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Previous studies have demonstrated relations between spontaneous neural activity
evaluated by resting-state functional magnetic resonance imaging (fMRI) and symptom
severity in post-traumatic stress disorder. However, few studies have used brain-based
measures to identify imaging associations with illness severity at the level of individual
patients. This study applied connectome-based predictive modeling (CPM), a recently
developed data-driven and subject-level method, to identify brain function features that
are related to symptom severity of trauma survivors. Resting-state fMRI scans and
clinical ratings were obtained 10–15 months after the earthquake from 122 earthquake
survivors. Symptom severity of post-traumatic stress disorder features for each survivor
was evaluated using the Clinician Administered Post-traumatic Stress Disorder Scale
(CAPS-IV). A functionally pre-defined atlas was applied to divide the human brain into
268 regions. Each individual’s functional connectivity 268 × 268 matrix was created
to reflect correlations of functional time series data across each pair of nodes. The
relationship between CAPS-IV scores and brain functional connectivity was explored in a
CPM linear model. Using a leave-one-out cross-validation (LOOCV) procedure, findings
showed that the positive network model predicted the left-out individual’s CAPS-IV
scores from resting-state functional connectivity. CPM predicted CAPS-IV scores, as
indicated by a significant correspondence between predicted and actual values (r = 0.30,
P = 0.001) utilizing primarily functional connectivity between visual cortex, subcortical-
cerebellum, limbic, and motor systems. The current study provides data-driven evidence
regarding the functional brain features that predict symptom severity based on the
organization of intrinsic brain networks and highlights its potential application in making
clinical evaluation of symptom severity at the individual level.

Keywords: psychoradiology, post-traumatic stress disorder, functional magnetic resonance imaging, resting-
state, functional connectivity, connectome-based predictive modeling
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INTRODUCTION

There is a high risk for trauma survivors to develop
post-traumatic stress disorder (PTSD; Yehuda and Flory,
2007), a highly debilitating psychiatric disorder characterized
by symptoms including avoidance of trauma-related stimuli,
re-experiencing of the trauma, hyperarousal, and altered
cognition and mood (American Psychiatric Association, 2013).
Psychoradiology, a new field of radiology, aims to use brain
imaging to not only advance understanding of psychiatric
disorders but also play a clinical role in diagnostic and treatment
planning decisions (Sun et al., 2018; Huang et al., 2019; Gong,
2020). Previous studies have identified brain connectivity
network alterations in trauma survivors who develop PTSD
compared with those who do not (Patel et al., 2012; Lei
et al., 2015; Kennis et al., 2016; Akiki et al., 2018; Niu et al.,
2018). However, these alterations were based on group-level
comparisons. Thus, it remains unclear whether image data can
be helpful for the clinical evaluation of symptom severity in
individual trauma survivors.

Functional magnetic resonance imaging (fMRI) is a
noninvasive technique assessing neural activity. Functional
connectivity analyses, examining associations of activity across
different brain regions, have demonstrated robust and unique
patterns of brain activity that predict neuropsychological traits
and clinical symptoms across individuals (Dubois and Adolphs,
2016; Rosenberg et al., 2018). Modeling the associations between
phenotypic measures (e.g., ratings of illness severity) and
functional brain organization can provide a basis for establishing
the clinical utility of imaging data (Gao et al., 2019).

The comprehensive map of functional connectivity in the
human brain is defined as the ‘‘functional connectome’’ (Biswal
et al., 2010). Recent research has applied functional connectome
analysis to predict a broad range of phenotypic measures,
including intelligence (Finn et al., 2015), creativity (Beaty et al.,
2018), attention (Rosenberg et al., 2016), cocaine abstinence
(Yip et al., 2019), cognitive impairment (Lin et al., 2018), and
symptom severity of autism spectrum disorder and attention
deficit hyperactivity disorder (Lake et al., 2019). Few studies
have attempted to investigate the relationship between functional
connectivity and PTSD symptom severity (Lanius et al., 2010;
Zhou et al., 2012; Tursich et al., 2015; Zandvakili et al.,
2020). Further, most included participants were receiving
treatment with psychotropic medications and had psychiatric
comorbidities, which may have influenced study findings. Also,
some studies used a seed-based method in which findings
may have been biased by the particular seed region chosen.
While resting-state functional connectivity analyses of symptom
severity in PTSD have been informative, the prediction of PTSD
symptom severity using the whole brain functional connectome
before drug treatment remains to be established in noncomorbid
trauma survivors.

