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Abstract: The operation of a variety of natural or man-made systems subject to uncertainty is
maintained within a range of safe behavior through run-time sensing of the system state and control
actions selected according to some strategy. When the system is observed from an external perspective,
the control strategy may not be known and it should rather be reconstructed by joint observation
of the applied control actions and the corresponding evolution of the system state. This is largely
hurdled by limitations in the sensing of the system state and different levels of noise. We address
the problem of optimal selection of control actions for a stochastic system with unknown dynamics
operating under a controller with unknown strategy, for which we can observe trajectories made
of the sequence of control actions and noisy observations of the system state which are labeled by
the exact value of some reward functions. To this end, we present an approach to train an Input–
Output Hidden Markov Model (IO-HMM) as the generative stochastic model that describes the state
dynamics of a POMDP by the application of a novel optimization objective adopted from the literate.
The learning task is hurdled by two restrictions: the only available sensed data are the limited number
of trajectories of applied actions, noisy observations of the system state, and system state; and, the
high failure costs prevent interaction with the online environment, preventing exploratory testing.
Traditionally, stochastic generative models have been used to learn the underlying system dynamics
and select appropriate actions in the defined task. However, current state of the art techniques, in
which the state dynamics of the POMDP is first learned and then strategies are optimized over it,
frequently fail because the model that best fits the data may not be well suited for controlling. By
using the aforementioned optimization objective, we try to to tackle the problems related to model
mis-specification. The proposed methodology is illustrated in a scenario of failure avoidance for a
multi component system. The quality of the decision making is evaluated by using the collected
reward on the test data and compared against the previous literature usual approach.

Keywords: Partially Observable Markov Decision Processes (POMDP); Input–Output Hidden
Markov Model (IO-HMM); failure avoidance strategy; stochastic generative model; stochastic system
modeling

1. Introduction
1.1. Motivations

In the past few years, automatic controlling of stochastic systems [1] has been increas-
ingly applied to the industrial world. However, numerous systems are still controlled by
human experts such as medical practitioners, pilots, train drivers. In [2], a thorough study
has been done to automate the personalized dosage prescription for the patients with blood
clotting problem. Considering the aforementioned cases, designing an automatic controller
by application of the collected trajectories, is a challenging task.

A viable way for formulating the problems is to formulate them as Partially Observ-
able Markov Decision Processes (POMDPs), a usual approach for decision-making under
uncertainty [3]. In the most recent research in this particular field, where POMDPs are
applied, it is supposed that parameters are known a priori [4–6].
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The collected trajectories from the interaction between the controller and the system
consist of system observations, actions selected by the controller, and the collected rewards.
Taking this notice into account that we do not know the exact state dynamics of the system
and it is demanding to formulate the problem of optimal decision making on every possible
system observation, we formulate the problem as a data-driven Partially Observable
Markov Decision Process (POMDP).

To this end, we need to train a stochastic generative model to learn the underlying
system dynamics from the collected trajectories afterwards finding a policy for optimal
decision making on the trained model.

The general purpose of this research can be explained as providing an automatic
controller (regarding an optimal policy) to closely follow the decision making strategy of
the system expert in every possible noisy observation of the system state besides controlling
the system in an optimal manner under particular predefined objectives and constraints.

In particular in this research, we tackle the problem of multi-variable optimization
where we deal with optimizing the learned model over two distinct objectives:

• Quality of learning the system dynamics from the collected trajectories.
• Optimality measure of decisions made by the policy solved on the POMDP defined

on top of the trained generative stochastic model. In this research, the optmilaity of
the decision making is measured by the collected rewards.

In this research the decision making task that we address is optimal action selection in the
multi-component systems that the selected actions modify the system dynamics and the
main purpose of the task is decreasing the number of system failures.

1.2. Usual Reinforcement Learning Approaches

Model-based Reinforcement learning (RL) is a well known field of research related to
the decision making problem formulations, and even early works such as [7] investigated
the learning models that are still useful for Reinforcement learning (RL).

Howeverm more widely, usual optimization methods closely incorporate a down-
stream decision-making task during model training, and are growing in popularity across
machine learning, from graphical models [8] to sub-modular optimization recent decision-
aware optimization efforts have explored partially-observed problems in both model based
and model-free.

1.3. Separation from the Usual Reinforcement Learning Methodology

The point that separates the problem formulation that we consider from the studied
methodologies in the literature is that we are interested in the cases that just limited number
of data collected by the interaction between the controller (an human expert or the current
controller of the system) and the environment are available. Besides considering this
important fact that the data are composed of collected trajectories from different number of
sensors that is prone to randomly missed observations.

A typical model-based Reinforcement Learning (RL) approach, such as [9], provide a
variety of strategies for learning optimum policies based on predefined objectives through
online interactions, and the model is handled as an abstraction, removing the requirement
for an explicit model.

Furthermore, these methods are frequently used in an online learning environment,
and they need the agent to explore all possible state-action combinations, which is not
feasible in this particular case that we study due to the system failure penalty.

In this work, considering the fact that the parameters of the POMDP except for the
number of possible states and actions are not known a priori, we need to learn the topology
of the underlying model from the noisy observations of the system state vectors that are
labeled by deterministic labels which can be considered as rewards. These labels are result
of system execution that are probabilistic.
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1.4. Limitations

In this research, we face three limitations in the introduced setting:

• The parameters of the POMDP are not known a priori so we need to learn them from
the collected trajectories.

• There is no guaranteed way to examine the solved policy and evaluate the policy
value on an online environment regarding the failure cost.

• Training a stochastic generative model by using data contains numerous missing
observations

1.5. Contributions

In this research, to avoid the aforementioned model misspecification related problems,
a novel optimization objective is adopted from [10] to train an IO-HMM [11], as the
generative part that describes the state dynamics of a POMDP. Planning the POMDP using
a Point Based Value iteration (PBVI) algorithm, the target policy (πθ) will be found that
can be evaluated to collect high rewards in the test trajectories. Since interacting with the
online environment is not feasible, the policy value is calculated utilising the Offline Policy
Evaluation (OPE).

