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Abstract

One of the most intriguing puzzles in biology is the degree to which evolution is repeatable. The repeatability of
evolution, or parallel evolution, has been studied in a variety of model systems, but has rarely been investigated
with clinically relevant viruses. To investigate parallel evolution of HIV-1, we passaged two replicate HIV-1
populations for almost 1 year in each of two human T-cell lines. For each of the four evolution lines, we deter-
mined the genetic composition of the viral population at nine time points by deep sequencing the entire genome.
Mutations that were carried by the majority of the viral population accumulated continuously over 1 year in each
evolution line. Many majority mutations appeared in more than one evolution line, that is, our experiments
showed an extreme degree of parallel evolution. In one of the evolution lines, 62% of the majority mutations also
occur in another line. The parallelism impairs our ability to reconstruct the evolutionary history by phylogenetic
methods. We show that one can infer the correct phylogenetic topology by including minority mutations in our
analysis. We also find that mutation diversity at the beginning of the experiment is predictive of the frequency of
majority mutations at the end of the experiment.
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Introduction
In long-term evolution experiments, organisms are passaged
for many generations in controlled environments in order to
understand basic evolutionary principles (Elena and Lenski
2003). One of the most basic questions addressed with ex-
perimental evolution is to what extent the evolutionary path
of an organism is predetermined, and hence can be predicted
and repeated. Stephen J. Gould (1989) famously claimed,
“[. . .] any replay of the tape of life would lead evolution
down a pathway radically different from the one actually
taken [. . .]” thus rejecting the idea of evolution as a repeat-
able and predictable process. According to Gould, any devi-
ation from a common evolutionary path will lead to different
evolutionary end points. This view is consistent with the neu-
tral theory of evolution (Kimura 1983), according to which
genetic changes accumulate mostly randomly without con-
ferring fitness advantages or disadvantages.

Gould’s hypothesis has been experimentally tested numer-
ous times by letting populations of organisms evolve repeat-
edly in the same environment. In such experiments, the
parallel evolution of similar traits and, in rare cases, also iden-
tical mutations, have been observed in bacteria and viruses
(Bull et al. 1997; Wichman et al. 1999, 2005; Barrick et al. 2009;
Engel et al. 2011; Lobkovsky and Koonin 2012; de Visser and
Krug 2014; Foll et al. 2014; Bailey et al. 2015; Lind et al. 2015,
2018; Gallie et al. 2019).

Particularly, relevant experiments that study parallel evo-
lution in viruses were performed by James Bull and Holly
Wichman. In an early experiment phage, /X174 was grown
on two different bacterial hosts, Escherichia coli and
Salmonella typhimurium (Bull et al. 1997). After 11 days of
growth in two and three replicates, respectively, the authors
observed 42% of all mutations in more than one replicate line.
Due to the extensive parallelism, phylogenetic inference
methods, applied to the final sequence data, failed to recover
the known evolutionary history of the phage populations.
Ever since, multiple follow-up experiments have been per-
formed with other phages exploring convergent and parallel
evolution (Wichman et al. 1999, 2000, 2005; Miller et al. 2016).

There are also examples of experimental evolution studies
with clinically relevant viruses. Experimental evolution has
been applied to answer a wide range of question about the
epidemiology and biology of these viruses. For example, stud-
ies have investigated: the effect of different drug concentra-
tions on viral growth and evolution (Gatanaga et al. 2002;
Maisnier-Patin and Andersson 2004); the effect of fitness re-
covery after bottlenecking (Lorenzo-Redondo et al. 2011); the
effect of different environmental and genetic parameters on
adaptation (Das et al. 1999; van Opijnen and Berkhout 2005;
van Opijnen et al. 2007; Vasilakis et al. 2009; Border�ıa et al.
2015); and the shape of fitness landscapes (Acevedo et al.
2014; Lorenzo-Redondo et al. 2014). Hence, experimental
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evolution has been a valuable tool to understand the epide-
miology and evolution of viruses.

Apart from the insights gained from a detailed analysis of a
well-defined experiment, experimental studies of clinically rel-
evant viruses can also take advantage of the vast amount of
knowledge gained from clinical studies. Particularly, Human
Immunodeficiency Virus (HIV) is one of the most relevant
and deadly infections in the human population. In 2012,
about 36.9 million people were infected with HIV (Joint
United Nations Programme on HIV AIDS 2018). Due to its
prevalence and a mortality rate of close to 100% if left
untreated, HIV is extremely well studied. In PubMed alone,
there are 185,490 articles with HIV in the title (May 2, 2019).

Part of the reason for the evolutionary success of HIV-1 in
infecting the human population is its high mutation rate,
which contributes to its ability to evade the human immune
response and persist for years within the host (Coffin 1995;
Koenig et al. 1995; Borrow et al. 1997; Goulder et al. 1997; Wei
et al. 2003; Trkola et al. 2005; Liao et al. 2013). Over this time
span, HIV-1 evolves and acquires a large number of mutations
(Shankarappa et al. 1999; Lemey et al. 2006; Keele et al. 2008;
Poon et al. 2010). The distribution and type of these muta-
tions is not entirely random but converges between different
lineages that evolve in similar hosts or are treated with similar
drugs (Crandall et al. 1999; Duwe et al. 2001; Gatanaga et al.
2002; Lataillade et al. 2007). This convergence even allows the
inference of the genetic setup of the human host from the
viral sequence (Moore et al. 2002; Bhattacharya et al. 2007).

To study the extent of parallel evolution in a constant
environment, we track the evolution of four independent
HIV-1 populations for 315 days, which corresponds to about
180 generations (Srivastava et al. 1991; Ho et al. 1995; Wei
et al. 1995; Mohammadi et al. 2013; Holmes et al. 2015). We
identify all mutations that increase in frequency above that of
the wild-type nucleotide, and compare mutations acquired in
the four independent lineages. We observe a high degree of
parallel evolution that causes phylogenetic reconstruction
methods to infer an incorrect evolutionary history. This ob-
servation highlights the need to carefully assess the validity of
phylogenetic methods that rely on the assumption of neutral
evolution when analyzing within-host evolution of HIV-1, in
particular phyloanatomic analyses (Salemi and Rife 2016;
Lorenzo-Redondo et al. 2016; Bons and Regoes 2018). We
also provide insights into how viral population sequencing
data can be used to alleviate problems of phylogenetic recon-
struction and analyze sequence diversity to predict evolution-
ary outcomes.

