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Abstract

Angiogenesis is crucial for cancer initiation, development and metastasis. Identifying natural botanicals targeting
angiogenesis has been paid much attention for drug discovery in recent years, with the advantage of increased safety.
Isoliquiritigenin (ISL) is a dietary chalcone-type flavonoid with various anti-cancer activities. However, little is known about
the anti-angiogenic activity of isoliquiritigenin and its underlying mechanisms. Herein, we found that ISL significantly
inhibited the VEGF-induced proliferation of human umbilical vein endothelial cells (HUVECs) at non-toxic concentration. A
series of angiogenesis processes including tube formation, invasion and migration abilities of HUVECs were also interrupted
by ISL in vitro. Furthermore, ISL suppressed sprout formation from VEGF-treated aortic rings in an ex-vivo model. Molecular
mechanisms study demonstrated that ISL could significantly inhibit VEGF expression in breast cancer cells via promoting
HIF-1a (Hypoxia inducible factor-1a) proteasome degradation and directly interacted with VEGFR-2 to block its kinase
activity. In vivo studies further showed that ISL administration could inhibit breast cancer growth and neoangiogenesis
accompanying with suppressed VEGF/VEGFR-2 signaling, elevated apoptosis ratio and little toxicity effects. Molecular
docking simulation indicated that ISL could stably form hydrogen bonds and aromatic interactions within the ATP-binding
region of VEGFR-2. Taken together, our study shed light on the potential application of ISL as a novel natural inhibitor for
cancer angiogenesis via the VEGF/VEGFR-2 pathway. Future studies of ISL for chemoprevention or chemosensitization
against breast cancer are thus warranted.
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Introduction

Neo-angiogenesis has been well demonstrated as a critical step

in tumor growth, migration and metastasis. The neovasculature in

a tumor mass not only supplies oxygen, nutrients and growth

factors for tumor growth, but also provides vessels for tumor cell

infiltration and migration. Tumors lacking an adequate vascula-

ture become necrotic or apoptotic, while tumors with abundant

vasculatures may not only enter a phase of rapid growth but also

exhibit increased metastatic potential [1]. Thus, inhibiting

angiogenesis has become an important strategy in cancer

treatment.

Tumor angiogenesis is a complex process and involves the

interaction between tumor cells, endothelial cells, phagocytes and

their secreted factors, which may act as stimulators or inhibitors of

angiogenesis [2,3]. One of the initial events of angiogenesis is the

secretion of multiple angiogenic factors from cancer cells, such as

VEGF, bFGF and PDGF, etc [3,4]. At present, VEGF has been

identified as the most important pro-angiogenic factor [5,6]. After

binding with VEGF receptors on the surface of endothelial cell,

signal pathways including Ras/Raf/MEK/ERK and PI3K/Akt

will be activated, which sequentially promote endothelial cells

recruitment and proliferation [7–9].

The human VEGF kinase receptors include VEGFR-1,

VEGFR-2 and VEGFR-3. VEGFR-1 is required for the

recruitment of bone marrow-derived progenitor cells and the

migration of monocytes and macrophages, while VEGFR-3 is

mainly reported to participate in lymphangiogenesis [10].

VEGFR-2 is the predominant mediator of VEGF-induced

angiogenic signaling and is responsible for regulating vascular

cells proliferation, migration and invasion [11]. VEGFR-2 null

animals are reported to be embryonic lethal, characterized by

endothelial cells not forming a structured, organized vascular

network [12]. VEGFR-2 consists of 3 domains: the extracellular

VEGF-binding domain, the transmembrane domain, and the

intracellular catalytic domain possessing tyrosine-kinase activity.
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Upon binding to VEGF, the immunoglobulin-like segments in the

extracellular domain will undergo dimerization, and then induce

autophosphorylation within the intracellular catalytic domain by

consuming ATP. The predominant phosphorylation sites on

VEGFR-2 occur on tyrosine 1175 and 1214, inducing signaling

cascades through PI3K, AKT, PLCc, p38MAPK and p42/44

MAPK [13]. ATP-binding region located within the catalytic

domain is most critical for VEGFR-2 activation. Most of current

anti-angiogenesis inhibitors approved for clinical application are

designed targeting on ATP-binding site such as sorafenib.

However, serious side effects, such as hypertension, bleeding and

gastrointestinal perforation, have been associated with long-term

application of current anti-angiogenesis agents, and therefore

limiting their chronic use [14]. Since natural extracts are usually

low in toxicity and well tolerated in human body, there has a

growing interest in identifying natural phytochemicals potentially

efficient for anti-angiogenesis with less toxic effects [15].

Isoliquiritigenin (ISL) is a natural flavonoid isolated from the

root of licorice (Glycyrrhiza uralensis), which is commonly used in

Western countries for culinary purpose, while in China it is a

medicinal herb. Previous research has demonstrated that ISL

possessing various biologic properties, such as anti-inflammation,

anti-oxidation, anti-platelet aggregation, as well as vasorelaxant

and estrogenic effects [16]. In addition, a number of studies

reported that ISL had significant antitumor activities, including

apoptosis induction, cell cycle arrest, migration inhibition and

oxidative stress triggering, etc [17–19]. Some studies also indicated

that ISL was capable to mediate chemopreventive activities,

including suppressing 7,12-dimethylbenz [a] anthracene (DMBA)-

induced mouse skin carcinogenesis and the inhibition of carcin-

ogen-induced lesion formation in a mouse mammary organ

culture assay [20,21]. Very recently, PHY906, a four-herb Chinese

medicine formula with licorice as a major ingredient, was shown to

reduce chemotherapy-induced toxicity in a phase I/II clinical

study [22]. For cancer angiogenesis, a high throughput screening

assay found that ISL had a higher efficacy in suppression of

endothelial cell growth and migration when compared with other

herbal chemicals and Avastin at a subtoxic concentration of

10 mM [23,24]. From the chemical structure-activity prediction,

ISL could have a greater antiangiogenic potency than other

licorice-derived flavonoids (such as isoliquititin, liquiritigenin and

isoliquiritin apioside) [25]. However, how ISL inhibits cancer

neoangiogenesis and whether or not ISL still possess in vivo anti-

neoangiogenesis effects are still remained unclear.