As a specified case, we are interested in the study the applicability of the proposed
methodology in the field of optimal controlling of systems composed of different number of
components. In such systems, under-performance or failure of even one of the components
can fail the whole system. Occasionally, it is likely that the components experience low
performance or failure for some time steps.

We assume that it is costly and not possible to have a system expert make decision on
selecting actions for each noisy observed situation and, in addition, in practice, it is hurdled
to have a hand-made policy that have solution for all possible partially observations of the
components’ levels. Moreover, since the observed patterns of components are different than
each other, it is probable to miss some observations for some of the components irregularly.

To reduce the number of failures in such systems, often some automatic policies or
controllers are used to choose appropriate actions based on the system observations [12].
To answer the aforementioned research questions, we clarify our novel contributions as:

• A novel problem formulation in the field of model learning and planning of stochastic
systems which is specified in multi-component system failure avoidance strategy is
discussed.

• Offline reinforcement learning and offline policy evaluation (OPE) are applied to avoid
directly applying the policy to the online environment.

• An innovative synthetic environment is discussed
• Solving the problem of missing observations during optimization of the model parameters

1.6. Synthetic Environment

The applicability of the proposed approach is illustrated using synthetic yet realis-
tic environment under discussed conditions which is generated according to the failure
avoidance scenario in a stochastic system consists different number of components.

This paper is structured as follows. We start by describing the background foundations
that our work is based on in Section 2. Section 3 the missing data mechanisms is discussed.
Afterwards, Section 4 describes the problem formulation and Section 5 introduce the
parameter learning and optimization objectives in Sections 6 and 7 the experiment setup
and results are shown and discussed.

2. Literature Review

POMDPs are used for decision-making on a vastly diverse range of applications.
In [13] the navigation problem is mathematically formulated as a partially observable
Markov decision process (POMDP), and then a motion policy is discussed once a POMDP
is solved. In [14] The intrinsic trade-off between sensor power consumption and the risk of
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misclassifying a patient’s health status is investigated, and the problem is categorized as
a POMDP. In [15], to construct an attacker architecture capable of challenging numerous
WSN protection methods, deep reinforcement learning technologies are deployed.

In [16], the navigation issue is modeled as a Partially-Observable Markov Decision
Process (POMDP), to generate a policy that translates a series of motion instructions to
belief states and observations.

In the past few years, POMDPs are getting more popular in the domain of maintenance.
In [17], POMDPs are applied to decision-making for highway pavement. In [18,19], POMDP
models were formulated to generate a policy for bridge inspection. In [20], for wind
turbines with finite horizons, seasonal-dependent situation-based maintenance strategies
are produced.

In [21], POMDPs were used to perform a complete literature assessment in the field of
inspection scheduling and maintenance planning. Although many maintenance optimiza-
tion approaches are presented in the literature that are used to model sequential decision
problems, learning POMDP dynamics by log data is not studied in detail.

In the studies in the literature of POMDPS, IO-HMM is applied as the generative
model to learn the state dynamics of a POMDP such as [22–24], the common methodology
is maximizing the data likelihood without considering the collected reward during the
training phase, then, separately solving the POMDP by using a planning algorithm, we
take this approach as the baseline in this research.

To the best of our knowledge, the closely related problem to our defined problem
is studied in [12] with this difference that in the current research we assume all actions
have identical costs and the main purpose of this study is to find a policy which can avoid
system failures.

3. Problem Formulation

We consider a discrete-time finite-state stochastic System operating under a controller
that repeatedly applies inputs from a finite set of Actions according to some unknown
behavior policy. The system state takes values in a finite space and evolves over discrete time
depending on input actions applied by the controller. While input actions are observed
exactly at each step, the System state is obfuscated by a continuous-valued noise, and it can
be observed only at a subset of time points determined by the controller policy.

The stochastic system we referring to in this research, is Markovian that state tran-
sitions are dependant to the last event besides the last input that are considered as the
sufficient statistics. In this system, Markov condition is always preserved and system reach
regenerates after each event. However, it is possible to have observations from the states of
the system but this observations are noisy that make the system partially observable. There
is no absorbing failure state in the system; however, the failed condition is defined on the
simulations which labels them by deterministic labels as failed or working.

Collected observations do not cover the entire dynamics of the underlying system,
and they are rather determined by the objectives of control, which is assumed to be applied
in vivo to maintain the system within a safety-critical operation range.

In this scenario, we want to find a target controller policy able to provide feedback also
when the system is out of the range of observed behaviours. This involves the following
two problems:

• We want to learn a model of the state dynamics of the underlying system, i.e., a model
of how the system reacts to control sequences and how this appears in observation. In
doing so, we cannot apply inputs just for the aim of observation, but we are instead
constrained to observe only those inputs that were applied according to the unknown
policy. In the particular problem formulation we consider, we have a determined data
set, which cannot be extended to better explore the dynamics.

• We want to learn also a policy that can closely fit the actions that the unknown
controller takes on the basis of the noisy observations, which to some extent comprises
an instance of the apprentice learning paradigm.
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The proposed abstraction and problem formulation may fit various application scenar-
ios; one example in the failure avoidance of the multi- competent system is briefly outlined
to exemplify the concept:

Multi component stochastic systems, for example, are a comparable example in in-
dustry. The controller’s primary purpose in these systems is to keep the system operating
at safe levels in order to prevent costly repairs. To demonstrate the application of the
described technique in the aforementioned area of research, we created a synthetic but
realistic environment that nearly matched the characteristics of the stochastic system we
wanted to investigate. It must be remembered that the underlying system’s state vector
specifies the system state, which can only be observed through noisy sensors.