Results
We investigated the long-term evolution of HIV-1 in the lab-
oratory by passaging HIV-1 NL4-3 for 315 days in the absence
of antiviral drugs in two different human T-cell cultures (MT-
2 and MT-4), with two replicates on each T-cell culture (fig. 1).
The viral populations were transferred to fresh culture two
times every week (90 times in total), which should correspond
to about 180 viral generations (Srivastava et al. 1991; Ho et al.
1995; Wei et al. 1995; Mohammadi et al. 2013; Holmes et al.

2015). Every tenth transfer, we determined the population
composition by Illumina sequencing for each of the four evo-
lution lines.

The HIV-1 population grows exponentially between trans-
fers. At the start of each transfer, our cultures contain
�400,000 uninfected T-cells. With a multiplicity of infection
(MOI) of 0.0001–0.004 (supplementary fig. S1, Supplementary
Material online), between 40 and 1,600 cells are infected dur-
ing the first generation after each inoculation. The number of
initially infected cells (i.e., 40–1,600) constitutes the popula-
tion bottlenecks in our experiment. Since we transfer�0.05%
of the previous culture into the new culture and we do not
observe any obvious HIV-1 population growth or death
across our experiment, we can assume that each HIV-1 pop-
ulation amplifies 2,000-fold between transfers (supplemen-
tary fig. S1, Supplementary Material online). There are two
parameters that determine the level of population amplifica-
tion in our experiment: the generation time and the number
of infective viral offspring (R0). R0 of�10 (Ribeiro et al. 2010)
and the generation time of�2 days (Srivastava et al. 1991; Ho
et al. 1995; Wei et al. 1995; Mohammadi et al. 2013; Holmes
et al. 2015) that are cited in the literature cannot explain the
virus amplification in our experiment. These parameters
would only allow for a 100-fold amplification of the virus
population and hence would lead to the HIV-1 populations
dying out in our experiment. To increase the population size
2,000-fold, we need to either assume R0 to be 44 while the
HIV-1 population completes two generations or assume R0 to
be 12 while the HIV-1 population completes three genera-
tions. The truth may lie somewhere in the middle. Either way
we expect the MOI to reach a value close to one at the end of
each transfer, which would allow for recombination to hap-
pen in our experiment.

Majority Mutations Accumulate Linearly over Time
We observed a total of 92 mutations across the four evolution
lines (69 unique mutations) that became more frequent in
the population than the wild-type nucleotide (fig. 2A). We
call these mutations majority mutations. Although we
expected the accumulation of majority mutations to decel-
erate when a population approaches an adaptive peak, we did
not observe any deceleration during the 90 transfers we con-
sidered in this study.

To understand why mutations continue to accumulate at
a high rate even toward the end of the experiment, we de-
termined the time point of the maximum fold increase of the
frequencies for each majority mutation (fig. 2B). These max-
imum fold increases should correspond to “fitness” because a
large increase in the frequency of a novel mutation could be
indicative of greater reproductive success of the viruses that
carry this mutation. However, one has to keep in mind that
the reproductive effect of a novel mutation is not the only
factor affecting the frequency increase of that mutation.
Random fluctuations (especially for low-frequency mutants),
clonal interference, recombination, and linkage can also sub-
stantially affect mutation frequency differences. Nevertheless,
our analysis shows that the “fitness gains” of majority muta-
tions significantly decrease over time at similar rates.
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However, the fitness gains for majority mutations in MT-2
evolution lines initially are much larger than the fitness gains
of majority mutations in MT-4 evolution lines (fitted regres-
sion lines in fig. 2B). The difference in the fitness gains suggests
that the viruses growing on MT-4 evolution lines might be
closer to an adaptive peak than the viruses growing on MT-2
evolution lines.

For all four evolution lines, we observe that fitness gains of
novel majority mutations decrease over time. This could be
due to diminishing fitness effects, or more clonal interference
as the sequence diversity increases in the population.
Diminishing fitness effects are expected for populations
that are adapting to a new environment (Lenski et al. 1991;
Wiser et al. 2013). Hence, the fitness effects we observe in our
experiment of new mutations are decreasing as expected.
Nevertheless, the number of new majority mutations ob-
served at each time step does not decrease (fig. 2A). This
pattern is similar to the linear accumulation of mutations
observed in the long-term evolution experiment in E. coli,
which the authors explained through an accumulation of a
large number of small effect mutations (Barrick et al. 2009).
However, for our experiment, there is an alternative explana-
tion for the observed pattern. Due to the smaller population
sizes in our experiment, neutral majority mutations are
expected to accumulate toward the end of the experiment.
These neutral majority mutations could maintain a constant
accumulation rate of majority mutations.

The appearance of neutral majority mutations at the end
of the experiment is supported by simulations. We performed
simulations of neutrally evolving viruses using experimental
data on population sizes at the start of every ten transfers
(fig. 2A and supplementary fig. S1, Supplementary Material
online). We simulate the evolution of individual HIV-1
genomes for 180 generations with a periodic bottleneck every
two generations. Between bottlenecks, the simulated HIV-1

populations replicate exponentially (R0¼44). Our results sug-
gest that neutral majority mutations appear at the end of the
experiment because it takes time for neutral mutations to
accumulate in a population before they can become majority
mutations (thin lines in fig. 2A).

We also analyzed the effect of APOBEC3G on the accu-
mulation of majority mutations. APOBEC3G is only expressed
in MT-2 T-cells and not in MT-4 T-cells (Borman et al. 1995).
Interestingly, the proportion of G to A majority mutations at
the end of the experiment is higher in HIV-1 growing in MT-4
T-cells (24 G to A mutations or 67%) than in HIV-1 growing in
MT-2 T-cells (24 G to A mutations or 44%). Among these
mutations, five were found in the APOBEC3G motif (GG to
GA) in MT-2 and eight were found in MT-4 HIV-1 popula-
tions. Hence, it is quite clear that APOBEC3G expression does
not drive the accumulation of majority mutations through an
increased mutation rate. However, it is not clear whether
there is an indirect effect of APOBEC3G expression (e.g.,
stronger selective pressure) that drives the faster accumula-
tion of majority mutations in MT-2 virus populations.