In the current study, we applied a recently developed
connectome-based predictive modeling (CPM) method (Shen
et al., 2017) to identify the neural networks that allow for accurate
prediction of individual PTSD symptom severity reflected
in CAPS-IV scores in a cohort of trauma survivors using

resting-state brain functional connectome features. Clinician-
Administered PTSD Scale (CAPS), a widely used structured
interview, is considered the gold standard in PTSD research
for measuring its severity, and is a rating scale with excellent
psychometric properties including strong discriminant and
convergent validity, good clinical utility, and sensitivity to
clinical alteration (Weathers et al., 2001). There are two
neural models when investigating the neuropathophysiology
underlying PTSD. One is the traditional neural circuit of
PTSD based on studies of fear processing, with critical
structures including medial prefrontal cortex, amygdala, and
hippocampus (Rauch et al., 2006). The other is the triple
network model including central executive, default mode, and
salience networks (Patel et al., 2012). Based on prior research,
we hypothesized that individual symptom severity would be
related to intrinsic functional connectivity across distributed
networks, e.g., traditional fear neural circuit or the triple
network model.

MATERIALS AND METHODS

Participants
This retrospective study was approved by the Medical Research
Ethics Committee of West China Hospital, Sichuan University,
and informed written consent was obtained from all participants
before the study. One-hundred and twenty-two survivors were
recruited between 10 and 15 months after the 2008 Sichuan
earthquake event (see Table 1). Inclusion criteria were as follows:
(i) physical experience of the earthquake; (ii) without any
physical injury; and (iii) personally witness serious injury, death,
and/or the collapse of buildings. Exclusion criteria included
history of any neurological or psychiatric disorder other than
PTSD, psychiatric comorbidities evaluated by the structured
clinical interview for DSM IV diagnosis (SCID), pregnancy,
history of drug or alcohol abuse, and recent medication that
might have an effect on brain function. Each participant was
evaluated by using the CAPS-IV as a continuous measure of
symptom severity (Blake et al., 1995). Of the 122 traumatized
earthquake survivors included, 64 fulfilled diagnostic criteria for
current PTSD at the time of fMRI examination. All participants
had received no prior treatment with psychiatric medications.
fMRI data from these participants have been reported previously
elsewhere. In 2014, Gong et al. (2014a) investigated the
relationship between resting-state fMRI data and PTSDChecklist
scores using a multivariate analytical method, whereas our
current work constructed a prediction model at the level of
individual patients using the CAPS-IV and a CPMmethod.

Data Acquisition
Resting-state fMRI is a technique for measuring spontaneous
blood oxygen level-dependent (BOLD) fluctuations that reflect
resting neurophysiological activity of the brain. The acquisition
of fMRI from survivors took place between 10 and 15 months
after the earthquake at the same day of clinical assessment. A
total of 200 image volumes sensitized to BOLD signal changes
were collected for each participant using a 3-T MRI system (GE
EXCITE, Milwaukee, WI, USA) equipped with an eight-channel
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TABLE 1 | Demographics and clinical characteristics of the subjects.

Characteristic Earthquake survivors (n = 122)

Age (years)b 43.0 ± 10.3 (20–67)a

Gender (male/female) 36/86
Years of educationb 7.3 ± 3.4 (0–16)a

Time since trauma (months)b 12.2 ± 2.2 (8–15)a

Clinician-administered PTSD scale 40.1 ± 22.3 (3–95)a

aData are presented as the mean ± SD (range of minimum–maximum). bAge, years of
education, and time since trauma were reported by participants at the time of magnetic
resonance scanning.

phased array head coil. The fMRI data were obtained with
the following scanning parameters: repetition time = 2,000 ms;
echo time = 30 ms; field of view = 240 × 240 mm2; voxel
size = 3.75 × 3.75 × 5 mm3; matrix size = 64 × 64;
flip angle = 90◦; slice thickness = 5 mm, no slice gap; and
30 axial slice per volume. For each participant, each functional
run resulted in a total scanning time of 400 s. Each subject
was instructed to lie quietly with their eyes closed during
the scanning.