In the present study, the effects of ISL on inhibiting breast

cancer angiogenesis were validated both in vitro and in vivo.

Mechanism study revealed that ISL could significantly inhibit

VEGF expression via promoting HIF-1a proteasome degradation

pathway. Meanwhile, ISL could block VEGFR-2 activation and

the transduction of its downstream signalings. In silico analysis

further revealed that ISL suppressed VEGFR-2 activity via stably

binding to its ATP binding site. Taken together, we suggest that

ISL might be utilized to target angiogenesis in breast cancer

treatment and chemoprevention as well as other angiogenic

diseases.

Materials and Methods

Chemicals and Reagents
All animal work was approved by the Committee on the ethics

of the University of Hong Kong (Permit number:2162-10). ISL

was isolated from licorice by Dr. Wang Dongmei (Sun Yatsen

University, Guangzhou, China). The standard of ISL was bought

from Alpha Aesar company with a purity more than 97%. The

purity of isolated ISL was more than 99% as analyzed by high

performance liquid chromatography and its chemical structure

was characterized by LC-MS and NMR. The stock solution of ISL

was prepared in dimethyl sulphoxide (DMSO) and kept at220uC.
ISL was diluted in culture medium to obtain the desired

concentration. ISL was stable in the dilution with DMSO

concentration less than 1%.

Antibodies and other Materials
Recombinant VEGF-A165 was obtained from PeproTech

Company (PeproTech, Rockyhill, NJ). Endothelial cell growth

supplement (ECGS) and Matrigel was obtained from BD

Bioscience Company (BD bioscience, Bedford, MA). BrdU

labeling kit, Lactate dehydrogenase (LDH) cytotoxicity kit, the

first strand CDNA synthesis kit, the SYBR Green kit and TUNEL

kit were bought from Roche Company (Roche Diagnostics, IN).

Human VEGF Quantikine ELISA Kit was obtained from R&D

Systems Company (R&D Systems, Minneapolis, MN). The

enzyme-linked immunosorbent assay kit was bought from

Boehringer Mannheim Company (Boehringer Mannheim, SA).

The TRIzol reagent, Co-IP assay kit and primers were ordered

from Invitrogen (Invitrogen, Carlsbad, CA). The immunohisto-

chemistry kit was obtained from Thermo Scientific Company

(Thermo scientific, Fremont, CA). All primary and secondary

antibodies were bought from Cell Signaling Company (Cell

Signaling Technology, Danvers, MA).

Cell Culture
Human breast cancer cell lines MCF-7 and MDA-MB-231

were obtained from the American Type Culture Collection and

cultured in medium (DMEM for MCF-7; L-15 for MDA-MB-231)

supplemented with 10% FBS and 1% penicillin and streptomycin

at 37uC in a humidified incubator. Human umbilical endothelial

cell line was also bought from American Type Culture Collection

and was grown on a 0.2% gelatin-coated flask and cultured with

M199 medium supplemented with 100 mg/ml ECGS, 15% FBS

and 0.1% heparin. HUVECs between passages 2 and 6 were used

in our experiments. No further authentication was conducted for

cell lines.

Proliferation Assay
HUVECs were seeded in a 6-well plate with a density of 16105

cells/well. After being left overnight, cells were incubated in

serum-starved M199 for 12 h, and then treated with VEGF

(20 ng/ml) in the presence or absence of ISLfor 48 h. After

incubation, the cell number was counted by trypan blue staining.

For proliferation analysis, the BrdU labeling solution was added

and the cells were incubated in 96 well plates (46103 cells/well) for

12 h. After the incubation, the effect of ISL on VEGF induced

proliferation of the HUVECs was determined by the extent of

BrdU incorporation using the protocol supplied by the manufac-

turer. Briefly, after the treatment of BrdU labeling solution, the

medium was aspirated and the cells were fixed and incubated with

anti-BrdU antibody. After washing three times, the cells were

incubated with the secondary antibody conjugated with horse

radish peroxidase. Finally, the extent of BrdU incorporation was

determined colorimetrically at 450 nm. Triplicate independent

experiments were conducted. For non-endothelial cell prolifera-

tion, MCF-7 and MDA-MB-231 (16105 cells/well) were plated

onto 6-well plates and then treated with various concentrations of

ISL. Cell numbers were counted after 48 h incubation. For cell

cycle analysis, HUVECs (36105/well) were synchronized in G1

phase by serum deprivation then treated by ISL. Cells were

harvested after 24 h. Propidium iodide-stained single-cell suspen-
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sion was analyzed on FACs Calibur (BD Bioscience) using

CellQuest and ModFit data analysis software for data analysis.

Lactate Dehydrogenase (LDH) Cytotoxicity Assay
The LDH released into cell cultures is an index of cytotoxicity

and evaluation of the permeability of cell membrane. HUVECs

were seeded in 96-well plates at a density of 56103/well. After

incubation with various concentrations of ISL for 48 h, cell

supernatants were collected and analyzed for LDH activity using a

LDH cytotoxicity assay kit. The absorbance of formed formazan

was read at 490 nm on a microplate reader.