Large Extent of Parallel Evolution across Evolutionary
Lines
Consistent with the large observed fitness effects of the ma-
jority mutations, we see many of them arise in parallel in
more than one evolution line (fig. 2C–F and colored lines in
fig. 3). To test whether this observation is expected for neu-
trally evolving viruses with even mutation rates across the
genome, we performed simulations (see Materials and
Methods). For each evolution line, we distributed the ob-
served majority mutations at transfer 90 across the genome
(i.e., an observed A to G majority mutations will remain an A
to G substitution albeit at another position in the genome).
We then determined how many of the mutations occurred in

FIG. 1. Experimental design. HIV-1 NL4-3 was serially transferred in MT-2 and MT-4 T-cells in two replicates each. Odd transfers occurred after
3 days, even transfers after 4 days. At each transfer, we infected new T-cells with �0.05% of the cell suspension from the previous culture
(supplementary fig. S1, Supplementary Material online).
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more than one evolution line. We repeated the simulation
100 times and found that in only 28 of 100 simulations there
was a single mutation that occurred in more than one evo-
lution line. In the remaining 72 simulations, we found no
mutations in more than one evolution line. Hence, we expect
that almost all parallel mutations we observe in our experi-
ment are adaptive or due to mutational hotspots (Cuevas
et al. 2015; Sackman et al. 2017; Lind et al. 2019).

In the most extreme case, out of 17 majority mutations
observed in one of the MT-4 evolution lines (MT-4_2) at
transfer 90, 12 were shared with the other evolution lines.
Of the remaining five private majority mutations from MT-
4_2, two were also present at frequencies >10% in other
evolution lines (g909a at 15% in MT-4_1 and g614a at 43%
in MT-2_1, supplementary table S1, Supplementary Material

online). In MT-4_1, 11 of 20 majority mutations also reached
majority status in at least one other line. Of the remaining
nine mutations, two occurred at frequencies >10%.

In viral populations grown on MT-2 T-cells, parallelism was
not as high. Only 7 of 29 majority mutations in MT-2_1 occur
in another evolution line, and only 8 of 26 majority mutations
for MT-2_2. Additionally, five private majority mutations in
MT-2_1 and three such mutations in MT-2_2 are present at
frequencies >10% in other evolutionary lines. Notably, we
observed one majority mutation (t9528g) that occurred
across all four replicates and six mutations that occurred in
three replicates in parallel (fig. 2C).

Interestingly, there was one synonymous mutation that
also evolved in parallel (g4808a) of a total of 16 synonymous
mutations. Out of 41 nonsynonymous mutations, we
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FIG. 2. Accumulation, maximum mutation frequency slopes (fitness), parallelism, and dynamics of majority mutations. (A) Accumulation of
majority mutations over time (thick lines), accumulation of neutral majority mutations in simulations over 180 generations (thin lines). (B) For
each majority mutation observed in the evolution experiment, we show the maximum fold mutation frequency increase, plotted against the time
frame at which the frequency increase occurred. The maximum fold increase of the mutation frequencies is a surrogate of the fitness advantage of a
mutation. Synonymous mutations are displayed as “S,” nonsynonymous mutations are displayed as “N,” and mutations in untranslated regions are
shown as “U.” Linear regressions on the fitness advantages in MT-2 and MT-4 T-cells are displayed in red and blue, respectively. The decline in
fitness advantages for evolution lines grown in MT-2 (red) is marginally significant from 0 (P value¼ 0.05) and significantly different for MT-4
(blue) evolution lines (P value ¼ 0.008). There is no majority mutation, for which the maximum mutation frequency increase occurred after
transfer 80. (C) Venn diagram of the presence of majority mutations in the four evolution lines at transfer 90. (D–F) show mutation frequencies of
three selected majority mutations for the four evolution lines. The black solid line indicates a mutation frequency of 50%. Mutation frequencies are
unlikely to be informative once they fall below the Illumina sequencing error rate of �0.1%. The evolution lines are colored as in (C). (D) The
mutation g9412a becomes a majority mutation in three populations in parallel except for MT-2_1. (E) Mutation frequencies of mutation, t9528g,
increase almost simultaneously for all four evolution lines. (F) In all four evolution lines, the mutation g618a increases in frequency; in two lines, it
becomes a majority mutation at the beginning of the experiment; and in one line toward the end of the experiment. For the frequency dynamics of
other majority mutations, please see supplementary figure S2, Supplementary Material online.
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observed seven majority mutations in more than one line.
Hence, the ratio of parallel mutations to private mutations is
about three times as high in nonsynonymous mutations
(17%) compared with synonymous mutations (6.2%). This
difference, however, is not significant (Fisher’s exact test: P
value¼ 0.42). The degree of parallelism is higher for majority
mutations in untranslated regions of the genome: Of 26
mutations, 7 were shared (27%, but again not significantly
different to both, parallel synonymous [P¼ 0.21] and non-
synonymous majority mutations [P¼ 0.53], Fisher’s exact
test).

Apart from highlighting parallel mutations, figure 3 also
shows that there are a few instances where recombination
has decoupled the increase in frequency of a few mutations
from each other. For example, the first mutation to attain a
frequency >50% in MT-2_1 (t1446g, yellow) rises simulta-
neously with a private mutation (not parallel, g3078a, black).
Both mutations reach a frequency of 66% at transfer 10. At
transfer 20, the two mutations decouple in their increase:
while t1446g has risen to 99%, g3078a has only increased to
75%. Similarly, g618a (orange) in MT-2_1 first increases in
parallel with the private mutation t8700c (black) to reach
51% of the population at transfer 10. Subsequently, the

mutations decouple. But, in this case, interestingly, the private
mutation keeps increasing in frequency to 82% at transfer 20
while g618a decreases to 45%. There are other examples in
figure 3 showing similar patterns. These patterns strongly
suggest that recombination occurs frequently in our evolu-
tion experiment.

