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Abstract Cross frequency coupling (CFC) is emerging as a fundamental feature of brain activity,
correlated with brain function and dysfunction. Many different types of CFC have been identified
through application of numerous data analysis methods, each developed to characterize a specific
CFC type. Choosing an inappropriate method weakens statistical power and introduces
opportunities for confounding effects. To address this, we propose a statistical modeling
framework to estimate high frequency amplitude as a function of both the low frequency amplitude
and low frequency phase; the result is a measure of phase-amplitude coupling that accounts for
changes in the low frequency amplitude. We show in simulations that the proposed method
successfully detects CFC between the low frequency phase or amplitude and the high frequency
amplitude, and outperforms an existing method in biologically-motivated examples. Applying the
method to in vivo data, we illustrate examples of CFC during a seizure and in response to electrical
stimuli.

DOV https://doi.org/10.7554/eLife.44287.001

Introduction

Brain rhythms - as recorded in the local field potential (LFP) or scalp electroencephalogram (EEG) -
are believed to play a critical role in coordinating brain networks. By modulating neural excitability,
these rhythmic fluctuations provide an effective means to control the timing of neuronal firing
(Engel et al., 2001; Buzsaki and Draguhn, 2004). Oscillatory rhythms have been categorized into
different frequency bands (e.g., theta [4-10 Hz], gamma [30-80 Hz]) and associated with many func-
tions: the theta band with memory, plasticity, and navigation (Engel et al., 2001); the gamma band
with local coupling and competition (Kopell et al., 2000; Bérgers et al., 2008). In addition, gamma
and high-gamma (80-200 Hz) activity have been identified as surrogate markers of neuronal firing
(Rasch et al., 2008, Mukamel et al., 2005; Fries et al., 2001, Pesaran et al., 2002,
Whittingstall and Logothetis, 2009; Ray and Maunsell, 2011), observable in the EEG and LFP.

In general, lower frequency rhythms engage larger brain areas and modulate spatially localized
fast activity (Bragin et al., 1995; Chrobak and Buzsdki, 1998; von Stein and Sarnthein, 2000;
Lakatos et al., 2005; Lakatos et al., 2008). For example, the phase of low frequency rhythms has
been shown to modulate and coordinate neural spiking (Vinck et al., 2010; Hyafil et al., 2015b;
Fries et al., 2007) via local circuit mechanisms that provide discrete windows of increased excitabil-
ity. This interaction, in which fast activity is coupled to slower rhythms, is a common type of cross-fre-
quency coupling (CFC). This particular type of CFC has been shown to carry behaviorally relevant
information (e.g., related to position [Jensen and Lisman, 2000; Agarwal et al., 2014], memory
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[Siegel et al., 2009], decision making and coordination [Dean et al., 2012; Pesaran et al., 2008,
Wong et al., 2016, Hawellek et al., 2016]). More generally, CFC has been observed in many brain
areas (Bragin et al., 1995; Chrobak and Buzsaki, 1998; Csicsvari et al., 2003; Tort et al., 2008;
Mormann et al., 2005; Canolty et al., 2006), and linked to specific circuit and dynamical mecha-
nisms (Hyafil et al., 2015b). The degree of CFC in those areas has been linked to working memory,
neuronal computation, communication, learning and emotion (Tort et al., 2009; Jensen et al.,
2016; Canolty and Knight, 2010; Dejean et al., 2016; Karalis et al., 2016; Likhtik et al., 2014,
Jones and Wilson, 2005; Lisman, 2005; Sirota et al., 2008), and clinical disorders (Gordon, 2016;
Widge et al., 2017; Voytek and Knight, 2015; Basar et al., 2016, Mathalon and Sohal, 2015),
including epilepsy (Weiss et al., 2015). Although the cellular mechanisms giving rise to some neural
rhythms are relatively well understood (e.g. gamma [Whittington et al., 2000, Whittington et al.,
2011; Mann and Mody, 2010]), the neuronal substrate of CFC itself remains obscure.

Analysis of CFC focuses on relationships between the amplitude, phase, and frequency of two
rhythms from different frequency bands. The notion of CFC, therefore, subsumes more specific types
of coupling, including: phase-phase coupling (PPC), phase-amplitude coupling (PAC), and ampli-
tude-amplitude coupling (AAC) (Hyafil et al., 2015b). PAC has been observed in rodent striatum
and hippocampus (Tort et al., 2008) and human cortex (Canolty et al., 2006), AAC has been
observed between the alpha and gamma rhythms in dorsal and ventral cortices (Popov et al.,
2018), and between theta and gamma rhythms during spatial navigation (Shirvalkar et al., 2010),
and both PAC and AAC have been observed between alpha and gamma rhythms (Osipova et al.,
2008). Many quantitative measures exist to characterize different types of CFC, including: mean vec-
tor length or modulation index (Canolty et al., 2006; Tort et al., 2010), phase-locking value
(Mormann et al., 2005; Lachaux et al., 1999; Vanhatalo et al., 2004), envelope-to-signal correla-
tion (Bruns and Eckhorn, 2004), analysis of amplitude spectra (Cohen, 2008), coherence between
amplitude and signal (Colgin et al., 2009), coherence between the time course of power and signal
(Osipova et al., 2008), and eigendecomposition of multichannel covariance matrices (Cohen, 2017).
Overall, these different measures have been developed from different principles and made suitable
for different purposes, as shown in comparative studies (Tort et al., 2010; Cohen, 2008,
Penny et al., 2008; Onslow et al., 2011).

Despite the richness of this methodological toolbox, it has limitations. For example, because each
method focuses on one type of CFC, the choice of method restricts the type of CFC detectable in
data. Applying a method to detect PAC in data with both PAC and AAC may: (i) falsely report no
PAC in the data, or (ii) miss the presence of significant AAC in the same data. Changes in the low
frequency power can also affect measures of PAC; increases in low frequency power can increase
the signal to noise ratio of phase and amplitude variables, increasing the measure of PAC, even
when the phase-amplitude coupling remains constant (Aru et al., 2015; van Wijk et al., 2015;
Jensen et al., 2016). Furthermore, many experimental or clinical factors (e.g., stimulation parame-
ters, age or sex of subject) can impact CFC in ways that are difficult to characterize with existing
methods (Cole and Voytek, 2017). These observations suggest that an accurate measure of PAC
would control for confounding variables, including the power of low frequency oscillations.

To that end, we propose here a generalized linear model (GLM) framework to assess CFC
between the high-frequency amplitude and, simultaneously, the low frequency phase and amplitude.
This formal statistical inference framework builds upon previous work (Kramer and Eden, 2013,
Penny et al., 2008; Voytek et al., 2013; van Wijk et al., 2015) to address the limitations of existing
CFC measures. In what follows, we show that this framework successfully detects CFC in simulated
signals. We compare this method to the modulation index, and show that in signals with CFC depen-
dent on the low-frequency amplitude, the proposed method more accurately detects PAC than the
modulation index. We apply this framework to in vivo recordings from human and rodent cortex to
show examples of PAC and AAC detected in real data, and how to incorporate new covariates
directly into the model framework.
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Materials and methods