In vitro Tube Formation Assay
The tube formation assay was performed using 24-well plates

coated with 100 ml Matrigel basement membrane matrix per well

and polymerized at 37uC for 30 min. HUVECs suspended in

M199 medium containing 2% FBS were plated on the Matrigel at

a density of 16105 cells/well. Different concentrations of ISL were

then added to the well. After 12 h, cells were photographed with a

digital camera attached to an inverted microscope. Triplicate

independent experiments were conducted.

Cell Invasion and Wound Healing Assay
The invasion assay was performed using transwell inserts

containing 8 um pore size filters (Corning, NY, USA). Briefly,

the upper and lower parts of the transwell inserts were coated with

20 ml Matrigel and 40 ml type I collagen (0.5 mg/ml), respectively.

HUVECs (56105 cells/ml) were seeded to each insert (upper

chamber), and the chemo-attractant (10% FBS) was placed in the

lower chamber. Different concentrations of ISL were then added

to the upper chamber. After 24 h, the upper surface of the

transwell was wiped out with a cotton swab to remove the

remaining cells. The cells in the lower surface of the membrane

were fixed with 4% paraformaldehyde and stained with the HE

method. Migration was normalized to percent migration, with

migration in the presence of VEGF representing the scale of

100%. For wound healing assay, After HUVECs reached over

90% confluency in 6-well plates, a scrape was made over cells by a

10 ml tip. After scraping, the cells were washed with PBS twice and

treated by vehicle or ISL. The migration inhibition activity of ISL

was evaluated by measuring the gap width between cells after

24 h. Triplicate independent experiments were conducted.

Chick Aortic Ring Assay
The aortic arch was dissected from day 12–14 chick embryos.

After cutting into rings, they were embedded into Matrigel in 24-

well plates. After incubation for 10 mins at 37uC, the aortic rings

were supplemented with M199 serum-free medium containing

various concentrations of ISL. Sprouts will be formed within 48–

72 hrs. Images were photographed at 56 objective of a Zeiss

inverted microscope at 506magnification. The extent of sprouts

formation from chick aortic ring was quantified using image-pro

software.

Quantification of VEGF
For the measurement of VEGF production, MCF-7 and MDA-

MB-231 cells were cultured in serum-free medium for 48 hours in

the absence or the presence of ISL. Cell-free culture supernatants

were harvested and used for the determination of VEGF levels by

Elisa method. The concentration of VEGF in the unknown

samples was then determined by comparing the optical density of

the samples to the standard curve. To determine VEGF mRNA

levels, total RNA in both cancer cells after ISL treatment were

extracted using TRIzol reagent and reverse transcription were

carried out using first strand CDNA synthesis kit according to the

manufacturer’s instruction. qPCR analysis was performed using a

SYBR Green on Roche lightcycler 480 detector. The primers for

VEGF and b-actin were designed as followings: VEGF, forward

primer: 59-TGCCCGCTG CTGTC TAAT-39, reverse primer:

59-TCTCCGCTCTGA GCAAGG-39; b-actin: forward primer:

59-CCAACCGCGAGAAGA TGA-39, reverse primer: 59-CCAG

AGGCG TACAGGGATAG-39. The cycling parameters were

95uC for 15 seconds, 60uC for 30 seconds, and 72uC for 30

seconds for 40 cycles, followed by a melting curve analysis. Ct

value was measured during the exponential amplification phase.

The relative expression level (defined as fold change) of target gene

is given by 22DDCt and normalized to the fold change detected in

the corresponding control cells, which was defined as 1.0.

In vitro Kinase Assay and Immunoblotting Analysis
In vitro VEGFR-2 tyrosine kinase activity was assayed using an

enzyme-linked immunosorbent assay kit. Briefly, ISL was incu-

bated with biotin-labeled VEGFR-2 (Prospec) in assay buffer

containing Mg2+ and ATP in 96-well plates coated with a

streptavidin. Phosphorylated tyrosine was then detected by

sequential incubation with a mouse IgG anti-phosphotyrosine

antibody and a HRP-linked sheep anti-mouse immunoglobulin

antibody. Color was developed with an HRP chromogenic

substrate and quantified by an ELISA reader at wavelength

450 nm. The results were expressed as percent kinase activity. For

Western blotting analysis, quantified protein lysates (30 mg) were
resolved on SDS-PAGE gel, transferred onto PVDF membrane

(Millipore, Billerica, MA), and immunoblotted with antibodies for

HIF-1a, ERK1/2, JNK, Akt, VEGFR2, eNOS and b-actin.
Triplicate independent experiments were conducted.

Immunoprecipitation Assay
For immunoprecipitation assay, Immunoprecipitation kit-Dy-

nabeads Protein G was applied. Briefly, control or drug treated

cancer cells were lysed in RIPA buffer. Followed by centrifugation,

the supernatants were collected and incubated with protein G

dynabeads, which was binding to antibody (VEGFR-2) in

advance. After incubation at room temperature for 2 h, the

Dynabeads-Ab-Ag complex were washed three times with

provided washing buffer and denaturized for following immuo-

blotting experiments with VEGF and VEGFR-2.

Gelatin Zymography
Supernatants from a HUVEC culture system in the presence or

absence of ISL were analyzed for gelatin degradation activity by

sodium dodecyl sulfate-polyacrylamide gel electrophoresis under

non-reducing conditions. One milligram per milliliter of gelatin

was prepolymerized on a 10% polyacrylamide gel as a substrate.

Electrophoresis was carried out at 4uC. The gel was washed with

washing buffer (50 mM Tris-HCl, PH7.5, 100 mM NaCl and

2.5% Triton X-100), followed by incubation with a buffer (50 mM

Tris-HCl, PH 7.5, 150 mM NaCl, 10 mM CaCl2, 0.02% NaN3

and 1 uM ZnCl2) at 37uC for 16 h and visualized with Coomassie

Blue R-250.