Majority Mutations Appear in a Different Order,
Suggesting Low Levels of Sign Epistasis between
Parallel Majority Mutations
Although many majority mutations occur in parallel across
evolution lines, their chronological order is different (fig. 4).
For example, one of the mutations, that exceed the frequency
of the wild-type nucleotide at transfer 10 in MT-2_1 (g618a),
becomes a majority mutation only at transfer 90 in MT-2_2.
Similar permutations of the chronological order are observed
for the MT-4 evolution lines. A different order of mutations
suggests that they are beneficial in different genetic back-
grounds. Although we cannot exclude that the extent of
the benefit is modulated by the genetic background, the ben-
efit is apparently not turned into a deleterious effect. This
means that there is no sign epistasis between the parallel
majority mutations in our experiment.
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FIG. 3. Frequency dynamics of majority mutations show decoupling of mutations. We observe decoupling when the mutation frequency dynamics
of two mutations changes from being identical to becoming different. For example, in MT-2_1, there is a yellow and a black mutation that show the
exact same frequency increase from transfer 0 to 10. At transfer 20, the mutation frequencies are different. Hence, at transfer 20, the two mutations
decoupled probably through recombination. Colored thick lines in each of the four graphs indicate mutations that are acquired in more than one
evolution line in parallel. The same mutations are drawn in the same colors. Black thin lines are majority mutations that are only found in a single
line.
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Implications of Parallelism for the Reconstruction of
the Evolutionary History
The high level of parallelism we find in our experiment poses a
challenge for the reconstruction of the evolutionary history of
our viral populations. When inferring the evolutionary history
for the consensus sequences at every tenth transfer, the his-
tory cannot be reconstructed correctly for MT-4 evolution
lines, where we observe the highest level of parallel evolution.
Instead, the sequences cluster by the environment they
evolved in (fig. 5A). The mixing of MT-4_1 and MT-4_2 evo-
lution lines in this tree would be wrongly interpreted as a
signature of viral migration in a phylogeographic analysis.

The correct evolutionary history (fig. 5B) can be inferred
from simulated sequence data, in which the observed major-
ity mutations are randomly redistributed across the HIV-1
genome (see Construction of Neutral Phylogenies in
Materials and Methods). When statistically comparing the
correct phylogeny with the one reconstructed from the
sequences, the hypothesis that our viral populations evolved
neutrally can be rejected with high confidence (Likelihood
ratio ¼ 3.5� 10�69, see Construction of Neutral
Phylogenies in Materials and Methods).

After failing to reconstruct the correct phylogeny for our
evolution lines from majority mutations, we decided to in-
clude minority mutations in our analysis. Unfortunately, com-
monly used phylogenetic methods cannot take the frequency
of minority mutations into account when reconstructing
phylogenies. Hence, we developed our own method. This
method calculates the genetic distance between two popu-
lations by summing up the absolute differences in frequency
of all wild-type nucleotides and all three possible point muta-
tions. We calculated the distances between all sample pairs
and with this distance matrix inferred a phylogeny with
Neighbor Joining (Saitou and Nei 1987). The inferred tree
recapitulates the evolutionary history better than the major-
ity mutation tree (fig. 5C). Both MT-4 lines are now clustered
separately on the tree. This means that the two evolution
lines genetically diverge early at the level of minority muta-
tions but not at the level of majority mutations.

dN/dS Method Identifies Parallel Majority Mutations
To identify positively selected substitutions, one commonly
applies dN/dS methods. These methods assume synonymous
substitutions as selectively neutral (Kimura 1977). This

FIG. 4. Order of majority mutations shared between evolution lines from transfer 10 to 90. (A) All majority mutations shared by MT-2_1 and MT-
2_2. Black lines connect identical mutations. (B) Majority mutations shared by MT-4_1 and MT-4_2.
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FIG. 5. Phylogenetic trees. (A) Phylogeny inferred from the observed consensus sequences. (B) A phylogenetic tree, of which the topology reflects
the correct evolutionary history. The tree was generated by randomly (for each evolution line independently) distributing the number of observed
majority mutations across the HIV-1 genome. The phylogenies in (A) and (B) were inferred with PhyML (Guindon et al. 2010). (C) Phylogeny is
based on the differences between all mutation frequencies that were >1% in our data set. For all pairwise differences, we constructed a distance
matrix. We used the distance matrix to infer the phylogeny via Neighbor joining as implemented in the R package ape (Paradis et al. 2004). The
trees were colored with phytools (Revell 2012). The colors correspond to the four evolution lines and are consistent between (A–C).
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assumption allows the estimation of selection by comparing
the number of expected synonymous substitutions with the
expected number of nonsynonymous substitutions (dN/dS)
(Yang and Bielawski 2000). An excess of nonsynonymous
substitutions indicates positive selection, an excess of synon-
ymous substitutions purifying selection. More sophisticated
methods, such as CodeML (Yang 2007) also take the phylo-
genetic relationship between sequences into account to iden-
tify positively selected codons.

We used CodeML to infer positively selected codons. In
our case, we can provide CodeML with the consensus sequen-
ces of the four evolution lines at all time points and the three
different trees from figure 5. Based on our sequence analyses,
we expect that CodeML, a package from the PAML suite of
programs, will identify the seven majority mutations that
occurred in parallel across evolution lines as positively se-
lected, if we provide CodeML with the tree that reflects the
true evolutionary history (fig. 5B). As expected, CodeML iden-
tifies all seven parallel nonsynonymous majority mutations as
likely positively selected (fig. 5B and supplementary table S2,
Supplementary Material online). However, it also infers two
more mutations that appear, disappear, and reappear as ma-
jority mutations due to changes in mutation frequency. These
fluctuations in mutation frequency are incorrectly interpreted
as independent substitution events because CodeML is
designed to analyze fully speciated organisms and not evolv-
ing populations. These two mutations are also inferred as
positively selected when providing the other two phylogenies
(fig. 5A and C). CodeML performs worse when supplying the
inferred phylogeny and the minority mutation phylogeny.
Hence, our analysis shows that CodeML also identifies paral-
lelly evolving nonsynonymous sites as positively selected.

The Distribution of Minority Mutations as an
Indicator for Selection Strength
In our experiment, we do not have to solely rely on majority
mutations to gauge selection strength, we can also include all
mutation frequencies in the population by using common
diversity indices. We find that over time the nucleotide di-
versity (measured as the Shannon entropy summed over all
nucleotide sites) in all four HIV-1 populations increases
(fig. 6A). This mirrors the pattern that has previously been
observed for HIV-1 in vivo (Shankarappa et al. 1999). We
observe that diversity increases faster in MT-4 T-cells than
in MT-2 T-cells late in the experiment.

We also measure nucleotide diversity for each gene sepa-
rately (fig. 6B and C and supplementary figs. S3 and S4,
Supplementary Material online). Interestingly, genes show
similar levels of diversity in the different evolution lines.
Across the experiment diversity is greatest in nef and the 50

and 30 noncoding regions (fig. 6B and supplementary fig. S4,
Supplementary Material online). Nef is particularly diverse in
HIV-1 populations growing on MT-4 T-cells, whereas the 50

noncoding region is the most diverse region in MT-2 virus
populations. The genes with the lowest diversity during the
experiment are gag and tat (fig. 6C).