Estimation of the phase and amplitude envelope

To study CFC we estimate three quantities: the phase of the low frequency signal, ¢,,,; the ampli-
tude envelope of the high frequency signal, Ayen; and the amplitude envelope of the low frequency
signal, Ajow. To do so, we first bandpass filter the data into low frequency (4-7 Hz) and high fre-
quency (100-140 Hz) signals, Vio, and Vi, respectively, using a least-squares linear-phase FIR filter
of order 375 for the high frequency signal, and order 50 for the low frequency signal. Here we
choose specific high and low frequency ranges of interest, motivated by previous in vivo observa-
tions (Canolty et al., 2006; Tort et al., 2008; Scheffer-Teixeira et al., 2013). However, we note
that this method is flexible and not dependent on this choice. We select a wide high frequency band
consistent with recommendations from the literature (Aru et al., 2015) and the mechanistic explana-
tion that extracellular spikes produce this broadband high frequency activity (Scheffer-
Teixeira et al., 2013). We use the Hilbert transform to compute the analytic signals of Vio, and Vi,
and from these compute the phase and amplitude of the low frequency signal (4}, and ¢, ) and
the amplitude of the high frequency signal (Apign)-

Modeling framework to assess CFC

Generalized linear models (GLMs) provide a principled framework to assess CFC (Penny et al.,
2008; Kramer and Eden, 2013; van Wijk et al., 2015). Here, we present three models to analyze
different types of CFC. The fundamental logic behind this approach is to model the distribution of
Anign as a function of different predictors. In existing measures of PAC, the distribution of Ay, versus
b1y is assessed using a variety of different metrics (e.g., Tort et al., 2010). Here, we estimate statis-
tical models to fit Ay, as a function of ¢, Aiow, and their combinations. If these models fit the data
sufficiently well, then we estimate distances between the modeled surfaces to measure the impact
of each predictor.

The ¢, model

The ¢,,,, model relates Ay, the response variable, to a linear combination of ¢, the predictor var-
iable, expressed in a spline basis:

Ahigh |¢)low ~Gamma [,LL, V] (M

logpi =" Bife(Biow):
k=1

where the conditional distribution of Ay, given ¢, is modeled as a Gamma random variable with
mean parameter u and shape parameter v, and 8, are undetermined coefficients, which we refer to
collectively as B, . We choose this distribution as it guarantees real, positive amplitude values; we
note that this distribution provides an acceptable fit to the example human data analyzed here (Fig-
ure 1). The functions {f,---,f,} correspond to spline basis functions, with n control points equally
spaced between 0 and 27, used to approximate ¢,,,. We note that the spline functions sum to 1,
and therefore we omit a constant offset term. We use a tension parameter of 0.5, which controls the
smoothness of the splines. We note that, because the link function of the conditional mean of the
response variable (Apg) varies linearly with the model coefficients B, the model is a GLM, though
the spline basis functions situate the model in the larger class of Generalized Additive Models
(GAMs). Here we fix n =10, which is a reasonable choice for smooth PAC with one or two broad
peaks (Kramer and Eden, 2013). To support this choice, we apply an AlC-based selection proce-
dure to 1000 simulated instances of signals of duration 20 s with phase-amplitude coupling and
amplitude-amplitude coupling (see Materials and methods: Synthetic Time Series with PAC and Syn-
thetic Time Series with AAC, below, for simulation details). For each simulation, we fit the model in
Equation 1 to these data for 27 different values of n from n =4 to n=30. For each simulated signal,
we record the value of n that minimizes the AIC, defined as

AIC = A+2n,
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Figure 1. The gamma distribution provides a good fit to example human data. Three examples of 20 s duration recorded from a single electrode
during a human seizure. In each case, the gamma fit (red curve) provides an acceptable fit to the empirical distributions of the high frequency

amplitude.

DOI: https://doi.org/10.7554/eLife.44287.002

where A is the deviance from the model in Equation 1. The values of n that minimize the AIC tend
to lie between n=7 and n= 12 (Figure 2). These simulations support the choice of n=10 as a suffi-
cient number of splines.

For a more detailed discussion and simulation examples of the PAC model, see Kramer and
Eden (2013). We note that the choices of distribution and link function differ from those in
Penny et al. (2008) and van Wijk et al. (2015), where the normal distribution and identity link are
used instead.

The Ay, model

The Ay, model relates the high frequency amplitude to the low frequency amplitude:

Ahigh |Alow ~ Gamma[u, V} 2)

log = By + BrAlows

where the conditional distribution of Ay, given Ay, is modeled as a Gamma random variable with
mean parameter u and shape parameter v. The predictor consists of a single variable and a constant,
and the length of the coefficient vector B, = {B;,B8,} is 2.

The Alowv (;blow model

The Ay, ¢y, model extends the ¢y, model in Equation 1 by including three additional predictors
in the GLM: Aj,y, the low frequency amplitude; and interaction terms between the low frequency
amplitude and the low frequency phase: Ay sin(¢,,,,), and Ay, cos(dy,,). These new terms allow
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Figure 2. Distribution of the number of control points (rn) that minimize the AIC. Values of n between 7 and 12
minimize the AIC in a simulation with phase-amplitude coupling and amplitude-amplitude coupling.
DOV https://doi.org/10.7554/eLife.44287.003

assessment of phase-amplitude coupling while accounting for linear amplitude-amplitude depen-
dence and more complicated phase-dependent relationships on the low frequency amplitude with-
out introducing many more parameters. Compared to the original ¢,,, model in Equation 1,
including these new terms increases the number of variables to n + 3, and the length of the coeffi-
cient vector B, , ton+ 3. These changes result in the following model:

Ahigh|¢)low 7Alow ~Gamma [II,L7 1/]7 (3)

IOg n= Z Bkﬁ( (¢low) + Bn+1AlOW + Bn+2A10W Sin(¢low) + Bn+3AlOW COS(¢10W)'
k=1

Here, the conditional distribution of Ay, given ¢, and Ay, is modeled as a Gamma random var-
iable with mean parameter u and shape parameter v, and B, are undetermined coefficients. We
note that we only consider two interaction terms, rather than the spline basis function of phase, to
limit the number of parameters in the model.

The statistics Rppc and Rjac

We compute two measures of CFC, Rpac and Raac which use the three models defined in the pre-
vious section. We evaluate each model in the three-dimensional space (¢)y,,, Aiow, Anign) and calculate
the statistics Rpac and Raac. We use the MATLAB (RRID : SCR(01622) function fitglm to estimate
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the models; we note that this procedure estimates the dispersion directly for the gamma distribu-
tion. In what follows, we first discuss the three model surfaces estimated from the data, and then
how we use these surfaces to compute the statistics Rpac and Raac.

To create the surface Su,, 4, Which fits the Ajy, ¢, model in the three-dimensional (Aigw, Ploy:
Apien) space, we first compute estimates of the parameters B in Equation 3. We then estimate
Ayign by fixing A,y at one of 640 evenly spaced values between the 5th and 95th quantiles of Ay,
observed; we choose these quantiles to avoid extremely small or large values of Aj.y. Finally, at the
fixed Aj,y, we compute the high frequency amplitude values from the Ay, ¢\, model over 100
evenly spaced values of ¢, between —7 and 7. This results in a two-dimensional curve Cy,, 4, in
the two-dimensional (¢, Asien) space with fixed Ay,,,. We repeat this procedure for all 640 values of
Ajow to create a surface Sy, 4, in the three-dimensional space (Aigw, 1oy, Anign) (Figure 3C). To cre-
ate the surface Sy, which fits the Ay, model in the three-dimensional (Ajoy, ¢y, Anign) SpPace, we
estimate the coefficient vector B,  for the model in Equation 2. We then estimate the high fre-
quency amplitude over 640 evenly spaced values between the 5th and 95th quantiles of Ay
observed, again to avoid extremely small or large values of Ay,. This creates a mean response func-
tion which appears as a curve C,, in the two-dimensional (Ajow, Anign) space. We extend this two-
dimensional curve to a three-dimensional surface S, by extending C,,, along the ¢,,, dimension
(Figure 3A).