In vivo Tumor Xenograft Experiment
MDA-MB-231 cells were injected into the mammary gland of

a 4–6 week old female nude mouse. After reaching approx-

imately 1 cm3, tumors were obtained and cut into 5 mm3 the

pieces were then transplanted to mammary glands. Mice were

divided into vehicle (PBS) and drug treated groups (6 mice per
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PLOS ONE | www.plosone.org 3 July 2013 | Volume 8 | Issue 7 | e68566



group). ISL was given by intraperitoneal injection at a

concentration of 25 mg/kg/d and 50 mg/kg/d. Tumor size

was measured every three days and tumor volume was

calculated according to a standard formula: (mm3) =L 6W 2/

2, where L is the length and W is the width. Tumor-bearing

mice were euthanized after 25 days of treatment and tumor

weight was recorded. Body weight was also monitored weekly as

an indicator of overall health of the animals.

Immunohistochemistry
Tumor samples obtained from in vivo studies were rinsed in

PBS and fixed in 10% paraformaldehyde/PBS. Samples were

dehydrated in 70% ethanol, paraffin embedded, and sectioned

(4 um). Deparaffinized sections were stained for CD31, p-

VEGFR2, P-ERK1/2 and MMP2 antigen. Briefly, samples

were treated with 3% H2O2 at -20uC for 10 min to neutralize

endogenous peroxidase activity. Sections were then blocked in

5% BSA and incubated with primary antibodies at 4uC
overnight in a humid chamber, followed by biotinylated

secondary antibodies. Detection was done with avidin-biotin-

HRP complex (Thermo scientific, Fremont, CA) and di-

aminobenzidine as chromogen. Nuclei were counterstained with

hematoxylin. For TUNEL assay, deparaffinized sections were

permeabilized with 0.1% Trition X-100 plus 0.1% sodium

citrate and then incubated with 50 ml TUNEL reaction mixture

at 37uC for 60 mins. After rinsing with PBS three times, 50 ul

Converter-POD was added and the tissue cells were incubated

in a humidified chamber for 30 min at 37uC. DAB substrate

was then added, followed by counterstaining with hematoxylin.

Antigen-positive cells were counted in six fields per tumor

sample and analyzed by Image-pro analysis.

In silico Analysis
The CDOCKER module in Discovery studio (DS) 2.1 was

selected as our molecular docking algorithm. Chemoffice 2002

(Cambridgesoft, Cambridge, MA) was used to draw the chemical

structure of ISL. The three dimensional (3D) crystal structure of

VEGFR2 was determined from PDB (http://www.rcsb.org/pdb/)

with the ID of 3VHE [26]. Accuracy testing was performed by

calculating the root mean square deviation (RMSD) after docking

the internal ligand (Compound 20d:1-{2-fluoro-4-[(5-methyl-5H-

pyrrolo[3,2-d]pyrimidin-4-yl)oxy]phenyl}-3-[3 -(tri fluoromethyl)-

phenyl]urea) with the algorithm into the crystal structure of

VEGFR2. The water molecules in the picture of single crystal

diffraction of VEGFR2 were removed, and finally the protein was

refined with CHARMM in DS 2.1. For the docking purpose, the

ATP binding site within VEGFR-2 was defined as the ligand-

binding site, and ISL was docked into VEGFR-2 with proper

parameter setting. Specifically, starting from the initial configura-

tion, 100 different orientations of ISL were randomly generated

and docked into the ATP pocket of VEGFR-2. A molecular

dynamic simulation would be then carried out consisting of a

heating phase from 300 to 700 K with 2,000 steps and a cooling

phase back to 300 K with 5,000 steps. The binding energy was

calculated as a score to rank the docking poses. The top 10

docking poses will be finally saved.

Data Analysis
The data were expressed as mean 6 SD. A two-tailed Student’s

t-test was used to examine the significance of the data. Statistical

significance was considered when the P value ,0.05.

Results

ISL Inhibits the Proliferation of Endothelial Cells Induced
by VEGF
Since endothelial cells’ participation is a major factor contrib-

uting to angiogenesis, we examined whether ISL can inhibit the

activation of endothelial cells induced by VEGF. As shown in

Figure 1A, the proliferation of HUVEC was significantly increased

in response to VEGF stimulation in the absence of ISL, while it

was markedly suppressed after ISL administration. In contrast to

endothelial cells, much higher concentrations of ISL were required

to inhibit the proliferation of breast cancer cell line MCF-7 and

MDA-MB-231(Figure 1B), suggesting that ISL had greater

specificity as an inhibitor for VEGF-induced endothelial cell

proliferation. To clarify whether the observed reduction in cell

number of HUVECs resulted from the suppressed cell growth, we

studied the effects of ISL on DNA synthesis by measuring Brdu

incorporation. Our data indicated that ISL could significantly

inhibit the DNA synthesis of HUVECs (Figure 1C). Meanwhile,

cell cycle analysis revealed that ISL induced a G2/M arrest in

HUVECs (Figure 1D). To determine whether ISL had cytotoxicity

effect on HUVECs, we conducted the LDH cytotoxicity assay and

cell morphology observation. The results revealed that ISL had

little cytotoxicity effects on HUVECs from 5 to 20 mM (Figure 1E)

and there has little morphological changes of HUVECs after ISL

administration (Figure 1F).

ISL Inhibits in vitro Angiogenesis
Differentiation of endothelial cells into a tube-like structure is an

important step for the formation of functional vessels. We

investigated the effect of ISL on the morphological differentiation

of endothelial cells into capillary-like structures using in vitro tube

formation assay stimulated by VEGF. As shown in Figure 2A, a

robust and complete tube network was observed in the VEGF

alone group. However, ISL administration abrogated the width

and the length of endothelial tubular structures in a dose-

dependent manner.