We hypothesize that genes with high nucleotide diversity
should accumulate large numbers of parallel majority

mutations and genes with low nucleotide diversity should
accumulate low numbers of parallel majority mutations.
When we correlate the nucleotide diversity at transfer 90
with the number of parallel majority mutations at transfer
90, we find relatively weak correlations ranging from R2 values
of 0.03 for MT-4_2 to 0.43 in MT-2_1, with only MT-2_1
showing a significant P value of 0.04 (fig. 7A). However,
when we correlate nucleotide diversity of all the earlier
time points with the number of majority mutations that ac-
cumulate at transfer 90, we find much higher correlations
(fig. 7A). For MT-2_1, we observe the best correlation at
transfer 30 (P value ¼ 0.0003, R2¼0.79, fig. 7B).
Interestingly, for each evolution line the time point is different
at which the correlation between nucleotide diversity and
number of parallel majority mutations at transfer 90 is high-
est. The R2 is highest at transfer 70, 0 and 10 for MT-2_2
(R2¼0.70, P value¼ 0.002), MT-4_1 (R2¼0.42, P value¼ 0.04),
and MT-4_2 (R2¼0.60, P value¼ 0.009), respectively. Hence,
nucleotide diversity at earlier time points is predictive of the
number of parallel majority mutations observed at the end of
our experiment, at a gene by gene basis.

Discussion
In this study, we investigate the long-term evolutionary dy-
namics of HIV-1 NL4-3 in four independent evolutionary
lines. We find that the four viral populations rapidly and
continuously diverge from the ancestor over the course of
almost an entire year. The mutation dynamics suggest that at
least the first mutations that accumulate in our experiment
confer large fitness benefits to the virus. Hence, our four evo-
lution lines respond to large selective pressures despite the
absence of antiviral drugs or the immune system. The selec-
tive pressures the viral populations respond to could be due
to fluctuating selection (alternating transfers last 3 or 4 days),
adaptation to different T-cells, or adaptation to growing in
flask cell cultures.

Detailed analyses of the mutation dynamics suggest that
mutational fitness effects are decreasing over the course of
our evolution experiment, similar to diminishing fitness
effects found in the Lenski experiment (Wiser et al. 2013).
We find that the fitness effects decrease at similar rates for
HIV-1 populations growing on MT-2 and MT-4 T-cells.
However, viruses growing on MT-2 cells show greater fitness
effects early on in the experiment, indicating that HIV-1 NL4-
3 is closer to a local optimum in the MT-4 fitness landscape
than in the MT-2 fitness landscape. In line with this hypoth-
esis, mutations sweep through the MT-4 viral populations at
a lower rate. Being closer to a local optimum in a fitness
landscape also means that there are fewer beneficial muta-
tions available (Silander et al. 2007). If there are fewer bene-
ficial mutations available then it is more likely that, in two
independent populations, the same mutations are selected to
become majority mutations. This is exactly what we observe:
a higher proportion of sites that evolve in parallel between
the two MT-4 viral populations. Also relevant in this context
are the less stringent bottlenecks (larger Ne) that MT-4 viral
populations undergo (supplementary fig. S1, Supplementary
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Material online). This increases the balance between drift and
selection in favor of selection in the MT-4 evolution lines and
thereby increases the proportion of parallel mutations.

Since our analysis suggests that parallel mutations are
likely positively selected, we mined the existing literature
to determine the biological relevance of these parallel muta-
tions. The most common parallel nonsynonymous muta-
tion is a7864g (also known as D547G in ENV, or D36G in
gp41). This mutation is a reversion to the database consen-
sus of glycine at position 547 in the ENV protein. Aspartate
at position 36 has been shown to confer resistance to enfu-
virtide, a fusion inhibitor (Marconi et al. 2008). There is one
more nonsynonymous mutation (g2058a or M423I in GAG,
M46I in p7) that occurs in three evolution lines in parallel.
This mutation is also extremely common in other evolution
experiments that were performed in the presence of prote-
ase inhibitors (Koh et al. 2009). Unfortunately, these in vitro
evolution experiments rarely comprise a drug free control.
Hence, it cannot be determined if the mutation has been
selected by the drug, or if it constitutes an adaptation to the

host cell type. Our experiment suggests that it is a general
adaptation to the host cell type or laboratory environment.
We found another GAG mutation (t1446g or H219Q in
GAG or H87Q in p24) that only occurs in evolution lines
growing on MT-2 T-cells. This mutation has also been
reported previously and found to increase replicative capac-
ity in cyclophilin-A rich cells (such as MT-2) (Gatanaga et al.
2006). There are four more nonsynonymous mutations that
we found in more than one evolution line (E12K and V35I
in GAG, S190N and Q550H in ENV). Except for one (S190N
in ENV), all of them were reported in previous evolution
experiments: one emerged in the absence of drug pressure
(V35I in GAG; Lorenzo-Redondo et al. 2011), the other two
were found to evolve in the presence of antiviral drugs
(Nameki et al. 2005; Aoki et al. 2009). The emergence of
adaptive mutations in our long-term, drug-free HIV evolu-
tion experiment emphasizes that drug free control lines in
in vitro experiments are required to ascertain that a muta-
tion confers drug resistance rather than an adaptive advan-
tage at growing in the host cell line.
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FIG. 6. Nucleotide diversity observed across time for all four evolutionary lines. (A) We applied the Shannon Entropy as diversity measure, which we
calculated for each nucleotide site with coverage of more than 1,000 sequence reads and then summed it up across the HIV-1 genome. (B) Relative
diversity measures for the 30 noncoding region, the most diverse region in the HIV-1 genome in our experiment. To calculate relative diversity, we
divide the average diversity across one gene by the average diversity across the entire genome. Hence, values >1 indicate higher than average
diversity and <1 a lower than average diversity. (C) Like (B), just for the least diverse gene gag in our experiment.
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Most of our parallel mutations (7 out of 15) occurred in
the untranslated part of the HIV-1 genome, which only makes
up 5.5% of the HIV-1 genome. Unfortunately, there is little
information on the function of these mutations. However,
there is evidence that the host cell environment significantly
affects replication rates for different LTR (long terminal re-
peat) sequences (van Opijnen et al. 2004). Interestingly, five of
the seven parallel majority mutations occur in three of the
four evolution lines and only two are host cell specific. Hence,
our data suggest that HIV-1 NL4-3 adapts to in vitro growth
conditions rather than to the specific host cell environment.
Alternatively, one could argue that the virus adapts most to
environmental features that are common between MT-2 and
MT-4 cells.