Data Pre-processing
SPM8 software1 was used to perform the pre-processing of
fMRI image data. First, the original 10 time points were deleted
to establish magnetic tissue stabilization. Then, slice timing
correction was conducted to correct for intra-volume acquisition
delay. The images were further realigned for the correction
of head movement. To reduce the influences of head motion,
a scrubbing method was performed, which deleted volumes
with frame-wise displacement (FD) >0.5 mm. Images were
normalized using echo-planar imaging templates (voxel size:
3 × 3 × 3). Subsequently, linear trends in time series were
removed. Nuisance signal (including the Friston 24-parameter
head motion model, the white matter signal, the cerebrospinal
fluid signal, and the global signal) were regressed out. Finally,
functional data were linearly detrended and temporally bandpass
(0.01–0.1 Hz) filtered to eliminate effects of high-frequency noise
and low-frequency drift, and smoothed (Gaussian kernel with a
full-width at half-maximum of 4 mm). None of the participants
showed excessive head motion (defined as rotation >2◦,
translation >2 mm, or mean FD >0.15 mm) throughout the
course of scans.

Functional Connectivity
Using the GRETNA2 toolbox (Wang et al., 2015), the functional
brain network was constructed. The Shen brain atlas was applied
to parcellate the brain into 268 region of interest including the
cortex, subcortex, and cerebellum (Supplementary Table 1 and
Supplementary Figure 1) to define the network nodes (Shen
et al., 2013), as in previous CPM work (Rosenberg et al., 2016;
Beaty et al., 2018; Lake et al., 2019; Yip et al., 2019). This involved
computation of mean time courses for each of the 268 nodes
(i.e., average time course of voxels within the node) for use in
node-by-node pairwise Pearson’s correlations. The resultant r
coefficients were transformed using Fisher’s z-transformation to

1http://www.fil.ion.ucl.ac.uk/spm
2http://www.nitrc.org/projects/gretna/

create symmetric 268 × 268 connectivity matrices in which each
value of the matrix represents the connection strength between
all pairs of nodes.

Connectome-Based Predictive Modeling
CPM was conducted using previously validated and freely
available custom MATLAB scripts (Shen et al., 2017). Briefly,
CPM took brain connectivity data and behavioral measures (in
this case, functional brain connectivity matrices and CAPS-IV
scores, respectively) as input to create a linear predictive model
of the PTSD symptom severity using the connectivity matrices.
Spearman’s correlations with a statistical significance P-value
threshold of 0.05 were calculated between edge weights and
disease symptom measures across the training participants to
identify negative and positive predictive networks. According
to the suggestion of Shen et al. (2017), the Spearman’s
correlation rather than the Pearson’s correlation were calculated
as the CAPS-IV scores do not follow a normal distribution.
For the positive prediction network, edges were positively
associated with the disease symptom measures, and for the
negative prediction network, edges were negatively associated
with the disease symptom measures. Therefore, elements in
the negative and positive prediction network were defined by
associations with CAPS-IV scores instead of negative or positive
functional connectivity themselves. While both networks were
used for predicting the same variable, they were by definition
independent, because a single edge was either a negative or
a positive predictor. Individual summary values were then
calculated by summing the significant functional connectivity
strength in each network and were applied to construct
linear predictive models to estimate the relationships between
network strength with CAPS-IV scores. The resultant polynomial
coefficients (including slope and intercept) were then used to
predict symptom severity. In the current study, leave-one-out
cross-validation (LOOCV) analysis was employed. Briefly, the
‘‘left-out’’ participant’s predicted CAPS-IV score was obtained
by the predictive model trained on all other participants’ data
iteratively until all participants had a predicted score.