To create the surface Sy, which fits the ¢, model in the three-dimensional (Aiow, by, Anign)
space, we first estimate the coefficients By, for the model in Equation 1. From this, we then com-
pute estimates for the high frequency amplitude using the ¢,,, model with 100 evenly spaced values
of ¢, between —r and 7. This results in the mean response function of the ¢,,, model. We extend
this curve Cy, in the A, dimension to create a surface Sy, in the three-dimensional (Aiow, b0y,

e
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Figure 3. Example model surfaces used to determine Rpac and Ryac. (A,B,C) Three example surfaces (A) Sy, , (B) Sg,.. and (C) Sa,, ¢, in the three-
dimensional space (Aioy, Pioy: Anign)- (D) The maximal distance between the surfaces Sy, (red) and Sy, 4, (yellow) is used to compute Rpac. (E) The
maximal distance between the surfaces Sy, (blue) and Sy, 4, (yellow) is used to compute Raac.

DOV https://doi.org/10.7554/eLife.44287.004
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Ayign) space. The surface Sy, has the same structure as the curve Cy, _ in the (¢, Anign) space, and
remains constant along the dimension Ay, (Figure 3B).

The statistic Rpac measures the effect of low frequency phase on high frequency amplitude, while
accounting for fluctuations in the low frequency amplitude. To compute this statistic, we note that
the model in Equation 3 measures the combined effect of A}y, and ¢,,,, on Ay, while the model in
Equation 2 measures only the effect of Ay, on Api. Hence, to isolate the effect of ¢y, on Apign,
while accounting for Ay, we compare the difference in fits between the models in Equations 2 and
3. We fit the mean response functions of the models in Equations 2 and 3, and calculate Rpac as
the maximum absolute fractional difference between the resulting surfaces Sy, and Sy,
(Figure 3D):

ow s Plow

low

Rpac =max [abs[l - SAlnw/SAlnwv¢lo“ ]]7 (4)

That is we measure the largest distance between the Ay, and the A, ¢, models. We expect
fluctuations in Sy, ¢, Not present in Sy . to be the result of ¢y, that is PAC. In the absence of

low

PAC, we expect the surfaces Sy, ¢, and Su, . to be very close, resulting in a small value of Rpac.

However, in the presence of PAC, we expect Sy, 4. to deviate from Sy, resulting in a large value
of Rpac. We note that this measure, unlike R, metrics for linear regression, is not meant to measure
the goodness-of-fit of these models to the data, but rather the differences in fits between the two
models. We also note that Rpac is an unbounded measure, as it equals the maximum absolute frac-
tional difference between distributions, which may exceed 1.

To compute the statistic Raac, which measures the effect of low frequency amplitude on high fre-
quency amplitude while accounting for fluctuations in the low frequency phase, we compare the dif-
ference in fits of the model in Equation 3 from the model in Equation 1. We note that the model in
Equation 3 predicts Ay, as a function of Ay, and ¢y, while the model in Equation 1 predicts Ay,
as a function of ¢, only. Therefore we expect a difference in fits between the models in Equations 1
and 3 results from the effects of Ay, on Apign. We fit the mean response functions of the models in
Equations 1 and 3 in the three-dimensional (¢y,,,, Aiow, Anieh) Space, and calculate Ryac as the maxi-

mum absolute fractional difference between the resulting surfaces Sy, ¢... and Sy, (Figure 3E):

low low

Raac =max[abs[l1 —Sg,  /Sa..du.))- (5)

That is we measure the distance between the ¢, and the Ay, d,,, models. We expect fluctua-
tions in Sa, . ., NOt present in Sy to be the result of Ay, that is AAC. In the absence of AAC, we
expect the surfaces Su,, 4, and Sy = to be very close, resulting in a small value for Rasc. Alterna-
tively, in the presence of AAC, we expect Sy, 4, to deviate from Sg_, resulting in a large value of

Raac.

Estimating 95% confidence intervals for Rp ¢ and Raxc

We compute 95% confidence intervals for Rpac and Raac via a parametric bootstrap method
(Kramer and Eden, 2013). Given a vector of estimated coefficients g, for

X = {Alw; Drow; O Alow, Piow }, We use its estimated covariance and estimated mean to generate
10,000 normally distributed coefficient sample vectors 8/, j € {0,...,10000}. For each B/, we then
compute the high frequency amplitude values from the Ayyy, @10y, OF Aoy, Pio, model, Si. Finally, we

compute the statistics RjﬁAc and R/AAC for each j as,

R}, = max[abs[1 — S‘Lw /Sh,.. o)l (6)
R’A Ac = ax [abs[1 — S‘ibw / SJAW, . - (7)

The 95% confidence intervals for the statistics are the values of R}, and R/, ,, at the 0.025 and
0.975 quantiles (Kramer and Eden, 2013).
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Assessing significance of AAC and PAC with bootstrap p-values

To assess whether evidence exists for significant PAC or AAC, we implement a bootstrap procedure
to compute p-values as follows. Given two signals Vi, and Viign, and the resulting estimated statis-
tics Rpac and Raac we apply the Amplitude Adjusted Fourier Transform (AAFT) algorithm
(Theiler et al., 1992) on Vi, to generate a surrogate signal Vliligh' In the AAFT algorithm, we first
reorder the values of Vi, by creating a random Gaussian signal W and ordering the values of Vyn
to match W. For example, if the highest value of W occurs at index j, then the highest value of Vi,
will be reordered to occur at index j. Next, we apply the Fourier Transform (FT) to the reordered
Vihigh and randomize the phase of the frequency domain signal. This signal is then inverse Fourier
transformed and rescaled to have the same amplitude distribution as the original signal Vyg. In this
way, the algorithm produces a permutation V{ligh of Viign such that the power spectrum and ampli-
tude distribution of the original signal are preserved.

We create 1000 such surrogate signals Vj,,,,, and calculate RL, o and R/, 4 between Vi, and each

Vi We define the p-values ppac and pasc as the proportion of values in {Rp 199 and

{RiAc 112(,)0 greater than the estimated statistics Rpac and Raac, respectively. If the proportion is
zero, we set p = 0.0005.

We calculate p-values for the modulation index in the same way. The modulation index calculates
the distribution of high frequency amplitudes versus low frequency phases and measures the dis-
tance from this distribution to a uniform distribution of amplitudes. Given the signals Vi, and Vign,
and the resulting modulation index MI between them, we calculate the modulation index between
Viow and 1000 surrogate permutations of Vy. using the AAFT algorithm. We set py; to be the pro-
portion of these resulting values greater than the Ml value estimated from the original signals.

Synthetic time series with PAC

We construct synthetic time series to examine the performance of the proposed method as follows.
First, we simulate 20 s of pink noise data such that the power spectrum scales as 1/f. We then filter
these data into low (4-7 Hz) and high (100-140 Hz) frequency bands, as described in
Materials and methods: Estimation of the phase and amplitude envelope, creating signals Vj,,, and

Vhigh- Next, we couple the amplitude of the high frequency signal to the phase of the low frequency
signal. To do so, we first locate the peaks of Vi, and determine the times #, k = {1,2,3,...,K}, of
the K relative extrema. We note that these times correspond approximately to ¢,,, = 0. We then
create a smooth modulation signal M which consists of a 42 ms Hanning window of height 1 + Ipsc
centered at each 1, and a value of 1 at all other times (Figure 4A). The intensity parameter Ipsc in
the modulation signal corresponds to the strength of PAC. Ipsc = 0.0 corresponds to no PAC, while

Ipac = 1.0 results in a 100% increase in the high frequency amplitude at each 7, creating strong PAC.
We create a new signal Vj,,,, with the same phase as Vi, but with amplitude dependent on the

phase of Vi, by setting,

d — .
Vhigh - Mvhlf-’;h .