The large extent of parallel evolution has also a strong
effect on our ability to infer the evolutionary history from
the sequence data at the end of the experiment. If parallel
evolution also plays a significant role in vivo, then we expect
HIV-1 phylogenies to also reflect host similarities, particularly
when the viruses have evolved for long periods of time within
these hosts. Indeed, parallel evolutionary changes have been
observed in vivo in genetically identical twins infected with
the same viral strain as well as in HIV-1 populations during
early infection and to a smaller extent also in other studies
(Draenert et al. 2006; Wood et al. 2009; Bertels et al. 2018).

Nevertheless, reconstructed transmission trees have been
found to be consistent with a small number of epidemiolog-
ically confirmed transmission chains (Leitner et al. 1996).
Although the reliability of such reconstructions is still being
investigated (Leitner et al. 1996; Romero-Severson et al. 2014),
it is conceivable that transmission histories can be recon-
structed accurately if each host exerts a specific selection
pressure, thus leaving a signature in the viral genome unique
to the infected host (Carlson et al. 2016). Such an effect is also
apparent in our experiment: The extent of parallel evolution
between populations growing on different T-cell lines is rel-
atively low (fig. 2C). But one has to keep in mind that even a
small number of parallel mutations could cause distortions in
the branch lengths and the topology of a phylogenetic tree
(Bertels et al. 2014).

The levels of parallel evolution we found may be partic-
ularly relevant for phyloanatomical approaches (Salemi and
Rife 2016; Bons and Regoes 2018) that have received a lot of
attention recently (Lorenzo-Redondo et al. 2016).
Phyloanatomy entails the application of phylogeographic
methods to viral genetic data sampled from different ana-
tomical compartments within infected individuals. The aim is
to reconstruct replication rates within each anatomical com-
partment, and the rates of migration between these compart-
ments. The basis for estimating the migration rates is the
presence of the same mutation in more than one compart-
ment, which, according to a neutral model, is most likely due
to a virus migrating from one compartment to another. With
high rates of parallel evolution, however, such an inference
cannot be drawn. Indeed, the phylogenetic tree constructed
with the majority sequences obtained from our four indepen-
dently evolving viral populations wrongly suggests migration
events between the populations. The implications of our

experiments for phyloanatomical analyses are more immedi-
ate than for the reconstruction of epidemiological transmis-
sion history of the virus because selection by the immune
system in different hosts might lead to divergent viral sequen-
ces, making the inference of the transmission history from
viral sequences possible. Within a single host in contrast, im-
mune selection is likely to be more homogeneous across dif-
ferent compartments, and will not generate divergent
lineages. It may generate even more parallel evolution
(Vanderford et al. 2011), which will further confound a phy-
loanatomical analysis.

We tried to alleviate this issue by building a tree from a
distance matrix calculated by subtracting mutation frequen-
cies between different sequencing samples. The resulting phy-
logeny separates the two MT-4 lines better than the tree that
was only built from majority mutations. Nevertheless, there
are still numerous inaccuracies of the tree topology, which
will lead to issues in downstream analyses as shown with our
CodeML analysis. However, since most studies nowadays take
advantage of deep sequencing this method could supple-
ment classical phylogenetic analyses when the evolutionary
history of sampled populations is not known.

The extent of parallel evolution in our experiment is likely
to be determined by the number of high-fitness effect muta-
tions available during adaptation (Orr 2005; Bons et al. 2018).
Interestingly, the majority mutations that evolve in more
than one line do not necessarily appear in the same chrono-
logical order in different evolutionary lines. This suggests that
these mutations not only have a high fitness effect but also
that the effect is independent of the presence of other ma-
jority mutations that have been acquired previously.
Technically speaking, there appears to be only low levels of
sign epistasis between these mutations. If the number of
mutations with high fitness effect were large then picking
the same mutation twice is unlikely. Similarly, if their effect
strongly depends on the genetic background, populations
would diverge on different evolutionary trajectories. Hence,
we can explain high parallelism and different mutation orders
with a relatively simple argument: for each population, muta-
tions are independently drawn from the same small pool of
large effect mutations.

Apart from low levels of sign epistasis and large fitness
effects, parallel evolution could also be explained by differ-
ences in mutation rates across the genome, which could for
example happen when APOBEC3G affects viral evolution
(Cuevas et al. 2015; Bertels et al. 2018). High mutation rates
at certain positions in the genome could lead to increased
levels of parallel evolution at these locations in different evo-
lution lines (Bauer and Gokhale 2015). Similar observations
have been made in other model organisms (Sackman et al.
2017; Lind et al. 2019). However, it is very challenging to
disentangle the contributions of mutation rate differences
and selection to the levels of parallel evolution in our
experiment.

We also show that the level of nucleotide diversity in each
gene early in the experiment is predictive of the number of
majority mutations that accumulate in these genes by the
end of the experiment (fig. 7). Interestingly, the point at which
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the correlation between diversity and number of majority
mutations was highest was different between the replicate
lines. The cause of these differences is unclear, but one con-
tributing factor could be the changing bottleneck sizes in our
experiment. We postulate at least two causes for the corre-
lation between diversity and the accumulation of majority
mutations. Either fitness effects or mutation rates (or both)
may be unevenly distributed across the genome. In future
studies, we hope to improve our understanding of this
phenomenon.

There are only few long-term evolution experiments with
viruses (Holland et al. 1979; Kearney et al. 1999; Wichman
et al. 2005). An interesting experiment with viruses was con-
ducted with phage /X174 growing on E. coli (Wichman et al.
2005). The phage population grew in a chemostat for
6 months and�13,000 generations. At the end of the exper-
iment, 137 substitutions were identified, which is �4- to 8-
fold higher than in our experiment. In our experiment, we
observe between 17 (MT-4_2) and 29 (MT-2_1) majority
mutations after �1 year, but considering that HIV-1 under-
goes only 180 generations this difference is not surprising.
Despite the 70-fold difference in the number of generations,
we only observe an�7-fold lower number of majority muta-
tions in HIV-1. There are at least two factors affecting this
difference, first the 5-fold higher mutation rate of HIV-1
(�2� 10�5; Mansky 1996) compared with /X174
(�1� 10�6; Cuevas et al. 2009), and the second probably
more important factor is the much smaller population size
in HIV-1 (bottleneck sizes between 40 and 1,600) compared
with /X174 (�109). Smaller population sizes lead to signifi-
cantly shorter fixation times. Neutral mutations sweep
through the population in about 2 Ne generations (Kimura
1983), which is a tremendously long period of time in the
/X174 experiment (�76,000 years) but likely to occur in our
HIV-1 experiment (>160 days).