4. Preliminaries
4.1. Markov Decision Process (MDP)

We consider a discrete-time nonlinear stochastic system modeled by the Markov
decision process (MDP).

A MDP is defined by the tuple (S, A, C, P, ρ), where S ∈ RN is the set of states,
A is the set of actions,
c(st, st−1, at−1) : St → Rt is the cost function which maps every state at time t to a

reward,
P(s0 | s, a) is the transition probability function,
and ρ(s) is the starting state distribution.
The state dynamics of an MDP is depicted in Figure 1.
Policy: A policy of an MDP (which also called a strategy or scheduler in the literature)

is a way to choose an action in each state.

Figure 1. Probabilistic graphical model of a MDP. St is the state at time t and At is the action at time t
and Rt is the reward at time t that is dependent on the state of the system at time t and time t− 1 and
action taken in time t− 1.

4.2. Partially Observable Markov Decision Process (POMDP)

Formally, a POMDP is a 7-tuple (S, A, T, R, Ω, O, γ), where S is a set of states, A is a set
of actions, T is a set of conditional transition probabilities between states, R : S× A→ R
is the reward function, Ω is a set of observations, O is a set of conditional observation
probabilities, and γ ∈ [0, 1] is the discount factor.state dynamics of a POMDP is illustrated
in Figure 2. Parameter set of a POMDP can be separated into two distinct parts that describe
the state dynamics (S, A, T, O, Ω) and planing objectives(R, γ).

Agent: An agent can be a controller of a system or also can be considered as a system
expert that we desire to model its behavior.

Discount factor: The discount factor γ influences how much immediate gratification
is preferable to longer-term gratification. When γ = 0, the agent is solely concerned with
maximizing the expected immediate reward, but when γ = 1, the agent is concerned with
maximizing the expected total of future rewards. Belief : In the case of a POMDP M, belief
B(M) is a probability distribution over M’s state space. Although we do not know the
present state of the system, we may use the probabilistic dynamics of M to estimate the
chances of being in each state of the underlying MDP.
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A Markovian belief state allows a POMDP to be expressed as a Markov decision
process (MDP) in which each belief represents a state.

The conviction MDP that results will be defined on a continuous state space. There
exist infinite belief states B because there are an unlimited number of probability distribu-
tions over the states S, even though the POMDP has a finite number of states.

Figure 2. Probabilistic graphical model of the state dynamics of a POMDP. Ot is the observation at
time t, At is the action at time t, St is the system state at time t, and Rt is the reward at time t.

We use a famous problem given in [25] as an example of a POMDP. The following is a
description of the tiger problem: A tiger is placed behind one of the two doors with equal
chance, while the treasure is placed behind the other. You’re standing in front of two locked
doors and must choose between them. You will be wounded if you open the door with the
tiger (negative reward). However, if you unlock the treasure door, you will be rewarded
positively. You have the option of waiting and listening for tiger noises instead of opening
a door right away. In Figure 3 the methodology to solve this problem is discussed.

Figure 3. Policy graph of the tiger planning problem. Circles of the current state of the defined
POMDP, arrows show the actions, and names on top of the arrows are name of actions.
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4.3. When POMDP Is Preferred over the MDP

We need to identify three key elements, all of which must be relevant to make a
problem suitable to be modelled as a POMDP:

1. The system’s states can be specified, but no one choice (action) matches all of them.
For vulnerable species, for example, estimations of upper and lower population
abundance under various environmental circumstances and threats may serve as a
natural characterization of system states. In this system, we would expect the best
action to be state-dependent, for example, near-extinction population sizes to require
reintroduction actions, low–moderate population sizes to require threat management
actions and close to carrying capacity populations to require no action.

2. The system dynamics are stochastic due to natural variability and/or control un-
certainty. These dynamics are considered to be Markovian, which means that the
probability of transitioning to a state at time t + 1 is solely dependent on the system’s
state and action at time t. We predict, for example, that population dynamics are
stochastic processes, and that the efficacy of management interventions such as rein-
troduction will be unclear. The state transition dynamics obey the Markov property
given an acceptable time step and relevant information captured in the definition
of state.

3. Managers are unable to see the condition of the system accurately (state uncertainty).
In contrast to the perfect observable example, the optimum option to implement an
imperfect observation of the system state is complex and includes extra considerations
such as the history of previous observations and actions. The issue is transformed
from an MDP to a more difficult POMDP when state uncertainty exists.

Together, steps (1) and (2) define an MDP, while step (3) makes the problem partially
observable [26].

4.4. Input–Output Hidden Markov Model (IO-HMM)

We consider an Input–Output Hidden Markov Model (IO-HMM) [27] as a framework
for representing environments consisting of hidden states, inputs (actions that may affect
the states), and outputs (observations from the states). Formally, an IO-HMM is defined
as a tuple < S, A, Z, T, O, b0 >, where S is the set of states, A is the set of actions, Z is the
set of observations, T is the state transition procedure in the way that T(s, a, s′) denotes
probability P(s′ | s, a) of going to state s′ by taking action a at state s, O is the observation
function such that O(a, s, z) denotes probability P(z | a, s) of perceiving observation z as a
result of taking action a and arriving in state s, and b0 is the vector of initial state distribution
such that b0(s) denotes the probability of starting in state s.

Since the exact state of the IO-HMM is not known, we make a belief about the state.
We represent the belief by a vector b where b(s) denotes the probability that the state is s at
the current time step. The following update formula can be used to calculate the belief b at
the next time step from the belief at the current time step, given the action a at the current
time step t and the observation z at the next time step [28].

4.5. Optimal Action Selection Problem in an IO-HMM Formulated as a POMDP

As disused in [22] a partially observable Markov decision process (POMDP) is a prob-
lem formulation of an action selection problem for an IO-HMM. A POMDP is defined as a
tuple P = < S, A, Z, T, O, b0, R, Y > all the Parameters of Partially Observable Environments
defined as in the IO-HMM, R is the reward function so that R(s, a) represents the immediate
reward of taking action a in state s, and Y ∈ [0, 1) is the discount factor which discussed
in the background section. The main purpose of an agent is to maximize the expected
discounted total reward by choosing an optimal policy.