We create the final voltage trace V as

V="Viw + Vl/xigh +c Vpink )

where Vi, is a new instance of pink noise multiplied by a small constant ¢=0.01. In the signal V,
brief increases of the high frequency activity occur at a specific phase (0 radians) of the low fre-
quency signal (Figure 4B).

Synthetic time series with AAC

To generate synthetic time series with dependence on the low frequency amplitude, we follow the
procedure in the preceding section to generate Vioy, Vhigh, and Ajy. We then induce amplitude-
amplitude coupling between the low and high frequency components by creating a new signal Vi,
such that
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Ve = Vi [ 14+ Inao—ov
high — high AAC max (A]ow) )
where Ixac is the intensity parameter corresponding to the strength of amplitude-amplitude cou-
pling. We define the final voltage trace V as

V="Viw + Vﬁigh +c Vpink )
where Vi, is a new instance of pink noise multiplied by a small constant ¢ = 0.01 (Figure 4C).

Human subject data

A patient (male, age 32 years) with medically intractable focal epilepsy underwent clinically indicated
intracranial cortical recordings for epilepsy monitoring. In addition to clinical electrode implantation,
the patient was also implanted with a 10 x 10 (4 mm x4 mm) NeuroPort microelectrode array
(MEA,; Blackrock Microsystems, Utah) in a neocortical area expected to be resected with high proba-
bility in the temporal gyrus. The MEA consists of 96 platinum-tipped silicon probes, with a length of
1.5 mm, corresponding to neocortical layer Ill as confirmed by histology after resection. Signals from
the MEA were acquired continuously at 30 kHz per channel. Seizure onset times were determined
by an experienced encephalographer (S.S.C.) through inspection of the macroelectrode recordings,
referral to the clinical report, and clinical manifestations recorded on video. For a detailed clinical
summary, see patient P2 of Wagner et al. (2015). For these data, we analyze the 100-140 Hz and
4-7 Hz frequency bands to illustrate the proposed method; a more rigorous study of CFC in these
data may require a more principled choice of high frequency band. All patients were enrolled after
informed consent and consent to publish was obtained, and approval was granted by local Institu-
tional Review Boards at Massachusetts General Hospital and Brigham Women'’s Hospitals (Partners
Human Research Committee), and at Boston University according to National Institutes of Health
guidelines.
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Code availability

The code to perform this analysis is available for reuse and further development at https://github.
com/Eden-Kramer-Lab/GLM-CFC (Nadalin and Kramer, 2019, copy archived at https://github.com/
elifesciences-publications/GLM-CFC).

Results

We first examine the performance of the CFC measure through simulation examples. In doing so,
we show that the statistics Rpac and Raac accurately detect different types of cross-frequency cou-
pling, increase with the intensity of coupling, and detect weak PAC coupled to the low frequency
amplitude. We show that the proposed method is less sensitive to changes in low frequency power,
and outperforms an existing PAC measure that lacks dependence on the low frequency amplitude.
We conclude with example applications to human and rodent in vivo recordings, and show how to
extend the modeling framework to include a new covariate.

The absence of CFC produces no significant detections of coupling

We first consider simulated signals without CFC. To create these signals, we follow the procedure in
Materials and methods: Synthetic Time Series with PAC with the modulation intensity set to zero
(Irac = 0). In the resulting signals, Ay, is approximately constant and does not depend on ¢, or
Al (Figure 5A). We estimate the ¢,,, model, the A, model, and the Aoy, ¢, model from these
data; we show example fits of the model surfaces in Figure 5B. We observe that the models exhibit
small modulations in the estimated high frequency amplitude envelope as a function of the low fre-
quency phase and amplitude.

To assess the distribution of significant R values in the case of no cross-frequency coupling, we
simulate 1000 instances of the pink noise signals (each of 20 s) and apply the R measures to each
instance, plotting significant R values in Figure 5C. We find that for all 1000 instances, ppac and
paac are less than 0.05 in only 0.6% and 0.2% of the simulations, respectively, indicating no signifi-
cant evidence of PAC or AAC, as expected.

We also applied these simulated signals to assess the performance of two standard model com-
parison procedures for GLMs. Simulating 1000 instances of pink noise signals (each of 20 s) with no
induced PAC or AAC, we performed a chi-squared test for nested models (Kramer and Eden,
2016) between models Ay, and Ay, ¢, and detected significant PAC (p < 0.05) in 59.7% of simu-
lations. Similarly, performing a chi-squared test for nested models between models ¢,,, and
Alow; Drow, We detected significant AAC (p < 0.05) in 41.5% of simulations. Using an AlC-based model
comparison, we found a decrease in AIC from the Ay, model to the Ay, ¢, model (consistent with
significant PAC) in 98.6% of simulations, and a decrease in AIC from the ¢,,,, model to the Ay, ).,
model (consistent with significant AAC) in 87.2% of simulations. By contrast, we rarely detect signifi-
cant PAC (<0.6% of simulations) or AAC (<0.2% of simulations) in the pink noise signals using the
two statistics Rpac and Raac implemented here. We conclude that, in this modeling regime, two
deviance-based model comparison procedures for GLMs are less robust measures of significant PAC
and AAC.

The proposed method accurately detects PAC

We next consider signals that possess phase-amplitude coupling, but lack amplitude-amplitude cou-
pling. To do so, we simulate a 20 s signal with Ay, modulated by ¢y, (Figure 5D); more specifically,
Anigh increases when ¢, is near 0 radians (see Materials and methods, Ipac = 1). We then estimate
the ¢,,,, model, the Ay, model, and the Ay, ¢y, model from these data; we show example fits in
Figure 5E. We find that in the ¢, model Ay, is higher when ¢, is close to 0 radians, and the
Alow, P10 model follows this trend. We note that, because the data do not depend on the low fre-
quency amplitude (Ajoy), the ¢y, and Ay, ¢y, models have very similar shapes in the (¢)o,, Alow,
Ayign) space, and the Ay, model is nearly flat.

Simulating 1000 instances of these 20 s signals with induced phase-amplitude coupling, we find
paac<0.05 for only 0.6% of the simulations, while ppyc<0.05 for 96.5% of the simulations. We find
that the significant values of Rpac lie well above 0 (Figure 5F), and that as the intensity of the simu-
lated phase-amplitude coupling increases, so does the statistic Rpac (Figure 5G). We conclude that
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dependence of Aygn 0N ¢y, and Ay (N) In 1000 simulations, significant values of Rpac and Raac frequently appear. (O) As the intensity of PAC and
AAC increase, so do the significant values of Rpac and Raac. In (G,K,0), circles indicate the median, and x’s the 5th and 95th quantiles.
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the proposed method accurately detects the presence of phase-amplitude coupling in these simu-

lated data.

The proposed method accurately detects AAC

We next consider signals with amplitude-amplitude coupling, but without phase-amplitude coupling.
We simulate a 20 s signal such that Az, is modulated by Ay, (see Materials and methods, Ixac = 1);
when Ay, is large, so is Ay, (Figure 5H). We then estimate the ¢,,, model, the Aj,,, model, and the
Alow, P1oy model (example fits in Figure 5I). We find that the A, model increases along the Ay, axis,
and that the Aoy, ¢y, model closely follows this trend, while the ¢,,, model remains mostly flat, as

expected.
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Simulating 1000 instances of these signals we find that pys¢<0.05 for 97.9% of simulations, while
prac<0.05 for 0.3% of simulations. The significant values of Ryac lie above O (Figure 5J), and
increases in the intensity of AAC produce increases in Raac (Figure 5K). We conclude that the pro-
posed method accurately detects the presence of amplitude-amplitude coupling.