In conclusion, our experiment suggests that the high level
of parallel evolution we observe is the result of a limited
number of large effect mutations with low levels of sign epis-
tasis between them. The high level of parallel evolution to-
gether with the observation that genomic regions of high
nucleotide diversity early in the experiment accumulate
more majority mutations late in the experiment indicates
that HIV-1 evolution may be predictable.

Materials and Methods

Passaging of HIV-1
The human T-cell leukemia cell lines MT-2 and MT-4 (Harada
et al. 1985) were obtained through the AIDS Research and
Reference Reagent Program, Division of AIDS, NIAID, NIH
from Dr. Douglas Richman. Cells were maintained in RPMI
1640 medium containing 10% fetal calf serum, 100 U/ml pen-
icillin, and 100mg/ml streptomycin. The HIV-1 full-length
plasmid pNL4–3 was obtained through the AIDS Research
and Reference Reagent Program, Division of AIDS, NIAID, NIH
from Dr. Malcolm Martin (Adachi et al. 1986). The virus stock
HIV-1 NL4-3 was generated and characterized as previously
described (Di Giallonardo et al. 2014). The cultures were

grown in separate cell culture flasks. At day 0, 4�105 cells
per replicate and per cell line were infected with HIV-1 NL4-3
at an MOI (multiplicity of infection measured on peripheral
blood mononuclear cells) of 0.01 resulting in four indepen-
dent T-cell cultures (fig. 1). Virus passaging was performed
twice a week (odd transfers after 3 days, even transfers after
4 days) as follows: Infected cell cultures were resuspended.
About 4�105 uninfected cells were inoculated with 2ml cell
suspension. Every tenth transfer, cell-free supernatant was
stored at �80 �C. In the first 25 transfers, higher volumes
(30–3ml) were transferred based on the extent of cytopathic
effects microscopically observed in the cell cultures.

Ancestral Sequence
The HIV-1 NL4-3 ancestor has been sequenced and assem-
bled previously (Di Giallonardo et al. 2014). Differences to the
HIV-1 NL4-3 reference strain (accession AF324493) are listed
in Supplementary Table 3 of the same article (Di Giallonardo
et al. 2014).

Sequencing of Near Full-Length HIV-1 Genomes
Near full-length genomes of the virus stock HIV-1 NL4-3 (an-
cestor) and transfers 10, 20, 30, 40, 50, 60, 70, 80, and 90 were
sequenced using the Illumina MiSeq next-generation se-
quencing platform as previously described (Di Giallonardo
et al. 2014). Briefly, HIV-1 RNA was isolated from 150ml virus
stock HIV-1 NL4-3 or cell-free supernatant; four samples per
transfer. Five overlapping amplicons were generated by RT-
PCR covering almost the full genome of HIV-1 per sample. In
total, 185 amplicons were obtained (4 samples/transfer�9
transfers�5 amplicons/transfer þ 5 amplicons of the ances-
tral virus) after one round of PCR. The five amplicons per
sample were pooled and libraries were prepared with the
Nextera XT DNA Sample Preparation Kit (Illumina, San
Diego) according to the manufacturer’s description. Next-
generation sequencing was performed using a MiSeq
Benchtop Sequencer generating paired-end reads of
2� 250 bp length (v2 kit). To minimize the risk of cross-
contamination, samples from each replicate line were proc-
essed separately. Samples were pooled after barcoding and
the following samples were sequenced on one chip: Chip 1)
virus transfers 10–60; chip 2) virus transfers 70–90; and chip
3) the virus stock among other samples.

Determining 50% Tissue Culture Infectious Dose and
MOIs for Every Tenth Transfer
To determine the number of infectious viruses, we plated
increasing dilutions of the cell free supernatant on 1,000 cells
each. For each of the nine time points and four evolution
lines, we performed four replicates. After 7 days, we deter-
mined the number of cell cultures that were successfully
infected by checking for cytopathic effects under the micro-
scope. This allows us to estimate the 50% tissue culture in-
fectious dose (TCID50) (Reed and Muench 1938). Using the
TCID50 and the number of cells (400,000) and transfer vol-
umes (2–10ml) in our experiment, we can calculate the av-
erage number of viruses (MOI) that successfully infect a single
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T-cell in the first generation of every tenth transfer in our
experiment.

Mutation Identification from Illumina Sequencing
Data
Illumina sequences were aligned to the ancestral se-
quence via Bowtie 2 (Langmead and Salzberg 2012). All
aligned nucleotides with a quality score of >35 (i.e., error
probability of <0.00032) were considered. The first 80 bp
and last 30 bp of the HIV-1 genome were excluded from
all analyses due to low and spurious coverage. The
remaining genome was covered in all data sets by at least
1,000 nucleotides. Mean coverage for any sequence sam-
ple was at least 2,912 nucleotides (supplementary fig. S5,
Supplementary Material online).

Consensus sequences were determined by selecting the
most common base at each nucleotide site.

Construction of Neutral Phylogenies
For each transfer, we simulated sequence evolution under a
neutral evolutionary model. We randomly distributed the
same number of majority mutations that occurred from
one transfer to the next for each evolution line across the
HIV-1 genome. When introducing mutations we maintained
the GC content of the ancestral HIV genome. Hence, at the
end of the simulation, the sequences contained the exact
same number of majority mutations as the consensus se-
quence sampled in our experiment. From these sequences,
we built the phylogenetic tree shown in figure 5B.

To determine the robustness of the neutral phylogenetic
tree, we repeated the sequence simulation 100 times. The log-
likelihood of the correct trees (inferred from randomly dis-
tributed mutations) for the observed consensus sequence
alignment is�13,375.7 with a SD of 1.1. We call trees correct
that resemble the true setup of the experiment, that is, trees
expected for neutrally and independently evolving sequences
with even mutation rates across the genome. In contrast, the
most likely tree for our consensus sequences has a log-
likelihood of �13,218.1, which is �3.5�1069 times greater
than the correct trees. The most likely tree does not corre-
spond to the real evolutionary history of the sequences be-
cause it clusters MT-4 strains together, although in the
experiment they kept completely separate from each other.
In figure 5B, we only showed a single example for illustrative
purposes.