In this introduced setting, there are two distinct optimization criteria which are obser-
vation likelihood and the collected reward by the solved policy on the POMDP by planning.
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Describing the State Dynamics of a POMDP by Using IO-HMM

Since in this introduced setting we desire to model the dynamics of a system from the
collected trajectories, we need to train a stochastic generative model for this purpose. In
other words, a partially observable Markov decision process (POMDP) is a formulation
of an action selection problem in an IO-HMM. Considering a POMDP with K discrete
hidden states , A discrete actions, D-Dimensional observations, and deterministic rewards
(e.g., a failed or working system). The generative model for states st ∈ {1, 2, . . . K} and
observations ot ∈ RD across time-steps t ∈ {0, 1, . . . , T} is defined by:

p(s0 = k) ≡ τ0k : Initial state distribution,

p(st+1 = k|st = j, at = a) ≡ τajk : States transition distribution,

p(ot+1,d|st+1 = k, at = a) ≡ N(µakd, σ2
akd) : Observation distribution

(1)

The model that is described in Equation (1) is an Input–Output Hidden Markov Model
(IO-HMM), that actions are cosnidered as inputs and observations are cosndiered as outputs.
As described above Model parameters are defined as θ : {τ, µ, σ, R} that τ describes the
transition probability to the next state st+1, taking into consideration the current state st
and action at. modeling each observation ot, d as a Gaussian distribution, with param-
eters µd and σd considering the mean and variance when in state st after taking action
at−1. We decide to apply the independent Gaussian distribution across the D dimensions
for simplicity.

The model parameters {τ, µ, σ} which maximize the likelihood of trajectories can be
efficiently computed using the EM algorithm that is described in HMMs [29]. Finishing the
POMDP specification is the deterministic reward function R(s, a), specifying the reward
from taking action a in the state s.

4.6. Missing Data in the Collected Trajectories

In the current problem definition, based on a probability distribution p(ψ), there are
missing data in some time steps in the collected observations due to the fact that it is not
possible to always have all observations from all the sensors of all components in a system.
Given this fact, we need to study the training IO-HMM with the presence of missing data
for this end.

4.6.1. Missing Observation Mechanisms

It is discussed in [30] that observations are missing in a model in different ways. In
case the missing observations are dependant on past missed observations, this mechanism
is considered as non-ignorable missing mechanism.

Otherwise, in case that the missing observation probability is dependant only on the
past observations and the observation misses the distribution parameter ψ , this mechanism
is called ignorable missed and it means:

P(R|Yobs, Ymis, ψ) = P(R|Yobs, ψ)

Or in other cases when the missing probability is not dependant neither on the ob-
served nor missed observations is called missing completely at random (MCAR).

P(R|Yobs, Ymis, ψ) = P(ψ).

4.6.2. Complete Data Likelihood and Learning from Missing Observations

We discuss complete data likelihood as a case when we consider all given and missed
observations on the calculations. In [30], complete data are composed of observations Y,
missing distribution R, joint distribution of Y, and R is factored such as

Pr(Y, R|ψ, θ) = f (Y|θ) f (R|Y, ψ).
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Then the observed data likelihood over missing data is:

L(θ, ψ|Yobs, R) ∝
∫

f (Yobs, Ymissed|θ) f (R|Yobs, Ymis, ψ)dYmis.

according to [31] inference of θ based on L(θ|Yobs) is the same as L(θ, ψ|Yobs, R) when two
criteria are preserved:

1. The model parameter θ and missing observation distribution parameter ψ are separa-
ble and the joint probabilities over these two-parameter spaces are their multiplication.

2. Missing data mechanism is missing at random (MAR) that it means:

P(R|Yobs, Ymis, ψ) = P(R|Yobs, ψ)

or as a special case of missing completely at random (MCAR) that implies:

P(R|Yobs, Ymis, ψ) = P(R|ψ).

since the available observations are given periodically based on a prefixed cycle with-
out dependency on missed or given observations, we suppose the missing mechanism
is MCAR.

4.6.3. Complete Data Likelihood

If N different subjects by different length of observations Tn are considered, then the
complete data log-likelihood can be written such as:

l(θ; y, s, u) =
N

∑
k=1

[ln(πSk,1) +
Tk−1

∑
t=1

ln(aSk,tSk,t+1,at) +
TK

∑
t=1

ln(bsk,tyk,t)]

M-step can be written with usage of Backward-Forward algorithm. Thus, the only
modification needed here is taking the switching parameters into account that in this
research, they are different discrete inputs that consider as actions

P(St+1) = P(St+1|St, at).

4.6.4. Considering the Given Observations in Calculations

According to [32] to handle missed observations in EM calculations, the only parame-
ters that are directly dependant on the observations are the elements of the observation
matrix B, so the only needed modification is modifying the calculations to modify that
matrix to take the missing observations into account. For the iteration v the calculations are
such as:

b̂(v+1)
ij =

∑N
k=1 ∑Tk

t=1 γ
(v)
k,t (i)× δ(yk,t = j)

∑N
k=1 ∑Tk

t=1 γ
(v)
k,t (i)× δ(yk,t 6= .)

that it means ignoring observations when they are not given and consider byt = 1 and an
indicator function δ(yk,t = .) controls that if an observation is missed. All other calcula-
tions to train other parameters (π0, A) are exactly the same such as provided in [29]. Two
auxiliary variables are introduced here, γ

(v)
k,t (i) is the probability that the model is in state i

at time step t whilst ζk,t(iju) is the probability of transition between states i, j at time-step t
by the input a for the subject k.