The proposed method accurately detects the simultaneous occurrence
of PAC and AAC

We now consider signals that possess both phase-amplitude coupling and amplitude-amplitude cou-
pling. To do so, we simulate time series data with both AAC and PAC (Figure 5L). In this case, Apign
increases when ¢,,,, is near 0 radians and when A, is large (see Materials and methods, Ipyc =1
and Ixac = 1). We then estimate the ¢,,, model, the A;,, model, and the Ay, ¢, model from the
data and visualize the results (Figure 5M). We find that the ¢,,, model increases near ¢,,, = 0, and
that the Aj,,, model increases linearly with A,. The Ay, @), model exhibits both of these behaviors,
increasing at ¢,,,, = 0 and as A, increases.

Simulating 1000 instances of signals with both AAC and PAC present, we find that paa¢<0.05 in
96.7% of simulations and ppac<0.05 in 98.1% of simulations. The distributions of significant Rpac and
Raac values lie above 0, consistent with the presence of both PAC and AAC (Figure 5N), and as the
intensity of PAC and AAC increases, so do the values of Rpac and Raac (Figure 50). We conclude
that the model successfully detects the concurrent presence of PAC and AAC.

Rpac and modulation index are both sensitive to weak modulations

To investigate the ability of the proposed method and the modulation index to detect weak cou-
pling between the low frequency phase and high frequency amplitude, we perform the following
simulations. For each intensity value Ipsc between 0 and 0.5 (in steps of 0.025), we simulate 1000
signals (see Materials and methods) and compute Rpac and a measure of PAC in common use: the
modulation index MI (Tort et al., 2010) (Figure 6). We find that both Ml and Rpac, while small,
increase with Ipsc; in this way, both measures are sensitive to small values of Ip4c. However, we note
that Rpac is not significant for very small intensity values (Ipac < 0.3), while Ml is significant at these
small intensities. Significant Rpac appears when the Ml exceeds 0.7 x 1073, a value below the range
of MI values detected in many existing studies (Tort et al., 2008; Zhong et al., 2017,
Jackson et al., 2019; Axmacher et al., 2010; Tort et al., 2018). We conclude that, while the modu-
lation index may be more sensitive than Rpsc to very weak phase-amplitude coupling, Rpac can
detect phase-amplitude coupling at Ml values consistent with those observed in the literature.

The proposed method is less affected by fluctuations in low-frequency
amplitude and AAC

Increases in low frequency power can increase measures of phase-amplitude coupling, although the
underlying PAC remains unchanged (Aru et al., 2015; Cole and Voytek, 2017). Characterizing the
impact of this confounding effect is important both to understand measure performance and to pro-
duce accurate interpretations of analyzed data. To examine this phenomenon, we perform the fol-
lowing simulation. First, we simulate a signal V with fixed PAC (intensity Ipac =1, see
Materials and methods). Second, we filter V into its low and high frequency components Vi, and
Vhigh, respectively. Then, we create a new signal V* as follows:

Vi=2 Viow + Vhigh + Vnoisey (8)

where Vi is @ pink noise term (see Materials and methods). We note that we only alter the low fre-
quency component of V and do not alter the PAC. To analyze the PAC in this new signal we com-
pute Rpac and ML

We show in Figure 7 population results (1000 realizations each of the simulated signals V and V*)
for the R and Ml values. We observe that increases in the amplitude of Vi, produce increases in Ml
and Rpac. However, this increase is more dramatic for Ml than for Rpac; we note that the distribu-
tions of Rpac almost completely overlap (Figure 7A), while the distribution of MI shifts to larger val-
ues when the amplitude of Vj,,, increases (Figure 7B). We conclude that the statistic Rpac — which
includes the low frequency amplitude as a predictor in the GLM — is more robust to increases in low
frequency power than a method that only includes the low frequency phase.
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We also investigate the effect of increases in amplitude-amplitude coupling (AAC) on the two
measures of PAC. As before, we simulate a signal V with fixed PAC (intensity Ipac = 1) and no AAC
(intensity Iyac = 0). We then simulate a second signal V* with the same fixed PAC as V, and with
additional AAC (intensity I4ac = 10). We simulate 1000 realizations of V and V* and compute the cor-
responding Rpac and Ml values. We observe that the increase in AAC produces a small increase in
the distribution of Rpac values (Figure 7C), but a large increase in the distribution of MI values
(Figure 7D). We conclude that the statistic Rpac is more robust to increases in AAC than MI.

These simulations show that at a fixed, non-zero PAC, the modulation index increases with
increased A, and AAC. We now consider the scenario of increased Ay, and AAC in the absence of
PAC. To do so, we simulate 1000 signals of 200 s duration, with no PAC (intensity Ipac = 0). For
each signal, at time 100 s (i.e., the midpoint of the simulation) we increase the low frequency ampli-
tude by a factor of 10 (consistent with observations from an experiment in rodent cortex, as
described below), and include AAC between the low and high frequency signals (intensity Iyac = 0
for t<100s and intensity Ixac = 2 for ¢ > 100s). We find that, in the absence of PAC, Rpac detects
significant PAC (p<0.05) in 0.4% of the simulated signals, while MI detects significant PAC in 34.3%
of simulated signals. We conclude that in the presence of increased low frequency amplitude and
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amplitude-amplitude coupling, Ml may detect PAC where none exists, while Rpac, which accounts
for fluctuations in low frequency amplitude, does not.

Sparse PAC is detected when coupled to the low frequency amplitude
While the modulation index has been successfully applied in many contexts (Canolty and Knight,
2010; Hyafil et al., 2015b), instances may exist where this measure is not optimal. For example,
because the modulation index was not designed to account for the low frequency amplitude, it may
fail to detect PAC when Ay, depends not only on ¢, but also on Ay,,. For example, since the
modulation index considers the distribution of Ay, at all observed values of ¢, it may fail to
detect coupling events that occur sparsely at only a subset of appropriate ¢, occurrences. Rpac,
on the other hand, may detect these sparse events if these events are coupled to Ay, as Rpac
accounts for fluctuations in low frequency amplitude. To illustrate this, we consider a simulation sce-
nario in which PAC occurs sparsely in time.

We create a signal V with PAC, and corresponding modulation signal M with intensity value
Ipac = 1.0 (see Materials and methods, Figure 8A-B). We then modify this signal to reduce the num-
ber of PAC events in a way that depends on A,,. To do so, we preserve PAC at the peaks of Vi, (i.
e., when ¢, = 0), but now only when these peaks are large, more specifically in the top 5% of peak
values.

We define a threshold value T to be the 95t quantile of the peak Vi, values, and modify the
modulation signal M as follows. When M exceeds 1 (i.e., when ¢,,, =0) and the low frequency
amplitude exceeds T (i.e., Ay > T), we make no change to M. Alternatively, when M exceeds one
and the low frequency amplitude lies below T (i.e., Aj,w<T), we decrease M to 1 (Figure 8C). In this
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way, we create a modified modulation signal M, such that in the resulting signal V;, when ¢, =0
and Ay, is large enough, Apg, is increased; and when ¢, = 0 and Ay, is not large enough, there is
no change to Ay This signal Vi hence has fewer phase-amplitude coupling events than the number
of times ¢,,,, = 0.