Spearman’s correlations between the predicted and actual
CAPS-IV scores were used to assess the model performance.
To address the problem of non-independence of analyses in the
leave-one-out folds, nonparametric permutation testing rather
than parametric testing was performed to evaluate statistical
significance. To obtain empirical null distributions for Spearman
correlation coefficients, the correspondence between CAPS-IV
scores and connectivity matrices were randomly shuffled
1,000 times and the CPM analysis was re-conducted using the
shuffled data. The p-values for leave-one-out predictions were
computed based on the null distributions as previous suggested
(Shen et al., 2017).

Contributing Nodes and Edges in the
Prediction of CAPS-IV Scores
To investigate the functional anatomy of the contributing
elements, the distribution of nodes and edges were summarized
in two methods. First, the 268 nodes were classified into
10 macroscale brain regions that were anatomically defined,
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including the prefrontal cortex (46 nodes), cerebellum
(41 nodes), temporal lobe (39 nodes), limbic cortex (36 nodes),
parietal lobe (27 nodes), occipital lobe (25 nodes), motor
cortex (21 nodes), subcortical structures (17 nodes), brainstem
(9 nodes), and insular cortex (7 nodes; Finn et al., 2015;
Rosenberg et al., 2016). Second, the 268 nodes were parcellated
into eight canonical networks previously defined using a
clustering algorithm (Finn et al., 2015), including medial frontal,
motor, subcortical-cerebellum, visual (I, II, and association),
frontoparietal, and default mode networks. The number of
connections between all pairs of macroscale brain regions or
canonical networks was then computed. Last, the number of
each node’s connections was used to evaluate their importance
(Rosenberg et al., 2016; Beaty et al., 2018). The functional
connectivity patterns of the top 10 nodes with the most
connections were determined.

Validation Analyses
The following procedures were performed to further evaluate
reproducibility of our results. First, a 1,000-iteration permutation
test was used to generate an empirical null distribution of the
test statistic. To determine whether our main results depended
on the choice of different iterations, we reran the CPM analysis
using a 5,000-iteration permutation test. Second, we constructed
functional connectomes using another parcellation scheme, the
automated anatomical labeling (AAL) atlas (Tzourio-Mazoyer
et al., 2002) and repeated the entire analyses. Third, we also
performed CAPS-IV score prediction using LIBSVM (Chang
and Lin, 2011) to implement support vector machine regression
(SVR) with a linear kernel. Positive and negative edges were
selected the same way as in CPM, and both positive and negative
edges were input into SVR as features. The performance of
the SVR algorithm was evaluated using correlation between the
observed and predicted values.

Support Vector Machine (SVM) Analysis
Exploratory SVM analyses were applied to the functional
connectivity matrices to determine whether functional networks
can detect PTSD patients and trauma-exposed non-PTSD
(TENP) controls at the individual level. For full details of SVM
evaluation, please refer to our recent study (Lei et al., 2020).

RESULTS

Preliminary Analyses
Subjects differed widely in respect to their degree of psychological
distress reflected in CAPS-IV scores (Figure 1A). There were no
statistically significant correlations between CAPS-IV scores and
age (r = 0.072, P = 0.430) as well as the mean FD head motion
(r = −0.076, P = 0.407). CAPS-IV scores did not differ between
genders (P = 0.881).

Predicting CAPS-IV
The relations between connection strength of the
positive/negative network and CAPS-IV scores in individual
trauma survivors were examined by implementing a LOOCV
approach. Model performance was evaluated using Spearman’s

rank correlation on predicted and actual scores, and statistical
significance was determined using a 1,000-iteration permutation
test, repeating the prediction analysis, and determining the
fraction of correlations between predicted and actual scores
that were as extreme as the original data. Results indicated
that resting-state brain functional connectivity in the positive
network was related to individuals’ CAPS-IV scores (correlation
between actual and predicted scores: r = 0.30, P = 0.001,
permutation test, Figures 1B,C). However, resting-state
functional connectivity in the negative network could not
reliably predict CAPS-IV scores (correlation between actual and
predicted scores: r = 0.17, P = 0.07).