Phylogenetic Analyses
We inferred all phylogenetic trees with PhyML (Guindon et al.
2010) under a general time reversible nucleotide substitution
model and gamma distributed rate variations.

Phylogeny Based on Minority Mutations
To calculate a high-quality phylogeny, we first eliminated all
mutations that occurred at frequencies of <1% in the pop-
ulation and included only sites with >1,000-fold sequence
coverage. For the remaining mutations, we calculated the
absolute distances Dij between all populations at all time
points:

Dij ¼
Xl

o¼1

X

p in ½ATCG�
jfiop � fjopj

Dij The absolute distance between population i and population j.
L Length of the HIV genome.
P Nucleotide at position o.
F Frequency of the nucleotide p at position o in population i or j.

From the distance matrix Dij; we calculated a Neighbor-
joining tree in R with the ape package (Paradis et al. 2004).

Likelihood Ratio between the Correct and the Inferred
Phylogeny
To assess the likelihood that the sequences of our experiment
evolved under a neutral model of evolution, we determined
the likelihood of the simulated correct tree for the observed
consensus sequence and compared it to the likelihood of the
tree inferred from the consensus sequence alignment.

Determining Maximum Fitness
For each mutation that became a majority mutation at trans-
fer 90, we determined the maximum fitness by calculating the
maximum increase in mutation frequency between two con-
secutive 10th transfers. We also distinguished between viruses
growing on MT-2 and MT-4 T-cells. We then fitted a linear
model to the three data sets and got the following results. For
the entire data set, the decline slope (log10(fitness) declines by
0.006779 per transfer) was insignificantly different from zero
(P value¼ 0.4). For MT-2, the decline slope was even smaller
(log10(fitness) declines by �0.001345 per transfer) and also
not significantly different from zero (P value¼ 0.9). For MT-4,
however, the decline slope was larger (log10(fitness) declines
by 0.02762 per transfer) and significantly different from zero
(P value ¼ 0.02762).

dN/dS Calculations
dN/dS calculations were done using the Ka_Ks calculator
(Zhang et al. 2006). We applied the calculator with standard
settings (model averaging) to the open reading frames of the
ancestor aligned to consensus sequences at transfer 90.

Calculating Diversity
We calculated diversity by measuring the Shannon
entropy for each position in the HIV-1 genome that has a
coverage of >1,000 bp. Then the diversity at position j at
transfer t is:

Dj tð Þ ¼
X

i in fA;T;G;Cg
fji tð Þlog fji tð Þ

� �

fji is the relative frequency of base I at position j at transfer t

The per site diversity �D for gene x of length l is then:

Dx tð Þ ¼

Pl

i¼1

Di tð Þ

l

and for the whole genome with length gl:
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Dw tð Þ ¼

Pgl

i¼1

Di tð Þ

gl

We defined the accumulated diversity CDx tð Þ as:

CDx tð Þ ¼
Xt

i¼0

Dx ið Þ

The relative diversity for gene x, Drelx, is then:

Drelx tð Þ ¼ Dx tð Þ
Dw tð Þ

Calculating correlation between diversity and per site ma-
jority mutations

We defined the per site majority mutation numbers as:

MMx tð Þ ¼ MMx tð Þ
length xð Þ

MMx (t) is the number of majority mutations found in gene x
at transfer t

For figure 7A, we combined all MMx 90ð Þ from the four
different lines and correlated it with all DxðtÞ (where t runs
from 0 to 90) individually, by inferring a linear model in R. We
also correlated MMx 90ð Þ with the accumulated diversity
CDx tð Þ, which slightly improved the fit.

For figure 7B and C, we inferred a linear model for all DxðtÞ
and MMxð90Þ from each line separately as well as between
CDx tð Þ and MMxð90Þ.

Simulation of Neutral Mutations
To predict how many neutral mutations would accumu-
late in our experiments, we simulated the evolution of
individual HIV-1 genomes of length 9,130 for 180 gener-
ations (fig. 2A). We started our simulation with 400 indi-
viduals. Each individual genome is assumed to produce 44
offspring genomes per generation (R0¼44). The viral pop-
ulation is allowed to replicate exponentially for two gen-
erations. Consistent with the experimental setup, we
simulate a bottleneck every second viral generation, by
randomly selecting a small number of individuals from
the previous population. The size of the bottleneck,
that is, the number of viruses transferred at every passage,
was empirically determined. To this end, we determined
bottleneck sizes every 20 generations in supplementary
figure S1, Supplementary Material online. Because we do
not have more detailed information on the number of
transferred viruses we maintain the number for 20 viral
generations which corresponds to ten transfers. Every
newly produced viral genome can acquire a mutation
with a probability of 2.16� 10�5 (Lee et al. 2009).

Determining Extent of Parallel Evolution in Neutrally
Evolving HIV-1 Evolution Lines
We determined the level of parallel evolution that we would
observe for neutrally evolving sequences. For this purpose, we
randomly distribute the same number of mutations that we

observed in the four evolution lines across the HIV-1 genome.
When distributing substitutions we first randomly chose a
position in the genome. The mutation introduced at this
position was then determined from transition probabilities
inferred from the mutations observed in full length env se-
quence data during early infection (Keele et al. 2008). Hence,
we distributed 29 and 26 mutations for the MT-2 evolution
lines and 20 and 17 mutations for the MT-4 evolution lines
randomly across 9,130 unique HIV-1 NL4-3 nucleotide sites.
Once the mutations were distributed we determined the
number of mutations that occurred in more than one evo-
lution line in parallel. We then repeated the entire simulation
100 times.

Running CodeML
To identify positively selected sites in the translated part of
the HIV-1 genome, we supplied CodeML with an alignment
of the translated regions of all evolution lines and sequenced
time points in the experiment where majority mutations are
substituted for the wild-type allele. We ran CodeML three
times each time supplying a different phylogeny, that is, the
inferred phylogeny (fig. 5A), the true phylogeny (fig. 5B), and
the phylogeny inferred from the comparison of minority as
well as majority mutations (fig. 5C). We used the same set-
tings as the HIVNSsites Sweden example. Briefly, the param-
eter values that were set to a nonzero value are: the
CodonFreq model is set to F3X4, kappa is 0.3, omega is 1.3,
ncatG is 10, cleandata is 1, and Small_diff is 0.45e-6.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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