We generate 1000 realizations of the simulated signals V;, and compute Rpac and MI. We find
that while MI detects significant PAC in only 37% of simulations, Rpsc detects significant PAC in
72% of simulations. In this case, although the PAC occurs infrequently, these occurrences are cou-
pled to Ay, and Rpac, which accounts for changes in Ao, successfully detects these events much
more frequently. We conclude that when the PAC is dependent on Ay, Rpac more accurately
detects these sparse coupling events.

The CFC model detects simultaneous PAC and AAC missed in an
existing method

To further illustrate the utility of the proposed method, we consider another scenario in which A},
impacts the occurrence of PAC. More specifically, we consider a case in which Ay, increases at a
fixed low frequency phase for high values of A, and Ay, decreases at the same phase for small
values of Ajy. In this case, we expect that the modulation index may fail to detect the coupling
because the distribution of Ay over ¢y, would appear uniform when averaged over all values of
Ajow; the dependence of Ay, on ¢y, would only become apparent after accounting for Ay,

To implement this scenario, we consider the modulation signal M (see Materials and methods)
with an intensity value Ippc = 1. We consider all peaks of Ay, and set the threshold T to be the 50t
quantile (Figure 9A). We then modify the modulation signal M as follows. When M exceeds 1 (i.e.,
when ¢,,,, = 0) and the low frequency amplitude exceeds T (i.e., Ajoy, > T), we make no change to
M. Alternatively, when M exceeds one and the low frequency amplitude lies below T (i.e. Ay, <T),
we decrease M to O (Figure 9B). In this way, we create a modified modulation signal M such that
when ¢, =0 and A, is large enough, Apg is increased; and when ¢, =0 and Ay, is small
enough, Ay, is decreased (Figure 9C).

Using this method, we simulate 1000 realizations of this signal, and calculate Ml and Rpac for
each signal (Figure 9D). We find that Rpyc detects significant PAC in nearly all (96%) of the simula-
tions, while Ml detects significant PAC in only 58% of the simulations. We conclude that, in this simu-
lation, Rpac more accurately detects PAC coupled to low frequency amplitude.
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A simple stochastic spiking neural model illustrates the utility of the
proposed method

In the previous simulations, we created synthetic data without a biophysically principled generative
model. Here we consider an alternative simulation strategy with a more direct connection to neural
dynamics. While many biophysically motivated models of cross-frequency coupling exist (Sase et al.,
2017, Chehelcheraghi et al., 2017; Sotero, 2016; Hyafil et al., 2015a; Lepage and Vijayan, 2015;
Onslow et al., 2014, Fontolan et al., 2013, Malerba and Kopell, 2013, Jirsa and Miiller, 2013,
Spaak et al., 2012; Wulff et al., 2009; Tort et al., 2007), we consider here a relatively simple sto-
chastic spiking neuron model (Aljadeff et al., 2016). In this stochastic model, we generate a spike
train (Viign) in which an externally imposed signal Vi, modulates the probability of spiking as a func-
tion of A, and ¢,,,,. We note that high frequency activity is thought to represent the aggregate
spiking activity of local neural populations (Ray and Maunsell, 2011; Buzsaki and Wang, 2012,
Ray et al., 2008a; Jia and Kohn, 2011); while here we simulate the activity of a single neuron, the
spike train still produces temporally focal events of high frequency activity. In this framework, we
allow the target phase (¢}, ) modulating Ay, to change as a function of Aj,y: when Ay, is large, the
probability of spiking is highest near ¢,,, = £, and when Ay, is small, the probability of spiking is
highest near ¢,,,, = 0. More precisely, we define ¢} _ as

dﬁow = 77(1 +A10W)

where Ay, is a sinusoid oscillating between 1 and 2 with period 0.1 Hz. We define the spiking proba-

bility, A, as
* 2
A :/\0 exp I:_ ( (d)low2 2(i)low) >:|7

where 0 =0.01, s(¢) is a triangle wave, and we choose A so that the maximum value of A is 2. We
note that the spiking probability A is zero except near times when the phase of the low frequency
signal (¢,,,) is near ¢; . We then define Ay as:

Ahigh =5+ n,
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where S is the binary sequence generated by the stochastic spiking neuron model, and n is Gaussian
noise with mean zero and standard deviation 0.1. In this scenario, the distribution of Ay, over ¢y,
appears uniform when averaged over all values of Aj,. We therefore expect the modulation index
to remain small, despite the presence of PAC with maximal phase dependent on Aj,,. However, we
expect that Rpac, which accounts for fluctuations in low frequency amplitude, will detect this PAC.
We show an example signal from this simulation in Figure 10A. As expected, we find that Rpac
detects PAC (Rpac =0.172, p=0.02); we note that the (A}oy, dy,,) surface exhibits a single peak near
b1 =0 at small values of Ay, and at ¢,,, = =7 at large value of A, (Figure 10B). The (Ajow, $ry)
surface deviates significantly from the A, surface, resulting in a large Rpsc value. However, the
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Figure 10. Rpac, but not MI, detects phase-amplitude coupling in a simple stochastic spiking neuron model. (A) The phase and amplitude of the low
frequency signal (blue) modulate the probability of a high frequency spike (orange). (B) The surfaces Su,, (red) and Su,, 4, (yellow). The phase of
maximal Anign modulation depends on Ajgy. (C) The modulation index fails to detect this type of PAC.
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non-uniform shape of the (Ajoy, @) surface is lost when we fail to account for Aoy, In this scenario,
the distribution of Ay, over ¢, appears uniform, resulting in a low Ml value (Figure 10C).

Application to in vivo human seizure data

To evaluate the performance of the proposed method on in vivo data, we first consider an example
recording from human cortex during a seizure (see Materials and methods: Human subject data).
Visual inspection of the LFP data (Figure 11A) reveals the emergence of large amplitude voltage
fluctuations during the approximately 80 s seizure. We compute the spectrogram over the entire sei-
zure, using windows of width 0.8 s with 0.002 s overlap, and identify a distinct 10 s interval of
increased power in the 4-7 Hz band (Figure 11B). We analyze this section of the voltage trace V, fil-
tering into Vi (100-140 Hz) and Vi, (4-7 Hz), and extracting Apigh, Alow, and ¢y, as in Methods
(Figure 11C). Visual inspection reveals the occurrence of large amplitude, low frequency oscillations
and small amplitude, high frequency oscillations.

We find during this interval significant phase-amplitude coupling computed using Rpac
(Rpac = 1.55, ppac =0.005, Figure 12), and using the modulation index (MI = 0.03,
py1 = 5.0 x 107*). To examine the phase-amplitude coupling in more detail, we isolate a 2 s segment
(Figure 11D) and display the signal V, the high frequency signal Vi, the low frequency phase ¢,
and the low frequency amplitude Aj,,. We observe that when ¢, is near , the amplitude of Ve
tends to increase, consistent with the presence of PAC and a significant value of Rpsc and MI.

We also find significant amplitude-amplitude coupling computed using Raac (Raac = 0.85,
paac = 0.005). Comparing Anigh and Ay, over the 10 s interval (each smoothed using a 1 s moving
average filter and normalized), we observe that both Ay, and Ay, steadily increase over the dura-
tion of the interval (Figure 11E).