Functional Anatomy
Across all folds of LOOCV, 1,006 edges (2.81% of the 35,778 total
edges) in the positive prediction network appeared in every
iteration of the LOOCV and were defined as the contributing
network (Figure 2A). CPM analysis revealed the functional
anatomy of networks in which activity was related to CAPS-IV
scores. We applied the parcellation that grouped the 268 nodes
into 10 macroscale brain regions, which were anatomically
defined, to the positive networks to identify connections between
macroscale brain regions involved in prediction. Connections
between occipital lobe and cerebellum and connections of the
limbic lobe with cerebellum and occipital lobe were primary
predictors of CAPS-IV score (Figure 2B).

When dividing the 268 nodes into the eight canonical
networks previously used in Finn et al. (2015), connectivity based
on the number of connections within and between canonical
networks for the positive networks is shown in Figure 2C.
It was revealed that the positive network included relatively
more connections of the subcortical-cerebellum network with
visual I, visual II, visual association, and motor networks, and
connections within the subcortical-cerebellum network were
highly involved in prediction (Figure 2C).

Lastly, the top 10 nodes with the most connections were
located in the bilateral visual cortex [including bilateral visual
association cortex (18) and left visual cortex BA 19] and
cerebellum (lobules VI–VII), indicating the critical role of these
nodes in predicating the severity of PTSD-related symptoms
as reflected in CAPS-IV scores (Figure 3 and Table 2). Note
that single-subject levels of CAPS-IV scores were primarily
represented by functional connectivity of these regions to other
brain regions in addition to their intrinsic connectivity.

Validation With Different Schemes
Using different validation schemes, the performance of
prediction was re-estimated. The resultant correlation
coefficients between actual and predicted CAPS-IV scores
remained significant when using 5,000 times permutation
test, thus validating the main findings. However, there was
no significant prediction in the positive (correlation between
actual and predicted scores: r = 0.16, P = 0.10, permutation
tests) or negative network model (correlation between actual
and predicted scores: r = 0.16, P = 0.11, permutation tests) when
using the AAL atlas. The application of SVR to the positive
networks (correlation between actual and predicted scores:
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FIGURE 1 | Clinician Administered Post-traumatic Stress Disorder Scale (CAPS-IV) scores and performance of the prediction model. (A) CAPS-IV scores across all
participants. (B) Correlation between actual and predicted CAPS-IV scores. (C) Permutation distribution of the correlation coefficient (r) for the prediction analysis.
CAPS, clinical-administered post-traumatic stress disorder (PTSD) score.

r = 0.08, P = 0.64, permutation tests) or negative networks
(correlation between actual and predicted scores: r = 0.10,
P = 0.56, permutation tests) did not allow quantitative prediction
of CAPS-IV scores with statistically significant accuracy.

Single-Subject Classification of PTSD
Patients and TENP Controls Using SVM
Using functional connectivity matrices, the mean balanced
accuracy of classification of PTSD vs. TENP was 64.5%, with
sensitivity 67.1% and specificity 62.0% (P = 0.004). To identify
brain regions providing greatest contribution to single-subject
classification, themean absolute value of the weights of themodel
across the different folds of the cross-validation was calculated.
The 10 brain regions with the highest mean values are shown in
Supplementary Figure 2. It can be seen that most of the brain
regions were cerebellum and visual association regions.

DISCUSSION

We applied a functional brain network analysis in a recently
developed machine-learning approach to use fMRI features
to predict clinical severity of PTSD symptoms in a group
who had experienced acute major life trauma. We have
demonstrated that functional brain connectivity allowed
for prediction of single-subject PTSD symptom severity

independently of confounding variables (i.e., head motion,
gender, age, prior treatment with psychiatric medications,
and psychiatric comorbidity). Inter-individual differences
in CAPS-IV scores were mainly accounted for by the
functional brain connectivity between subcortical-cerebellum,
visual, limbic, and motor systems. These observations
highlight the importance of brain regions outside the
classic traditional fear neural circuit and the triple network
model as being important in determining the severity
of PTSD.