Invasion of endothelial cells is also the key step required for neo-

angiogenesis. VEGF is a potent stimulator for endothelial cells

invasion and thus we used it as a chemo-attractant in the control

group and drug-treated groups. When VEGF alone was presented

in the lower chamber of a transwell plate, the endothelial cells

could efficiently migrate through the micropores to the bottom of

the membrane. However, when ISL was administrated on the top

chamber, the migrated ratio of endothelial cells was significantly

suppressed in a dose-dependent manner (Figure 2B). In addition,

wound healing assay also revealed that the migration of

endothelial cells was also inhibited after ISL administration for

24 h (Figure 2C). Overall, these results indicate that ISL has

inhibitory roles in blocking migration and differentiation of

endothelial cells induced by VEGF.

ISL Suppresses Angiogenesis in Chick Aortic Ring Model
To mimic the in vivo angiogenesis situation, the organotypic

assay of chick aortic ring model was built to further confirm the

potential angiogenesis inhibition effects of ISL. As shown in

Figure 3A & B, ISL administration resulted in a dose and time

dependent decrease in capillary sprout formation. The growing

sprouts around the ring were shorter and cells migrated into the

matrix were fewer in the 20 mM group, indicating that ISL might

efficiently block neo-vascularization in vivo. In order to confirm

whether the suppressed angiogenesis on chick aortic ring was due

to the cytotoxic or proliferation inhibition effects of the drug, ISL

was withdrawn after its exposure to aortic rings. As shown in

ISL Inhibits Angiogenesis via VEGF/VEGFR-2
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Figure 1. ISL inhibited endothelial cells proliferation. (A) After incubation with various concentrations of ISL for 48 h with and without VEGF
stimulation, the number of endothelial cells were counted. The results showed that the HUVEC proliferation was inhibited by ISL in a dose-dependent
manner; (B) Breast cancer cells MDA-MB-231, MCF-7 and endothelial cells were treated with various concentrations of ISL and cells were counted after
48 h. ISL exhibited a specific proliferation inhibition effect on endothelial cells in comparison with that of breast cancer cells. Data are represented as
a percentage of the vehicle-treated control; (C) Endothelial cells were treated with various concentrations of ISL plus with VEGF stimulation for 48 h
and labeling with BrdU. DNA synthesis was measured by enzyme-linked immunosorbent assay. ISL significantly suppressed DNA synthesis of
endothelial cells in a dose-dependent manner; (D) Cell cycle analysis revealed that after ISL (20 mM) treatment for 48 h, the cell cycle of HUVECs was
significantly arrested at G2/M checkpoint; (E) Endothelial cells culture supernatants after ISL treatment were collected and analyzed for LDH activity
assay. The results showed that ISL administration did not lead to LDH release from cells, indicating that ISL has little cytotoxicty effect on endothelial
cells; (F) After ISL (20 mM) administration for 48 h, there has little morphological changes of endothelial cells, further implying that ISL brought limited
toxicity effects on HUVECs at low doses. (All values represented as mean 6 SD, n = 6, *P,0.05, ** P,0.01 versus untreated control).
doi:10.1371/journal.pone.0068566.g001
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Figure 3C, the re-generation of the sprout around the ring further

indicated that ISL brought little toxicity effects on normal tissue or

cells.

ISL Blocks VEGF Expression via Promoting HIF-1a
Proteasome Degradation
VEGF has been identified as the most important pro-angiogenic

factor during cancer growth. In order to see whether ISL would

inhibit VEGF secretion in breast cancer cells, we detected VEGF

concentration in cell supernatants after ISL administration. The

results showed that under both normoxia and hypoxia condition,

Figure 2. ISL inhibited VEGF-induced tube formation, invasion and migration. (A) HUVECs were seeded at a density of 16104 cells/well per
24-well plate. Plates were previously coated with Matrigel and stimulated with VEGF (20 ng/ml) in the presence or absence of ISL (a: 0; b: 5 mM, c:
10 mM; d: 20 mM) for 12 h. The results showed that ISL significantly abrogated the formation of capillary network; (B) HUVECs at a density of 56105

cells/ml were plated onto the upper membrane of 6-well transwell coated with Matrigel. After 24 h, cells that invasive to the opposite side of the
membrane were counted (a: 0; b: 5 mM, c: 10 mM; d: 20 mM). The results revealed that ISL decreased invasive ability of HUVECs in a dose-dependent
manner; (C) HUVECs at a density of 56105 cells/ml were seeded in a 6-well plate for wound healing assay. The results showed that ISL (20 mM)
significantly inhibited endothelial cells migration under the stimulation of VEGF (All values represented as mean 6 SD, n = 3, *P,0.05 versus
untreated control).
doi:10.1371/journal.pone.0068566.g002

ISL Inhibits Angiogenesis via VEGF/VEGFR-2
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ISL could significantly inhibit VEGF secretion from breast cancer

cells MCF-7 and MDA-MB-231(Figure 4A). To determine

whether the decreased secretion was caused by down-regulated

VEGF expression, we detected VEGF mRNA level by RT-PCR

method. The results revealed that ISL could greatly suppress

VEGF mRNA level, but had little effects on its upstream gene

HIF-1a expression (Figure 4B). As HIF-1a was reported to be the

most important gene controlling VEGF expression, we therefore

Figure 3. ISL suppressed sprout formation on the chick aortic ring. The chick aortic ring was embedded in Matrigel and fed with M199
serum free medium containing various concentrations of ISL in the presence of VEGF. (A) ISL exhibited dose-dependently inhibition effects (a: 0; b:
5 mM, c: 10 mM; d: 20 mM) on the sprout formation after 3 days; (B) ISL at 20 mM significantly inhibited sprout formation in a time-dependent manner
from 24 h to 72 h; (C) Sprout inhibition effects of ISL was reversed after ISL removed from the culture system. Aortic rings were firstly incubated with
ISL (20 uM ) for 48 h. The culture medium was then replaced with fresh medium without ISL and further incubation with VEGF stimulation for 72 h,
the sprout was re-organized and growing, indicating ISL brought little toxicity effects on the normal tissues. (All values represented as means 6 SD,
n = 3, * P,0.05 versus untreated control).
doi:10.1371/journal.pone.0068566.g003
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intend to see whether ISL could also inhibit HIF-1a expression.