Application to in vivo rodent data

As a second example to illustrate the performance of the new method, we consider LFP recordings
from from the infralimbic cortex (IL) and basolateral amygdala (BLA) of an outbred Long-Evans rat
before and after the delivery of an experimental electrical stimulation intervention described in
Blackwood et al. (2018). Eight microwires in each region, referenced as bipolar pairs, sampled the
LFP at 30 kHz, and electrical stimulation was delivered to change inter-regional coupling (see
Blackwood et al., 2018 for a detailed description of the experiment). Here we examine how cross-
frequency coupling between low frequency (5-8 Hz) IL signals and high frequency (70-110 Hz) BLA
signals changes from the pre-stimulation to the post-stimulation condition. To do so, we filter the
data V into low and high frequency signals (see Materials and methods), and compute the MI, Rpac
and Raac between each possible BLA-IL pairing, sixteen in total.

We find three separate BLA-IL pairings where Rpac reports no significant PAC pre- or post-stimu-
lation, but MI reports significant coupling post-stimulation. Investigating further, we note that in all
three cases, the amplitude of the low frequency IL signal increases from pre- to post-stimulation,
and Raac, the measure of amplitude-amplitude coupling, increases from pre- to post-stimulation.
These observations are consistent with the simulations in Results: The proposed method is less
affected by fluctuations in low-frequency amplitude and AAC, in which we showed that increases in
the low frequency amplitude and AAC produced increases in MI, although the PAC remained fixed.
We therefore propose that, consistent with these simulation results, the increase in MI observed in
these data may result from changes in the low frequency amplitude and AAC, not in PAC.

Using the flexibility of GLMs to improve detection of phase-amplitude
coupling in vivo

One advantage of the proposed framework is its flexibility: covariates are easily added to the gener-
alized linear model and tested for significance. For example, we could include covariates for trial,
sex, and stimulus parameters and explore their effects on PAC, AAC, or both.

Here, we illustrate this flexibility through continued analysis of the rodent data. We select a single
electrode recording from these data, and hypothesize that the condition, either pre-stimulation or
post-stimulation, affects the coupling. To incorporate this new covariate into the framework, we con-
sider the concatenated voltage recordings from the pre-stimulation condition V. and the post-stim-
ulation condition Vs
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Figure 11. The proposed method detects cross-frequency coupling in an in vivo human recording. (A,B) Voltage recording (A) and spectrogram (B)
from one MEA electrode over the course of a seizure; PAC and AAC were computed for the time segment outlined in red. (C) The 10 s voltage trace
(blue) corresponding to the outlined segment in (A), and Vio,, (red), Viign (yellow), and Ajey (purple). (D) A 2 s subinterval of the voltage trace (blue), Vigy
(red), Vign (yellow), Aoy (purple), and ¢, (green). (E) A, (purple) and Ay, (red) for the 10 s segment in (C), normalized and smoothed.

DOI: https://doi.org/10.7554/elife.44287.012
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Figure 12. The Sy, 4,. surface shows how PAC changes with the low frequency amplitude and phase during an interval of human seizure. (A) The full
model surface (blue) in the (¢, Alow, Anign) sPace, and components of that surface when (B) Ay, is small (black), and Ay, is large (red).
DOI: https://doi.org/10.7554/eLife.44287.013

V= [Vprea Vpost} .

From V, we obtain the corresponding high frequency signal Vi, and low frequency signal Vi,
and subsequently the high frequency amplitude Ay, low frequency phase ¢,,,,, and low frequency
amplitude Aj,,. We use these data to generate two new models:

Ahigh |¢low7AlowaP~ Gamma[lh V]7 (9)

n

IOg H= Z kak (d)low) + Bn+1Alow + Bn+2A10W Sin(d)low) + Bn+3A10W Cos(d)low) + P(Z Bn+3+}ﬁ(¢law) + B2n+4A10W)

k=1 J=1

Ahigh‘(i)lowvAlow;P"‘ Gamma[u, V] (1 O)

log n= Z BkﬁC (¢10w) + Bn-HAlOW + Bn+2A10W Sin(¢low) + Bn+3A10W COS(¢IOW) + P(Bn+4A10W)’
k=1

where P is an indicator function specifying whether the signal is in the pre-stimulation (P =0) or post-
stimulation (P = 1) condition. The effect of the indicator function is to include the effect of stimulus
condition on the high frequency amplitude. The models in Equations 9 and 10 now include the
effect of low frequency amplitude, low frequency phase, and condition on high frequency amplitude.
To determine whether the condition has an effect on PAC, we test whether the term

P30 Bussiifi($iow)) in Equation 9 is significant, that is whether there is a significant difference
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between the models in Equations 9 and 10. If the difference between the two models is very small,
we gain no improvement in modeling Ay, by including the interaction between P and ¢y, . In that
case, the impact of ¢, on Ay, can be modeled without considering stimulus condition P,
that is the impact of stimulus condition on PAC is negligible.

To measure the difference between the models in Equations 9 and 10, we construct a surface
Spg,,, from the model in Equation 9, and a surface Sp from the model in Equation 10 in the (A,
1ows Anigh, P) space, assessing the models at P = 1. We compute Rpac, condition, Which measures the
impact of stimulus condition on PAC, as:

RpAC, condition = max [abs[1 —Sp /Spg, _]]. 1

We find for the example rodent data an Rpac, condition Value of 0.3608, with a p-value of 0.0005.
Hence, we find evidence for a significant effect of stimulus on PAC.

To further explore this assessment of stimulus condition on PAC, we simulate 1000 instances of a
40 s signal divided into two conditions: no PAC for the first 20 s (Ipac = 0) and non-zero PAC for the
final 20 s (Ipac = 1). We design this simulation to mimic an increase in PAC from pre-stimulation to
post-stimulation (Figure 13A). Using the models in Equations 9 and 10, and computing
Rpac, condition, We find p<0.05 for 100% of simulated signals. We also simulate 1000 instances of a 40
s signal with no PAC (Ipyc = 0) for the entire 40 s, that is PAC does not change from pre-stimulation
to post-stimulation (Figure 13B), and find in this case p<0.05 for only 4.6% of simulations. Finally, we
simulate 1000 instances of a 40 s signal with fixed PAC (Ipsc = 1), and with a doubling of the low
frequency amplitude occuring at 20 s (i.e., pre-stimulation the low frequency amplitude is 1, and

A

MVVVW W”” VV'M "

o A’ A'AW‘VM | [\ A A )

b

. Al

Figure 13. Example simulated Vjoy, (blue) and Vign (orange) signals for which (A) PAC increases at 20 s (indicated by black dashed line), and (B) no

increase in PAC occurs.

DOV https://doi.org/10.7554/eLife.44287.014
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post-stimulation the low frequency amplitude is 2). We find p<0.05 for only 3.6% of simulations. We
conclude that this method effectively determines whether stimulation condition significantly changes
PAC.

This example illustrates the flexibility of the statistical modeling framework. Extending this frame-
work is straightforward, and new extensions allow a common principled approach to test the impact
of new predictors. Here we considered an indicator function that divides the data into two states
(pre- and post-stimulation). We note that the models are easily extended to account for multiple dis-
crete predictors such as gender and participation in a drug trial, or for continuous predictors such as
age and time since stimulus.

Discussion

In this paper, we proposed a new method for measuring cross-frequency coupling that accounts for
both phase-amplitude coupling and amplitude-amplitude coupling, along with a principled statistical
modeling framework to assess the significance of this coupling. We have shown that this method
effectively detects CFC, both as PAC and AAC, and is more sensitive to weak PAC obscured by or
coupled to low-frequency amplitude fluctuations. Compared to an existing method, the modulation
index (Tort et al., 2010), the newly proposed method more accurately detects scenarios in which
PAC is coupled to the low-frequency amplitude. Finally, we applied this method to in vivo data to
illustrate examples of PAC and AAC in real systems, and show how to extend the modeling frame-
work to include a new covariate.