Our prior study showed that the utilization of a multivariate
machine-learning approach known as SVM to structural MRI
data provided for the discrimination of traumatized survivors
who do and do not fulfil the criteria for PTSD (Gong
et al., 2014b). However, this study focused on a binary
classification between non-PTSD controls and PTSD patients
and neglected the severity of PTSD symptoms as a dimensional
illness feature of important clinical significance. A data-driven,
whole-brain dimensional analysis centered on single-subject
variations instead of binary case–non-case classification may
be more helpful for obtaining features related to illness
severity (Lake et al., 2019). In addition, we previously used
a multivariate analytical approach known as relevance vector
regression to the whole-brain fMRI data to predict the
clinical scores (Gong et al., 2014a). This current research
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FIGURE 2 | Functional connections predicting CAPS-IV scores. (A) Positive (red) networks selected by the prediction model. For the positive network, increased
edge weights (i.e., increased functional connectivity) predict higher CAPS-IV scores. (B) Connections plotted as number of edges within and between each pair of
macroscale regions. (C) Connections plotted as number of edges within and between each pair of canonical networks. Cells represent the total number of edges
connecting nodes within (and between) each macroscale region or canonical network, with darker colors indicating a greater number of edges. PFC, prefrontal; Mot,
motor; Ins, insula; Par, parietal; Tem, temporal; Occ, occipital; Lim, limbic; Cer, cerebellum; Sub, subcortical; Bsm, brainstem; MF, medial frontal network; FP,
frontoparietal network; DM, default mode network; SubC, subcortical-cerebellum network; MT, motor network; VI, visual I network; VII, visual II network; VA, visual
association network.

FIGURE 3 | Connectivity patterns of the top 10 nodes with the most connections. L, left; R, right.
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TABLE 2 | Ten nodes with the most connections selected by the prediction
model.

Node MNI coordinate (mm) Lobe Degree

L Visual Assoc (18) −36 −84.2 −3.9 Occipital 37
L Visual BA 19 −31.6 −87.2 12.5 Occipital 33
R Visual Assoc (18) 7.8 −88.6 11.9 Occipital 33
R Visual Assoc (18) 23.7 −96 6.5 Occipital 32
R Cerebellum 7.1 −53.7 −34.4 Cerebellum 31
L Visual Assoc (18) −22.3 −96.6 −10.1 Occipital 30
L Cerebellum −8 −68.4 −19.9 Cerebellum 30
R Visual Assoc (18) 17.9 −83.4 −11.3 Occipital 27
L Visual Assoc (18) −14.7 −84 −13.1 Occipital 27
L Visual Assoc (18) −10.8 −98.1 7.6 Occipital 26

Abbreviation: Assoc, association; L, left; R, right.

extended these earlier studies by demonstrating that the
symptom severity (CAPS-IV measures) could be significantly
and quantitatively predicted from a subject-level’s unique
resting-state functional brain connectivity by using the CPM
approach. CPM has two appealing aspects compared to the
multivariate machine-learning approaches (Shen et al., 2017).
First, from a practicable point of view, it is simpler to
perform CPM, which requires less skill in machine learning
and makes it easier to the general neuropsychiatric imaging
investigators for conducting replicable data-driven analyses of
the relationships between individual brain imaging data and their
phenotypic measures. Second, CPM provides straightforward
and clearly interpretable one-to-onemapping back to the original
feature space in order that the underlying brain connectivity
contributing to the predictive model can be easily determined
and visualized.

Our findings reveal that intrinsic functional connectivity
across multiple neural systems contributes to predicting
individual PTSD clinical measures. Specifically, individual
CAPS-IV score was primarily accounted for by intrinsic
functional connectivity between bilateral visual cortex and
cerebellum. Previous studies with PTSD patients have shown
hyperactive function of visual cortex compared with controls,
which was positively related to PTSD symptom severity (Zhu
et al., 2014, 2015; Neumeister et al., 2017). Hyperactivity of
visual cortex may be related to disrupted visual imagery in PTSD
and underlie the visual re-experiencing of trauma events (Zhu
et al., 2014). The cerebellum, another region that integrates
sensory information for sensorimotor control, is recognized
increasingly to be implicated in cognitive and emotional
processing (Schmahmann and Caplan, 2006). Animal studies
have established a role for the cerebellum in fear-conditioning
consolidation (Sacchetti et al., 2002). Following more and more
neuroimaging research, interest in the cerebellum has increased
in PTSD. Hyperactivity of the cerebellum in PTSD was observed,
including increased resting-state activity (Bing et al., 2013; Ke
et al., 2016), increased blood flow during rest (Bonne et al.,
2003), and in response to threat-related stimuli in PTSD (Osuch
et al., 2001; Pantazatos et al., 2012). During earthquake imagery,
the PTSD group demonstrated activation in the bilateral visual
cortex and cerebellum while the control group did not (Yang
et al., 2004). Similarly, positive correlations were found between
resting-state cerebral perfusion in the cerebellum and visual