π̂
(v+1)
i =

∑N
k=1 γ

(v)
k,l (i)

∑N
k=1 ∑c

i=1 γ
(v)
k,l (i)

, i = 1, 2, . . . , c



Sensors 2022, 22, 4491 10 of 21

â(v+1)
iju =

∑N
k=1 ∑Tk−1

t=1 ζ
(v)
k,t (i, j, a)

∑N
k=1 ∑Tk−1

t=1 γ
(v)
k,t (i)

, i = 1, 2, . . . , c

4.6.5. Model Parameters Optimization in the Presence of Missed Observations

In the case that the missing observations are considered missing completely at random
(MCAR), there are two common approaches to train the parameters in training HMMs that
can be applied in this work to train the IO-HMM which are discussed in [33].

As discussed on [33], one possible approach is to ignore the missing observations
while another one is inferring the missed values from the given ones. In the introduced
setting based on this assumption that the missing observations do not convey any useful
information, we just ignore the missed values in the calculations.

4.6.6. Planning the POMDP to Find the Optimal Policy

The upper envelope of a finite collection of linear functions of belief may be described
arbitrarily tightly as the value function of a discrete-state POMDP [34]. Even with very tiny
POMDPs, however, accurate value iteration remains intractable. Rather of conducting
Bellman backups across all valid beliefs, we employ point-based value iteration (PBVI), an
approximation approach that is substantially more efficient. Only a limited range of beliefs
are backed up by PBVI.

4.6.7. Policy of a POMDP in the Currently Introduced Setting

As described above, given a POMDP with parameters θ, it is possible to the belief bt, a
probability distributions over all states of the underlying MDP, defines the posterior over
state st given all past actions and observations (history):

bk
t , p(st = k|o0:t, a0:t−1) : su f f icient stastics

The belief state, can be computed efficiently via forward filtering [29]. The POMDP
can be solved using a planning algorithm to learn a policy πθ : RK 7→ RA, mapping any
belief to a distribution over actions. The goal is to find a policy with maximum value:
Vπ = ∑T

t=0 γt, given the discount factor γ ∈ (0, 1).
In Figure 4, it is shown that how the policy plays the part to decide the next actions in

the currently introduced setting.

Figure 4. different parts of the POMDP agent in the current introduced settings. π is the policy of the
agent which based on the belief state that is computed using forward-filtering selects the next action.

4.7. Definition of the Behavior Policy and the Target Policy

Behavior policy (πβ): As an unknown policy that collects the trajectories by interacting
with the online environment. This policy can be considered as the strategy of the field
expert or the policy of the current controller that is not known.
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Target policy (πθ): The policy that found by planning data-driven POMDP.

4.8. Offline Reinforcement Learning

Offline reinforcement learning is a revived field of study that aims to learn behaviors
using just recorded data, such as data from previous trials or human demonstrations, with
no environmental touch. It has the potential to make significant progress in a variety of
real-world decision-making problems when active data collection is either prohibitively
expensive (e.g., in robotics, drug discovery, dialogue generation, and recommendation
systems) or unsafe/dangerous (e.g., healthcare, autonomous driving, or education). This
paradigm has the potential to remove one of the most significant barriers to moving
reinforcement learning algorithms from the lab to the real world.

4.9. Off-Policy Evaluation (OPE)

There are settings regarding the damage cost of policies, it is not reasonable to evaluate
a policy in an online environment.

A possible example can be given in systems with high cost maintenance that a policy
is considered as a new controlling strategy based on the systems’ observations. Taking
this fact into account that the failure cost is not tolerable, it can not be possible to evaluate
policy values in real environments that are the working systems. Therefore, a mechanism
is needed to examine the policy on the collected trajectories which are labeled by the
deterministic labels.

However, by planning a POMDP, it is possible to have the target policy (πθ), there is
no guaranty that it works as expected in practice. Since we can not evaluate the policy on
the online environment due to this fact that is costly, we need to utilise Off Policy Evaluation
(OPE) [35], Which in this work, consistently weighted per decision, importance sampling
(CWPDIS) [36] is utilized.

Let D denote a set of N trajectories collected under behaviour policy (πβ), r the
collected rewards, γ discount factor, andH is the history of past observations and actions.
aforementioned methodology estimates the value of a policy πθ as:

VCWPDIS(πθ) =
T

∑
t=1

γt ∑n∈D rntρnt(πθ)

∑n∈D ρnt(πθ)
: Policy value

ρnt(πθ) =
t

∏
s=1

πθ(ans|H)

πβ(ans|H)

In the simulated environments, we suppose that the behavior policy (πβ) is known
and both πβ and πθ are stochastic. In the real data settings that the behavior policy is not
known, it is possible to estimate the behavior policy via the k-nearest neighbors approach
which is discussed in [37].

5. Solution Techniques

We model the System dynamics as an Input Output Hidden Markov Model (IO-HMM),
that is trained using sensed data through application of an Expectation Maximization (EM)
methodology based on gradients of the likelihood, ignoring missing observations, and
using likelihood as a measure of model fitness.

We then formulate a problem of optimal decision for the System control. To this end,
we consider a Partially Observable Markov Decision Process (POMDP) with state dynamics
specified by the learned IOHMM, defining state rewards as a function of observations and
setting the discount factor as an hyper-parameter that determines the trade-off between
immediate and long-term rewards. We use Point Based Value Iteration (PBVI) to find
the target policy that maximizes the collected rewards v(π), borrowing the Off Policy
Evaluation (OPE) technique from the context of offline Reinforcement Learning (RL). In this
way, we measure the collected reward of the target policy by comparing to the decisions
made by the behavior policy and estimating the collected reward. To this end, a technique
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from the literature based on importance sampling is applied to solve the mismatch between
behavior and target policies. Collected data are split into a train and a test set, and the
collected reward is measured using the target policy without directly applying the selected
actions.

The IOHMM’s likelihood and the reward collected by the target policy, both evaluated
on the test data, are competing objectives in this optimization task.