Western blotting results indicated that ISL could inhibit HIF-1a
expression under both normoxia and hypoxia condition

(Figure 4C). Besides transcription regulation, proteasome degra-

dation was also one of important regulator of intracellular HIF-1a
protein level. In order to see whether the decreased HIF-1a
protein level was caused by accelerated proteasome degradation

by ISL, we firstly added cycloheximide, a protein synthesis

inhibitor, to treat breast cancer cells with or without ISL. The

results showed that in MDA-MB-231 breast cancer cells, the HIF-

1a degradation speed was much faster in the ISL treated group

than that in the control group, indicating that the proteasome

degradation pathway might be activated. Meanwhile, the protea-

some inhibitor MG132 was then administrated to MDA-MB-231

cells with or without ISL. The results showed that the HIF-1a
accumulation level was comparable in ISL treated or untreated

groups, indicating that the accelerated proteasome degradation

pathway was mainly accounting for HIF-1a and VEGF down-

regulation induced by ISL (Figure 4D).

ISL Inhibits the VEGFR-2 Signaling Pathway in Endothelial
Cells
Since ISL inhibited VEGF-induced proliferation, migration and

tube formation of endothelial cells, we next investigated whether

ISL blocks the VEGF-induced signaling cascade pathways in

endothelial cells. Strong evidence demonstrated that VEGFR-2

tyrosine phosphorylation is a key step in maintaining endothelial

cells’ normal functions and formation of blood vessels. Thus we

tested the effects of ISL on VEGF-induced tyrosine phosphory-

lation of VEGFR-2. As shown in Figure 5A, the level of tyrosine

phosphorylated VEGFR-2 was significantly inhibited by ISL in a

dose dependant manner in comparison with cells only adminis-

trated with VEGF. To determine whether the inhibition of

tyrosine phosphorylation of VEGFR-2 by ISL is induced by the

inhibition of the kinase activity of VEGFR, we performed the

in vitro tyrosine kinase assay based on the ELISA method. The

results showed that ISL significantly inhibited the VEGFR-2

kinase activity, with an IC50 of 100 nM (Figure 5B), implying that

ISL could directly interact with VEGFR-2 via competing with

ATP binding. In order to investigate whether ISL would bring

influence to VEGF binding activity with VEGFR-2, we carried out

Co-IP assay. The results showed that after ISL treatment, the level

of VEGF binding to VEGFR-2 had little changes, indicating that

the suppressed VEGFR-2 activity was not attributed to decreased

VEGF binding (Figure 5C). Meanwhile, multiple downstream

signaling of VEGFR-2 including phosphorylation of ERK1/2,

JNK, AKT, eNOS and MMP-2 were also inhibited, which further

revealed that the ISL might inhibit HUVECs proliferation via

directly interfering with VEGFR-2 (Figure 5D).

ISL Inhibits Breast Cancer Neo-angiogenesis in vivo
To determine whether ISL has anti-angiogenesis activity in vivo,

breast cancer xenografts were built by seeding MDA-MB-231

cancer cells into the mammary glands of nude mice. ISL was given

to mice by intraperitoneal injection at 25 mg/kg/d and 50 mg/

kg/d. Vehicle treated control mice showed a rapid increase in

tumor growth. However, ISL low and high dose administration

significantly suppressed tumor growth from day 16 after treatment,

with a 50–65% inhibition ratio compared to the vehicle groups

(Figure 6A). The tumor weights in ISL groups were also

significantly reduced in comparison with control group

(Figure 6B). However, no significant body weight loss was

observed, indicating that ISL might have little toxicity effects by

in vivo application (Figure 6C). To determine whether ISL could

inhibit angiogenesis and VEGFR-2 expression in vivo as what we

observed in the in vitro experiments, we detected tumor microvessel

density (MVD), VEGF, p-VEGFR-2, MMP2 expression and

apoptosis by immunohistochemistry method. The results showed

that the MVD was significantly decreased in the ISL treated tumor

sample when compared to the vehicle control group, suggesting

that the tumor growth was partly due to the blood vessel

suppression caused by ISL. Meanwhile, the VEGF, pVEGFR-2

and MMP2 expression were also significantly down-regulated in

ISL treated tumor samples. In addition, TUNEL analysis revealed

that in ISL treatment group, there has a higher apoptosis ratio in

comparison with the control group (Figure 6D). In order to

validate whether ISL administration resulted in toxicity on normal

tissues, the heart, liver, spleen, lung and kidney tissues were

collected for morphological detection by HE method. The results

showed that little significant morphological changes on these

tissues were observed, which were consistent with our in vitro study

(Figure 6E). Taken together, these results suggest that ISL can

inhibit tumor progression and MVD through suppression of the

VEGFR-2 signaling pathway.