association cortices and PTSD symptom severity in trauma
survivors, in keeping with the between-group analysis (Bonne
et al., 2003). In addition, a recent study showed that resting-
state functional connectivity of the visual association cortices
with cerebellum was increased and correlated positively with
PTSD symptomatology (Rabellino et al., 2018). Altogether, the
alterations in visual cortex and cerebellum might play a critical
role in ongoing visual re-experiencing of trauma events and
abnormal emotional processing in PTSD.

We further demonstrated that connections of the limbic lobe
with cerebellum and occipital lobe were primary predictors of
individual CAPS-IV score. The traditional view of PTSD has
been that it is a disorder specific to the fronto-limbic fear
circuit. Different from this traditional view, regions outside the
fronto-limbic circuit were primarily predictive for the severity
of PTSD symptoms in the current study. Our findings were
consistent with the subset of studies that found functional and
structural alterations between limbic and occipital/cerebellum
regions (Chen et al., 2012; Leutgeb et al., 2016; McGlade et al.,
2020). For instance, Leutgeb et al. (2016) found altered functional
connectivity between the limbic system and cerebellum in
violent offenders, suggesting that this circuit may contribute
to behavioral perturbations linked to PTSD. Similarly, using
voxel-based morphometry method, Chen et al. (2012) found
that the gray matter volume in the limbic and occipital lobe
of trauma survivors were correlated with their CAPS scores.
These studies provided evidence for comparable dysfunction
in the corticolimbic circuitry, specifically limbic and occipital
and cerebellum connectivity in PTSD. Our analytic approach
focusing on current symptom severity indicates that systems
outside the fronto-limbic fear circuit are crucial to predict
the current symptomatology following exposure to serious
life trauma.

Prior studies have suggested that symptomatology of PTSD
is related to dysfunction of a triple network model that
includes the central executive, default mode, and salience
network (Patel et al., 2012; Lei et al., 2015; Kennis et al.,
2016; Niu et al., 2018). We therefore hypothesized that
alterations in this network model would be related to PTSD
symptom severity. Contrary to this hypothesis, using the CPM
approach, we found that brain regions outside the triple network
(e.g., visual cortex and cerebellum) primarily contributed to
an accurate prediction of symptom severity. Additionally,
connections between the subcortical-cerebellum and motor
network and within subcortical-cerebellum were also revealed
as key contributions in the prediction of CAPS-IV scores.
With respect to subcortical-cerebellum and motor network
connectivity, a diffusion tensor imaging study has reported
direct connections between the subcortical (e.g., amygdala)
and motor cortices (Grèzes et al., 2014), with a resting-
state fMRI study providing evidence of a distinct amygdala-
sensorimotor functional network (Thome et al., 2017), which
might be related to emotional modulation of subjective sensory
experiences as they are used in action planning. Disrupted
resting-state functional connectivity between subcortical and
motor regions in PTSDmight reflect maladaptive somatosensory
processing (Thome et al., 2017; Belleau et al., 2020). While
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large-scale, spatially distributed triple network alterations are
relatively well established in patients diagnosed with PTSD,
our findings extend these studies by adding to a growing
evidence base implicating visual, cerebellar, subcortical, and
motor involvement in pathophysiological processes that are
associated with symptom severity in PTSD. In particular, the
cerebellum has, until recently, been underemphasized in PTSD
research and in studies of other psychiatric disorders (Baldaçara
et al., 2008). It is noteworthy that with the CPM approach,
which is based on correlational associations of MRI features
and clinical symptoms, we cannot draw a conclusion that PTSD
symptoms were ‘‘caused’’ by one or a few networks. As with
other studies (Lake et al., 2019), investigating illness-related
biology as a continuous spectrum rather than in terms of
categorical definition based on meeting and not meeting criteria
for diagnosis can add an important approach for studying brain-
behavior associations related to current symptom severity vs.
those associated with presence of illness.