We use Lagrange multipliers to govern the trade-off between IO-HMM probability
and the collected rewards objective during parameter optimization since we must account
both of these opposed goals.

The IO-HMM is trained using the POPCORN approach, and the POMDP is solved to
discover the best policy with a competing optimization target.

The gathered reward goal is more essential than the trained model’s data likelihood in
this optimization job. As a result, the IO-HMM model must not be over-fitted to the data
probability, otherwise the target policy will be unable to collect larger rewards on the test
data. This problem is referred to as model mis-specification.

The POPCORN [28] optimization objective can handle the problem of model mis-
specifaction raised due to the noisy observation collected from the system state.

The usual approach to find optimal policy in the POMDPs based on the IOHMM that
is know as “two stage solving” is considered as the baseline approach that we compare
the experiment results with that. In this baseline approach, the IOHMM trained and then
solved on the separated stage with this regard the during optimization of parameters the
collected reward objective is not taken into consideration.

The proposed solution technique is depicted in Figure 5. As described in Figure 5 in
the diagram the collected trajectories are separated to the train and test sets and then train
set is fed to the training process of IO-HMM. The next step is solving the POMDP that
is formulated based on the IO-HMM to find the Policy π that afterwards Offline policy
evaluation (OPE) methodology is used to evaluate the collected rewards by using the found
policy and the test set.

Figure 5. Learning and evaluating the target policy(πθ) by the collected trajectories from the online
environment. The behaviour policy (πβ) can be the controlling strategy of a system expert. at is the
action at time t, ot is the observation at time t, and rt is the reward at time t. The Collected policy
value of the target policy measures the quality of decision making.

5.1. Parameter Learning and Optimization Objectives
5.1.1. Parameter Optimization Objective

In the task we consider, we learn the model to have the maximum likelihood of
producing the observed trajectories given that a minimum reward goal which is calculated
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using Offline policy evaluation (OPE) is always reached, that is, a problem of maximum
optimization with a restriction on the reward function.

max
θ
Lgen(θ) subject to : V(πθ) > ε

ε is the minimum acceptable policy value. This is the usual approach which is known as the
two-stage approach, but as discussed, this methodology is prone to model misspecification.
In this research, we use the idea that is applied in [28] inspired by the methodology
introduced [38] By using Lagrange Multiplier λ > 0 the non constrained optimization
criteria is:

max
θ
Lgen(θ) + λV(πθ)

By applying the aforementioned methodology, it is possible to compare with both of
these baseline approaches, referring to the λ = 0 case as “2-stage” which is considered as
the baseline in this work, and the λ→ ∞ case as “Value-only”.

In this approach, there are two distinct optimization objectives:
Log marginal likelihood:

Lgen(θ) as the log marginal likelihood of observations, given the actions in D and parameters θ:

Lgen(θ) = ∑
n∈D

log p(on,0:Tn | an,0:Tn−1, θ)

Collected reward objective:
Computation of V(πθ) entails two distinct parts: solving for the policy πθ given θ

using Point based value iteration (PBVI), and then estimating the value of the policy using
OPE using the collected data D.

The IO-HMM likelihood marginalizes over uncertainty about the hidden states, can
be computed efficiently via dynamic programming which is explained in [39], and is also
possible to use automatic differentiation with regards to the θ.

5.1.2. Parameter Optimization Strategy

The strategy for optimizing the aforementioned objective is to use the likelihood gra-
dients. The objective is optimized with Rprop [40] with default settings. Rprop is a well-
known algorithm that was originally developed to train neural networks. In the current
paper, Rprop is employed to find parameter values that increase the objective function. The
modification of Rprop to train HMMs in case gradients are used can be found in [27].

By design, Rprop only needs the sign of the gradient of the objective function with
respect to each parameter. We take varying numbers of restarts as assessed by training
objective values before the final assessment since the goal is non-convex and even the
generating term permits numerous local optima.

To optimize the parameters of the model we used different number of epochs. One
epoch means that each sample in the training dataset has had an opportunity to update the
internal model parameters. An epoch is comprised of one or more batches.

6. Experiments

To exemplify the concept of the proposed approach, we design empirical experiments
aimed at answering the following questions:

• RQ1: (The problem of miss-specified model)
Does the proposed approach permit to control the trade-off between the likelihood
of the learned IO-HMM and the rewards collected during the traning epochs in the
synthetic environment by the optimal POMDP target policy?

• RQ2: (Studying the affect of the noise level on the collected rewards)
How does the noise of the collected observations in the designed environment affect
the policy collected reward?
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It is noticeable that in the research question it is emphasised that the applicability of
the proposed methodology is just confirmed in the synthetic environment under particular
explained circumstances.

To this end, we address the application scenario of the multi-component system
introduced in the problem formulation section, considering a component based stochastic
system, whose state vector is observed through noisy sensors

Specifically, we consider a stochastic System made by a collection of concurrent
components, by a finite set of states which actions modify the probabilities of the transitions
between higher and lower levels, and it is assumed that the controller shall maintain the
state vector within a certain safe working levels.

To this end, we design two experiments by using the simulated environment:
Experiment 1
In this designed experiments we want to show the collected reward objective compar-

ing the POPCORN and the baseline approach.
Experiment 2
We want to compare the collected rewards by using the POPCORN methodology

and baseline approach optimization objective by applying different level of noise to the
collected observations.

6.1. Definition of the Simulated Environment

We consider a system composed of different C components and L possible exact levels
for each component. These components are observed periodically and it is probable to
have some missing observations occasionally for some components irregularly. The task
we consider here is designing a controller for the purpose of failure avoidance in the multi
component system consists finite set of discrete Actions.

In the aforementioned system, there are M different actions that modify the dynamics
of the components stochastically. We define a safe performance range for each component,
trying to keep all components in that range. An MDP is used for modeling the simulated
environment and then by adding Gaussian noise we make the system partially observable.