ISL Locates within the ATP-binding Sites of VEGFR-2
We next analyzed the binding pattern between ISL and

VEGFR-2 to further understand how ISL inhibits the activation

of VEGFR-2 kinase and its downstream signaling pathways. The

ATP-binding site within VEGFR-2 was defined as the docking

site. The RMSD of internal ligand (Compound 20d) re-docking

into the ATP binding site of VEGFR-2 (3VHE) with CDOCKER

algorithm was 0.38, implying that the algorithm was suitable for

docking analysis. The docking results showed that ISL presenting a

unique binding mode to the ATP binding site of VEGFR-2 with

strong stability (RMSD=0.0326,1.5699 (ten random poses)) and

strong binding activity (CDOCK_ENERGY=33.541) compared

to the internal ligand (CDOCK_ENERGY=44.737). As shown in

the Figure 7, ISL displayed unique binding features in the ATP

binding domain. On one side of ISL, 2–3 potential hydrogen

bonds are formed with the residues Glu885 and Asp1046 of

VEGFR-2, accompanying with a p-p stacking interaction with

Lys868. Meanwhile, on the other benzene ring of ISL, it could

form hydrogen bonds with Cys919, which contributes to the

stability and balance of ISL binding to the protein. All these results

suggested that ISL might be a potent VEGFR-2 inhibitor.

Discussion

Angiogenesis plays an important role in cancer development

and metastasis. Therefore angiogenesis inhibition has become a

promising strategy for malignancy treatment in addition to

conventional therapies such as chemotherapy and radiotherapy.

However, current anti-angiogenic agents have relative hazardous

effects in chronic applications. Finding less toxic phytochemicals

targeting tumor angiogenesis has become an important direction

in cancer research. ISL is a charlcone-type dietary flavonoid. The

anti-tumor activity of ISL has recently been reported in various

types of cancer including breast, prostate, colon, oral, cervical and

leukemia [16–19,27]. The discovered anti-cancer mechanisms of

ISL include cell proliferation inhibition, cell cycle arrest,

inflammation suppression, apoptosis induction and elevation of

oxidative stress. Several studies also reported that ISL could inhibit

neo-angiogenesis [23,25]. However, whether or not ISL can

inhibit cancer neo-angiogenesis and its underlying molecular

mechanisms are still remained largely unknown.

At the cellular level, our results showed that ISL could inhibit

various steps of angiogenesis, including VEGF-induced endothelial
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cell proliferation, tube formation, migration and aortic ring sprout

formation. The inhibitory activity of ISL on endothelial cell

functions is not likely due to the cytotoxicity effects. This was

reflected by our observation that ISL has a rather specific activity

toward actively proliferating HUVECs in comparison to non-

endothelial cells and ISL brought little LDH release from

HUVECs. To better understand the mechanism by which ISL

inhibit cancer growth and angiogenesis, here we investigated the

influences of ISL on the most critical signaling pathway VEGF/

VEGFR-2 that stimulate angiogenesis. Our results found that ISL

could inhibit VEGF expression in both MCF-7 and MDA-MB-

231 breast cancer cell lines, especially under hypoxia condition.

The primary regulator of VEGF expression in response to hypoxia

is HIF-1a. HIF-1a activates VEGF gene expression by binding to

the hypoxia response element in the VEGF promoter region. The

level of HIF-1a expression is mainly determined by the rate of

protein synthesis compared to protein degradation, which was

mediated by poly-ubiquitination and subsequent digestion by

proteasome. Herein, we demonstrated that ISL could inhibit HIF-

1a expression under both normoxia and hypoxia conditions, while

Figure 4. ISL blocked VEGF expression of breast cancer cells via promoting HIF-1a proteasome degradation pathway. (A) The VEGF
concentration in the supernatants of breast cancer cells after ISL treatment was detected by Elisa method. The results revealed that ISL could
significantly inhibit VEGF secretion in a dose-dependent manner under both normoxia and hypoxia condition; (B) RT-PCR assay showed that ISL could
inhibit VEGF mRNA transcription in a dose-dependent manner, however, had little effects on HIF-1a mRNA level; (C) Western blotting results showed
that ISL could significantly inhibit HIF-1a protein expression under both normoxia and hypoxia condition; (D) ISL inhibited HIF-1a protein expression
via promoting its proteasome degradation pathway. Cychloheximide (CHX) was firslty administrated on breast cancer cells to inhibit protein
synthesis. The expression of HIF-1a in both control and ISL treated cancer cells were validated by western blotting. The results showed that the HIF-
1a degradation speed was much faster in ISL treated groups than in control groups. Meanwhile, MG132 was administrated on breast cancer cells to
block the proteasome activity. The results indicated that the accumulation quantities of HIF-1a were comparable in both control and ISL treated
groups, indicating that the proteasome degradation was mainly accounting for HIF-1a and VEGF down-regulation induced by ISL. (All values
represented as means 6 SD, n = 3, *,# P,0.05, **,## P,0.01 versus untreated control).
doi:10.1371/journal.pone.0068566.g004
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there had little changes on its mRNA expression level, indicating

that the proteasome degradation pathway might be activated. This

possibility was supported by the comparable level of HIF-1a
regardless of ISL treatment in the presence of proteasome

degradation inhibitor MG132. On the other hand, it was observed

that HIF-1a degradation was accelerated under the treatment of

both ISL and protein synthesis inhibitor CHX, indicating that the

HIF-1a proteasome degradation pathway is the main mechanism

accounting for the decreased VEGF expression induced by ISL.

VEGFR-2 has been reported to be the critical molecule

responsible for maintaining endothelial normal functions including

proliferation, migration, differentiation, capillary network forma-

tion and vascular permeability [28]. Upon ligand binding with

VEGF, VEGFR-2 undergoes autophosphorylation and becomes

activated. Meanwhile, VEGFR-2 activation can also trigger

intracellular signaling by phosphorylation with other proteins

such as Akt, Jnk and Erk, which were reported to be elevated in

tumors and correlated with tumor progression [29,30]. A growing

list of inhibitors of angiogenesis targeting at VEGFR-2 have been

designed. However, little is known about whether natural products

can inhibit the VEGFR-2 kinase activity. In our study, treatment

with ISL markedly reduced the phosphorylation form of VEGFR-

2. Meanwhile, the VEGFR-2 tyrosine kinase activity was also

significantly inhibited by ISL. Although the inhibitory efficacy of

ISL is much lower than that of sunitinib (10 nM) [31], it might be

more suitable for long-term application as a dietary compound.

