 molecules in our library and applied thresholds for
association scores of >0.6 and P-value <0.05. We then
visualized the remaining associations in a network
layout using a force-directed method based on association
scores (Figure 1).

Case study 2: the potential for repositioning anti-
psychotics as anti-infectives

Five phenothiazine (chlorpromazine, fluphenazine, pro-
chlorperazine, thioridazine and trifluoperazine) and two
non-phenothiazine (haloperidol and clozapine)
anti-psychotics showed positive connections in terms of
gene expression profile (17). From our network, we
found all seven drugs tightly clustered (Figure 1, shown
in red). In addition, based on the edges at which they
connected to other nearby drugs, we also found four
other anti-psychotics  (chlorprothixene, droperidol,
olanzapine and risperidone) holding the same anatomical
therapeutic chemical (ATC) code NOSA (38-44) (Figure 1,
shown in red). Among the 11 typical anti-psychotics
(structures are shown in Supplementary Figure S1),
6 anti-psychotics, including chlorprothixene, clozapine,
droperidol, haloperidol, olanzapine and risperidone are
non-phenothiazines, which have distinct structures.
Furthermore, propericiazine at the left of this cluster is
used as adjunctive medication in some psychotic patients
(http://www.drugbank.ca/drugs/DB01608), which is also
highly related to anti-psychotic treatment. By using the
drug—drug associations predicted by our server, we suc-
cessfully recalled 11 anti-psychotics and one medication,
indicating that new drug molecules falling within this
cluster might have an effect in the treatment of psychology
disorders.

The cluster of the anti-infectives (ATC code SOIA,
Figure 1, shown in blue) is close to the anti-psychotics,
while six out of the seven anti-infectives are
aminoglycosides (gentamicin, streptomycin, netilmicin,
amikacin, kanamycin and tobramycin, ATC code JO1G).
Anti-psychotic agent prochlorperazine is reported as
offering powerful antimicrobial activity against 157
strains of bacteria in vitro (45), and prochlorperazine
and chlorpromazine can typically reduce by >1000-fold
the minimum inhibitory concentration (MIC) for
aminoglycosides in their synergistic interactions against
Burkholderia pseudomallei, the causative agent of melioid-
osis (46), suggesting a potential novel therapeutic
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treatment for drug-resistance in bacterial infections.
Using the drug-drug associations predicted by our
server, we found a novel application of anti-psychotics
for anti-infective treatment, vice versa, implying potential
connections between two fields of the drugs on both ap-
plications and mechanisms.

DISCUSSION

Both chemical-protein interactions and gene expression
changes reflect how drug/chemicals perturb biosystems.
Gene expression change is a downstream event;
however, the chemical-protein interactions are the
primary step when drugs enter biosystems. In this study,
without mining the microarray data, we demonstrated the
power of CPI to represent the perturbation towards the
biosystems and how it would be used in measuring drug
effect in terms of indication and drug adverse effect. On
the other hand, in silico discovery of associations among
the interaction profiles of small molecules can be efficient
and cheap, and can achieve a high rate of accuracy by
matching predictions to gene-expression profiles.
Furthermore, the putative targets could also be prioritized
for unexpected interactions, and sent for further wet-lab
validation.

Knowledge of the existing is important to find clues for
the new (48). Drug repositioning combined with the pre-
vention of ADR is a major preoccupation for the manu-
facturers. Discovering drug—drug associations based on
CPI is a novel method which can be simultaneously
applied in the prediction of both repositioning and
ADRs. With the in silico predictions of potential associ-
ations among drugs, researchers may not only find helpful
clues for exploring potential mechanisms, but could also
save significant time and cost in safely repositioning
existing drugs for new indications, or predicting potential
ADRs. Uncovering associations among molecules as a
means of understanding intricate biological systems is
consistent with the current trend of ‘-omics’ analyses.

This server is to serve as a complementary methodology
for the analysis of gene-expression profiles in drug repos-
itioning. By applying this method into CPI in combination
with our previous algorithm 2DIZ, we evaluated the drug—
drug associations based on their interaction profiles to
indicate potential therapies and ADRs. The advantage
of our method is the low cost of harvesting
high-dimensional data in silico instead of in vitro while
the outcome can still be predictive. We found the predic-
tions of our server indicated some information that fail to
be revealed in cMap. Here is an example.

Estradiol is a sex hormone which can be used in the
therapy of hormone replacement while minocycline is bac-
teriostatic antibiotic for the treatment of infections by
microorganisms. From a query signature generated by es-
tradiol, minocycline showed no connectivity (connectivity
score = 0) in Result S2 of cMap (17). However, after
querying our server by estradiol, both two forms of
minocycline achieved positive association scores (0.310
and 0.373, respectively). Since the two drugs showed
antioxidative abilities of lipid peroxidation inhibition
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© Antipsychotics O Anti-inflammatory and antirheumatic products, non-steroids
@ Anti-infectives @ Direct acting antiviral drugs O None of above

Figure 1. Drug association network. The drugs are clustered using Cytoscape (47) and employing a force-directed method based on association
scores. Partial nodes are coloured according to ATC codes. Five phenothiazine anti-psychotics (chlorpromazine, fluphenazine, prochlorperazine,
thioridazine and trifluoperazine) and six non-phenothiazine anti-psychotics (chlorprothixene, clozapine, droperidol, haloperidol, olanzapine and
risperidone) are retrieved by our server (shown in red circles, ATC code NO5SA). Seven anti-infectives are nearby (shown in blue circles, ATC
code SOIA), while six of them are aminoglycosides (gentamicin, streptomycin, netilmicin, amikacin, kanamycin and tobramycin, ATC code JO1G).
Background nodes and edges are hidden in the bottom image. The associations revealed potential novel applications for the anti-psychotics and
anti-infectives.



and DPPH radical scavenging (49), contributed to
hormone-modulated anabolic responses in fibroblasts
after adjunctive periodontal treatment (50) and could be
used in the treatment for prevention of ovariectomy
reduced bone mineral density (51), our server successfully
predicted the positive association between them for poten-
tial indications.

This server is independent and different from that in
our previous project, SePreSA (31), in terms of both
method and purpose, since the current project is con-
cerned with drug repositioning by searching for similar
(or opposite) drugs using associations, while the earlier
work focused on populations susceptible to Serious
Adverse Drug Reaction (SADR) by searching for poten-
tial patient-specific targets using polymorphisms within
the binding pockets.

CONCLUSIONS

(a) The main function of the DRAR-CPI server is to
evaluate associations between the user’s uploaded
drug and the library drugs based on their docking
profiles towards the putative targets so as to provide
suggestions on potential indications and ADRs of
the user’s drug. The accuracy of the drug—drug
associations is evaluated by recalling drug—drug
associations based on gene expression profiles.

(b) Researchers can not only identify the putative targets
towards their drugs of interest, but also view a sug-
gested prioritization of potential indications and
ADRs with a given confidence value. An extensive
range of decisions can be made from the pool of
information thus improving the efficiency of R&D.

(c) Unexpected associations can be revealed thereby
advancing the understanding of the underlying mech-
anisms of different kinds of interactions and poten-
tially indicating novel treatments.

SUPPLEMENTARY DATA
Supplementary Data are available at NAR Online.
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