In this way, the introduced environment can be similar to real-world systems in that
each component is sensed by using a different number of sensors.

States: We consider there are Lc different possible exact level for each component c.
For each component lc ∈ {1, 2, . . . , Lc} is the exact level of a particular component c. The
exact state of the system is a vector of length C, number of components, so there are ∏C

c=1 Lc
possible states in this system and st ∈ NC. One possible state vector is shown in Figure 6.

Observations: Observations o ∈ RC are the vector of noisy observations from the
exact state of the system. As an example, if the exact state of the system is [2, 2, 3, 2, 1],
noisy observation of the system state is a vector such as [1.34, 1.89, 3.24, 1.78, 0.87] for his
particular case.

Actions: There are M different actions that affect the current system state and transi-
tion probabilities stochastically.

Trajectories: Trajectories are at most T time steps for each simulation.
Rewards: Rewards are sparse, with 0 reward at intermediate time steps and Failure

cost of the failed component or +1 for the working trajectories at termination that is labeled
based on the observations of the components. In the case that for J time step one or more
components are out of the safe working range, we consider the system as failed and label
the final state by −1.

Data generating policy: We suppose actions are selected by the behavior policy (πβ).
However, the deterministic optimal policy (π∗) of a MDP can be easily found by using the
Value Iteration (VI) algorithm [41], we consider that the behavior policy (πβ : p(at)) in the
underling MDP is a non-deterministic ε-greedy policy.

The policy selects non-optimal actions with probability ε that By using this policy, we
try to show that the policy of the controller is not perfect and it is prone to make mistakes.
We consider this aforementioned policy as the sub-optimal policy (πε).



Sensors 2022, 22, 4491 15 of 21

Data Generation: 2500 trajectories are generated under an ε-greedy behavior policy,
given observed trajectories, we train an IO-HMM and then solve the POMDP to evaluate
the policy via an additional 2500 trajectories to the test data.

All experiments were performed on a 64-bit Intel I7 4690k @ 4 GHz CPU with 16 GB
RAM on python PyPOMDP [42] An educational project with modules for creating a
POMDP (Partially Observable Markov Decision Process) model, implementing and running
POMDP solver algorithms, and for the matrix calculation NumPy [43] a library for the
Python programming language, adding support for large, multi-dimensional arrays and
matrices, along with a large collection of high-level mathematical functions to operate on
these arrays are used.

Figure 6. One example of the possible system exact state vectors. Each part of the vector shows the
exact state of each component in the system.

6.2. Experiments Setup Specification

In this work, we introduce an empirical model to examine the failure avoidance
strategies in a stochastic system. We consider 5 components and 8 actions which affect
the dynamics of the components stochastically. Respectively, there are 3, 3, 2, 5, 2 ordinal
possible levels for each component.

By considering these exact levels for each component, there are 180 possible exact
system states for the whole system. The initial dynamics of the components are described
in Figure 7.

The components dynamics are defined in a way that they reach the final state faster
than going back to the lower working levels. The actions are considered to modify the pace
of the system level transitions to make it slower or faster.

As previously discussed, the actual state of the system is completely known and may
be detected solely through the use of noisy sensors that make the system partially sensible.
The observations examined created by varied Gaussian noise levels from the underlying
MDP, because larger noise levels in the observation mechanism make the training process
and solving the POMDP more difficult.

We define a unique safe working level for each component that is described in Table 1.
These components can be considered as different inter-dependent units that are desired to
stay in the safe level.

The aforementioned components’ dynamics in the Figure 7 are modifiable by the
actions that are described in the Table 2 . We consider an action sequence consisting of
3 binary actions that can be activated at the same time. Therefore, there are eight possible
different actions in this setting. The main idea behind designing these inputs are speeding
up the return from the maximum levels to the lower levels.

Table 1. Components’ safe working range description.

Components Safe Level

Component #1 level 2

Component #2 level 2

Component #3 level 2

Component #4 level 3

Component #5 level 2
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Figure 7. Initial dynamics of each component that these dynamics are modifiable by the actions. The
shown states are the possible working levels for each component. As shown above, the components
tend to transfer to the higher levels with higher probabilities. The safe working level for each
component is marked green.

Table 2. The effects of actions on the components dynamics. After taking the actions the dynamic of
the components will be changed.

Actions Effected Components

Action #1 turned on Component #1, Component #2 :
level 3 -> level 2 with probability 0.8

Action #1 turned off Component #1, Component #2 :
level 3 -> level 2 with probability 0.4

Action #2 turned on Component #3:
level 1 -> level 2 with probability 0.8

Action #2 turned off Component #3:
level 1 -> level 2 with probability 0.6

Action #3 turned on If Component #5 is in level 1:
Component #1:

level 1 -> level 2, with probability 0.3
level 2 -> level3 with probability 0.7

If Component #5 is in level 2:
Component #2 :

level 2 -> level 3 with probability 0.9,
level 1 -> level 2 with probability 0.5,
level 1 -> level 3 with probability 0.4

Action #3 turned off If Component #5 is in level 1:
Components # 1 :

level 2 -> level1,
level 3 -> level 2 with probability 0.1

If Component #5 is in level 2:
Component # 2:

drops 1 level with probability 0.2

It is assumed that the level of Component #5 affects the Action # 4 effects, which in
this way we suppose that the components are inter-dependant. In this setting, we suppose
that Component # 4 and Component # 5 are works independently from the action effects.

We consider J = 3 that it means, if in the system for more than 3 time steps one or
more components are out of the safe level, we label that state vector as f ailed by −1.

For the purpose of reproducibility of the experiment results, in Table 3 hyper-paramters
during the generating the synthetic data are given.
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Table 3. Hyper-parameters during generating the synthetic data.