Notably, when using functional connectivity to discriminate
PTSD patients and TENP controls, the accuracy of classification
was 64.5%. Our recent study of PTSD found that large-scale
brain networks allowed single-subject classification of patients
and healthy controls with higher accuracy as might be expected
(average: 89%; Zhu et al., 2020). Furthermore, most of the
top 10 brain regions providing the greatest contribution to
the classification of PTSD and TENP participants overlapped
with the key regions in the prediction of CAPS-IV symptom
severity scores: among them were the abovementioned visual
and cerebellar regions. Therefore, the current study provides
an important step toward data-driven diagnostic assessment in
PTSD. Although machine learning is not yet available in day-
to-day clinical practice, in light of the urgent clinical need for
objective biomarkers in the early stage of the disease, it has
the potential to inform the development of diagnostic imaging-
based markers.

Finally, using a different parcellation strategy (AAL atlas)
and predictive model (SVR), we did not detect a pattern of
regional connectivity that showed a significant association with
clinical scores. Several issuesmight contribute to the discrepancy.
First, the 268-node Shen functional atlas comprises nodes with
more coherent time series and specific functional specificity
than those defined by the AAL atlas, which might account for
the superior performance of the 268-node parcellation because
anatomical boundaries do not always match functional ones
(Shen et al., 2013). Additionally, when the number of a priori
selected regions is very small, the risk of no edges or very few
edges being selected within some iterations of cross-validation
grows remarkably higher. This could lead to unstable models
with poor predictive ability. Second, in the CPM model, all
positive/negative features were averaged to create summary
statistics, which reduced the variance of the summary statistics
compared to the original set of features used in the SVR model
(Yip et al., 2019). An alternative possibility is that there is
a complex relationship between clinical scores and functional
connectivity beyond a simple linear correlation in the SVR
model. This might be addressed in future studies with larger
sample sizes.

Several limitations of this study need to be acknowledged.
First, although there is growing evidence that brain functional
connectivity may act as a reliable and objective imaging marker
of individuals’ phenotypic measures, CPM has not yet been
widely used in clinical research. Also, the extent to which
brain functional connectivity reflects transient states vs. stable
traits is still unknown. To address this issue and determine
the observed pattern as a stable feature of symptom severity,
future longitudinal studies will be required. Second, participants
included in the current study were following a single type of
trauma, which increased the homogeneity of the study sample.
Since previous studies have suggested that different types of
trauma may have different cerebral deficits (Meng et al., 2014),
this leaves open the question of whether the findings observed
in our study can be generalized to PTSD caused by other
types of trauma. Third, since brain connectivity can be acquired
from different MRI modalities (i.e., T1-weighted and diffusion
tensor imaging), future work might examine structural change
in relation to functional patterns. Fourth, the lack of data
from an independent sample precludes us from conducting
an external validation analysis, and the generalization of the
current findings requires further validation using an independent
sample. Fifth, some confounding factors, e.g., childhood/early
stress, cannot be excluded in the analysis. Future studies may
address these issues.

In summary, this study used a recently developed data-driven
method to provide evidence that the resting-state brain
functional connectivity can reliably and effectively predict
individual PTSD clinical scores of trauma-exposed survivors. The
significant contribution of visual cortex, cerebellum, limbic, and
motor region connectivity to individual PTSD symptom severity
indicates that more brain features beyond the triple network
model of PTSD need to be considered to comprehensively
understand the illness, and the traditional view that PTSD is
a psychiatric disorder specific to the fronto-limbic fear circuit
may require reconsideration. The current data-driven approach
provides a novel tool to characterize the neural underpinning of
PTSD severity and might have potential applications to inform
the evaluation of subjects in a clinical setting.
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