One of the most important features of the new method is an increased ability to detect weak
PAC coupled to AAC. For example, when sparse PAC events occur only when the low frequency
amplitude (Ay,y) is large, the proposed method detects this coupling while another method not
accounting for Ay, misses it. While PAC often occurs in neural data, and has been associated with
numerous neurological functions (Canolty and Knight, 2010; Hyafil et al., 2015b), the simultaneous
occurrence of PAC and AAC is less well studied (Osipova et al., 2008). Here, we showed examples
of simultaneous PAC and AAC recorded from human cortex during a seizure, and we note that this
phenomena has been simulated in other works (Mazzoni et al., 2010).

While the exact mechanisms that support CFC are not well understood (Hyafil et al., 2015b), the
general mechanisms of low and high frequency rhythms have been proposed. Low frequency
rhythms are associated with the aggregate activity of large neural populations and modulations of
neuronal excitability (Engel et al., 2001; Varela et al., 2001; Buzsaki and Draguhn, 2004), while
high frequency rhythms provided a surrogate measure of neuronal spiking (Rasch et al., 2008;
Mukamel et al., 2005; Fries et al., 2001; Pesaran et al., 2002; Whittingstall and Logothetis,
2009; Ray and Maunsell, 2011; Ray et al., 2008b). These two observations provide a physical inter-
pretation for PAC: when a low frequency rhythm modulates the excitability of a neural population,
we expect spiking to occur (i.e., an increase in Ayn) at a particular phase of the low frequency
rhythm (¢,,,) when excitation is maximal. These notions also provide a physical interpretation for
AAC: increases in Ay, produce larger modulations in neural excitability, and therefore increased
intervals of neuronal spiking (i.e., increases in Ay;z). Alternatively, decreases in A,y reduce excitabil-
ity and neuronal spiking (i.e., decreases in Ap;gn).

The function of concurrent PAC and AAC, both for healthy brain function and during a seizure as
illustrated here, is not well understood. As PAC occurs normally in healthy brain signals, for example
during working memory, neuronal computation, communication, learning and emotion (Tort et al.,
2009, Jensen et al., 2016; Canolty and Knight, 2010; Dejean et al., 2016, Karalis et al., 2016,
Likhtik et al., 2014; Jones and Wilson, 2005; Lisman, 2005; Sirota et al., 2008), these preliminary
results may suggest a pathological aspect of strong AAC occurring concurrently with PAC.

Proposed functions of PAC include multi-item encoding, long-distance communication, and sen-
sory parsing (Hyafil et al., 2015b). Each of these functions takes advantage of the low frequency
phase, encoding different objects or pieces of information in distinct phase intervals of ¢,,,. PAC
can be interpreted as a type of focused attention; Ay, modulation occurring only in a particular
interval of ¢,,, organizes neural activity - and presumably information - into discrete packets of time.
Similarly, a proposed function of AAC is to encode the number of represented items, or the amount
of information encoded in the modulated signal (Hyafil et al., 2015b). A pathological increase in
AAC may support the transmission of more information than is needed, overloading the
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communication of relevant information with irrelevant noise. The attention-based function of PAC,
that is having reduced high frequency amplitude at phases not containing the targeted information,
may be lost if the amplitude of the high frequency oscillation is increased across wide intervals of
low frequency phase.

Like all measures of CFC, the proposed method possesses specific limitations. We discuss five
limitations here. First, the choice of spline basis to represent the low frequency phase may be inaccu-
rate, for example if the PAC changes rapidly with ¢,,,,. Second, the value of Rysc depends on the
range of Ay, observed. This is due to the linear relationship between Ay, and Ay, in the Apy
and Sa,, ¢, to occur at the

ow

model, which causes the maximum distance between the surfaces Sy,
largest or smallest value of Ay,,. To mitigate the impact of extreme Ay, values on Ry, we evaluate
the surfaces Sy, and Sy, 4., over the 5" to 95" quantiles of Aj,,. We note that an alternative metric
of AAC could instead evaluate the slope of the S, surface; to maintain consistency of the PAC and
AAC measures, we chose not to implement this alternative measure here. Third, the frequency
bands for Vign and Vi, must be established before R values are calculated. Hence, if the wrong fre-
quency bands are chosen, coupling may be missed. It is possible, though computationally expensive,
to scan over all reasonable frequency bands for both Vi, and Vi, calculating R values for each fre-
quency band pair. Fourth, we note that the proposed modeling framework assumes the data contain
approximately sinusoidal signals, which have been appropriately isolated for analysis. In general,
CFC measures are sensitive to non-sinusoidal signals, which may confound interpretation of cross-
frequency analyses (Cole and Voytek, 2017; Kramer et al., 2008; Aru et al., 2015). While the
modeling framework proposed here does not directly account for the confounds introduced by non-
sinusoidal signals, the inclusion of additional predictors (e.g. detections of sharp changes in the unfil-
tered data) in the model may help mitigate these effects. Fifth, we simulate time series with known
PAC and AAC, and then test whether the proposed analysis framework detects this coupling. The
simulated relationships between Ay, and (¢, Alow) May result in time series with simpler structure

low

than those observed in vivo. For example, a latent signal may drive both Ay, and ¢y, and in this
way establish nonlinear relationships between the two observables Ay, and ¢,,,,. We note that, if
this were the case, the latent signal could also be incorporated in the statistical modeling framework
(Yousefi et al., 2019).

We chose the statistics Rpac and Raac for two reasons. First, we found that two common meth-
ods of model comparison for GLMs provide less robust measures of significance than Rpac¢ and
Raac. While the statistics Rpac and Raac are less powerful than standard model comparison tests,
the large amount of data typically assessed in CFC analysis may compensate for this loss. We
showed that the statistics Rpac and Raac performed well in simulations, and we note that these sta-
tistics are directly interpretable. While many model comparison methods exist - and another method
may provide specific advantages - we found that the framework implemented here is sufficiently
powerful, interpretable, and robust for real-world neural data analysis.

The proposed method can easily be extended by inclusion of additional predictors in the GLM.
Polynomial Ay, predictors, rather than the current linear A, predictors, may better capture the rela-
tionship between Ay, and Apgn. One could also include different types of covariates, for example
classes of drugs administered to a patient, or time since an administered stimulus during an experi-
ment. To capture more complex relationships between the predictors (Ajgy, ¢joy) and Apign, the GLM
could be replaced by a more general form of Generalized Additive Model (GAM). Choosing GAMs
would remove the restriction that the conditional mean Ay, must be linear in each of the model
parameters (which would allow us to estimate knot locations directly from the data, for example), at
the cost of greater computational time to estimate these parameters. The code developed to imple-
ment the method is flexible and modular, which facilitates modifications and extensions motivated
by the particular data analysis scenario. This modular code, available at https://github.com/Eden-
Kramer-Lab/GLM-CFC, also allows the user to change latent assumptions, such as choice of fre-
quency bands and filtering method. The code is freely available for reuse and further development.

Rhythms, and particularly the interactions of different frequency rhythms, are an important com-
ponent for a complete understanding of neural activity. While the mechanisms and functions of
some rhythms are well understood, how and why rhythms interact remains uncertain. A first step in
addressing these uncertainties is the application of appropriate data analysis tools. Here we provide
a new tool to measure coupling between different brain rhythms: the method utilizes a statistical
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modeling framework that is flexible and captures subtle differences in cross-frequency coupling. We
hope that this method will better enable practicing neuroscientists to measure and relate brain
rhythms, and ultimately better understand brain function and interactions.
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