Hyper-Parameter Value

Number of Epochs 300

Discount factor (γ) 0.7

Maximum time of simulations (T) 15

Optimized Lambda (λ) 3.16

Number of components 5

Number of train data 2500

Number of test data 2500

ε-greedy policy 0.21

To be a substantiation of a sensor system in the observations from the synthetic
environment, there is an added Gaussian noise with level of σ to the true state of the
system as

ot = st + N(0, σ)

where the additional noise to the true state of the MDP makes the system
partially observable.

6.3. Comparing the Collected Rewards during Training (Experiment 1)

In the first experiment, during training, the noise distribution and the number of
epochs are pre-fixed. We want to measure the collected rewards of the target policy by
adopted the methodology from the literature that are used the competing objectives. We
consider the minimum change in the collected rewards during training of 50 epochs in
one of the approaches that is happened in 300 epochs in the model training by using
observations generated by random Gaussian noise with level of the σ = 0.3. Every
50 epochs in the experiments, the collected policy values on the test data are plotted.

In this research, the collected reward is the measure to compare the different policies.
Since the number of positive rewards in the collected trajectories in the collected data is not
mandatory higher than the negative ones, it is probable that the collected reward on the
test data be a negative value.

In the experiments, we need to compare the collected policy value, which can closely
be interpreted as the number of failures in the test data by the baseline approach and
proposed methodology. Here λ = 0 is referring to the baseline that is known as the two
stage POMPD solving approach while λ = 3.16 is the hyper-optimized λ and is referring
to the applied methodology which is the optimization of the competing objectives.

As the results of the experiments show, the policy found by the utilized methodology
collects more rewards than the two-stage solving approach during the 300 epochs, while the
baseline approach is just learning the model parameters that maximises the data likelihood
objective. The results of the experiments are shown in the Figure 8.
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Figure 8. Policies values on the test data by applying the baseline approach and the proposed
methodology.

6.4. Collected Policy Values under the Different Observation Noise Levels (Experiment 2)

In the second experiments, we want to answer the second research question that we
asked in the first section, we utilize the data sets that consist of 2500 train and 2500 test trajec-
tories which are generated by different Gaussian noises. In these experiments, 300 epochs
are used and the average collected rewards on the test data measure the performance of
the policies.

Synthetic noise may be added into data not just as new variables, but also as direct
effects on the true values. The researchers can assess the sensitivity of the analysis results
to random noise of the predictors by analyzing the data set with noise inserted in this
way. The noise magnitude can be adjusted to assess how much noise the technique for
evaluating the data can bear before its performance decrease.

Assume that when the unchanged data set was evaluated, a certain set of predictors
had greater value than synthetic noise factors. Increasing the quantity of noise in the system
estimates the point at which the relevance of these predictors and noise variables begin to
consider. Varying predictors have different threshold noise levels at which their influence
can no longer be observed.

The random noise has been used to make the identifying the system state more
challenging that in the Table 4 the levels of the noise is depicted.

By comparing the policy values, it is possible to compare the performance of the
baseline approach and the adopted methodology. The collected reward by the baseline
approach is shown by πθ

λ=0 whilst Vπθ
λ∗

shows the collected reward by the novel adopted
optimization objective.

Table 4. Collected rewards by Target policy (πθ) under the different observation noise levels (σ).

Noise Level (σ) Vπθ
λ=0

Vπθ
λ∗

0.3 −0.70 −0.49

0.4 −0.64 −0.53

0.5 −0.82 −0.60

In conclusion, based on the results of the different experiment settings considering the
different noise levels (σ ∈ {0.3, 0.4, 0.5}), collected policy values (Vπθ ) by the application of
the novel optimization objective is higher than the baseline utilised approach.
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6.5. Answering the Research Questions

By discussing the results of the designed experiments we answered the research
questions asked in the Section 6 as below:

• Answering RQ1 (Tackle the problem of miss-specified model):
Referring to the results of the first experiment, during the training epochs the collected
reward by the application of the applied methodology is higher than the collected
reward by the baseline approach.
This important notice is that the training process by using the baseline model is over-
fitted to the data likelihood of mis-specified model and could not collect the more
possible rewards by the selected policy.
This fact is based on the novel optimization objective used in the proposed approach
that control by using the Lagrange multiplier (λ) that considers the collected reward
as an optimization objective besides the data likelihood to tackle the model mis-
specification problem.

• Answering RQ2 (Affect of the noise level on the collected rewards) :
Referring to the results of the second experiment the collected reward by using the
applied methodology is higher in different levels of the random Gaussian noise that
shows model mis-specification can be planned using the proposed methodology better
than the baseline approach.
This important fact shows that in the problems defined on this sensor system defined
in the synthetic environment the proposed approach performs better to model the
dynamics of the stochastic system by using collected trajectories.

7. Conclusions

We have presented an approach that can be illustrate by a problem definition to find
failure avoidance policies through solving a POMDP by using the collected trajectories
from an online environment. The applied methodology takes the log of the interaction of
the existing controller with the system as input, then trains an IO-HMM as the generative
model of POMDP state dynamics, to find a policy that can collect high rewards on the
test data.

The applicability of the proposed methodology is evaluated on the noisy settings that
based on the two designed experiments by measuring the collected rewards performance
can be comparable the competing baseline. In this research, the problem of multi component
system failure avoidance considering model mis-specification and different level of noise
are solved that is illustrate using a synthetic environment.

The proposed solution has the benefit of not requiring the present controller to actively
investigate the repercussions of actions in all scenarios, which might result in prohibitive
failure costs in the real system. By deigning experiments it is shown how the applied
methodology compete against the usual literature baseline approach to collected more
reward by the noisy settings in controlling multi-competent system for the purpose of the
failure avoidance. The collected rewards in different settings show the confirmation of the
performance of proposed methodology.

In future work, by considering different costs and execution times for each action, it
would be possible to consider the applied action sequence cost as another optimization
objective. Our next goal is to investigate a stochastic distributed system by using the
Markov Decision Petri Nets [44] in ORIS [45] as the underlying stochastic system to design
a more practical synthetic environment.
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