These findings suggest that the anti-angiogenic effect of ISL is

mediated, at least in part, by the reduction of VEGFR-2 activity.

In order to investigate whether the decreased VEGFR-2 activity is

caused by reduced binding of VEGF, we conducted Co-IP assay.

The results found that ISL brought little influences on the level of

VEGF binding to VEGFR-2, indicating that the decreased

Figure 5. ISL suppressed VEGFR-2 kinase activity and its downstream signaling. (A) HUVECs were treated with various concentrations of
ISL for 12 h under the stimulation of VEGF (20 ng/ml). Western blotting results showed that the p-VEGFR-2 expression was gradually down-regulated
with the increasing dose of ISL; (B) ISL inhibited VEGFR-2 kinase activity. VEGFR-2 and various concentrations of ISL were incubated in kinase reaction
buffer in 96-well plates coated with a poly-Glu-Tyr substrate. Phosphorylation of the substrate was monitored with a purified phosphotyrosine
specific monocolonal antibody conjugated to horseradish peroxidase followed by chromogenic reaction with horseradish peroxidase substrate. The
inhibition IC 50 of ISL on VEGFR-2 activation was determined about 100 nM; (C) Whole-cell extracts were collected and analyzed by Co-IP assay and
Western blotting using antibodies against VEGF, VEGFR-2 and PTyr1175-VEGFR-2. The results showed that ISL did not interfere with VEGF binding to
VEGFR-2; (D) The VEGFR-2 downstream signalings including p-ERK/ERK, p-JNK/JNK, p-AKT/AKT and eNOS were also inhibited after ISL administration
demonstrated by Western blotting. Meanwhile, the MMPs activities in the supernatants of HUVECs treated with ISL were also analyzed by gelatin
zymography. The results indicated that the MMP-2 activity was also down-regulated by ISL. (All values represented as mean 6 SD, n= 3, *P,0.05, **
P,0.01 versus untreated control).
doi:10.1371/journal.pone.0068566.g005
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Figure 6. ISL inhibited tumor growth and angiogenesis on MDA-MB-231 breast cancer xenografts. (A) Nude mice bearing breast cancer
were treated with the vehicle or ISL (25 and 50 mg/kg/d). The results showed that ISL significantly attenuated breast cancer growth in a dose-
dependent manner; (B) The tumor weights in ISL- treated group were significantly decreased in comparison with the vehicle control; (C) The body
weights between control and ISL-treated group had little differences, indicating ISL might have little toxicity effects on mice; (D) The tumor tissues
removed from mice were processed for immunohistochemistry detected with antibodies for CD31, VEGF, p-VEGFR-2 and MMP-2. The results showed
that the tumor MVD was significantly inhibited by ISL. Meanwhile, ISL significantly suppressed the expression of VEGF, p-VEGFR-2 and MMP-2 in vivo;
(E) HE analysis demonstrated that ISL had little influences on the micro-morphology of normal tissues including heart, liver, spleen, lung and kidney
(All values represented as means 6 SD, n = 6, * P,0.05, versus control).
doi:10.1371/journal.pone.0068566.g006
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VEGFR-2 activity might be due to the direct inhibition effects of

ISL.

As the downstream activators of VEGFR-2, the P42/44 ERK,

JNK-MAPK and Akt pathways are considered as the most critical

pathways for maintaining endothelial cells survival. In particular,

P42/P44 ERK activation is considered as an absolute requirement

for VEGF-induced angiogenesis. Blocking ERK activation result-

ed in significant proliferation inhibition effects and apoptosis on

endothelial cells [30]. JNK activation also results in cell

proliferation by promoting nuclear activation of c-Jun [32]. Akt

is a serine/threonine protein kinase that plays a key role in

multiple cellular processes such as cell proliferation, cell cycle,

apoptosis and cell migration [33]. Our results showed that ISL

administration inhibited all these three pathways, indicating that

they might cooperatively contribute to the proliferation inhibition

effects induced by ISL.

Disruption of the basement membrane is also a key step in

angiogenesis an metastasis. Matrix metalloproteinases (MMPs)

play an important role in degrading the proteins in the

extracellular matrix such as collagens and gelatins [34]. At least

17 MMP members have been identified in humans. They are

classified into subgroups of collagenases (MMP-1, MMP-8 and

MMP-13), gelatinases (MMP-2, MMP-9), stromelysins (MMP-3,

MMP-7, MMP-10, MMP-12), membrane-type MMPs (MMP-14,

MMP-15, MMP-16, MMP-17) and others (MMP-11, MMP-19,

MMP-20) [35–37]. Among them, MMP-2 has been shown to be

associated with angiogenesis during cancer development and

metastasis [38,39]. Our results also demonstrated that ISL could

significantly suppress MMP-2 expression stimulated by VEGF in

HUVECs. Since MAPK pathways were reported correlating to

the activation and expression of MMPs [40], the MMPs inhibition

effects of ISL on HUVECs might be also attributed to the

suppressed activity of P42/44 ERK and JNK pathways.

To thoroughly understand how ISL interacted with VEGFR-2

to inhibit cancer angiogenesis, we further examined the structure-

based interaction between ISL and VEGFR-2 by in silico analysis.

Structurally, VEGFR-2 consists of 1356 amino acids in humans,

and can be separated into the N-terminal lobe and the larger C-

terminal lobe [41]. To be specific, the N-terminal side at residues

820–920 is composed of a twisted b sheet and one a helix (aC).
Among the five anti-parallel strands (b1–b5) of b sheet, three (b1–
b3) strands are curved and curl over the other two (b4–b5). The C-
terminal side at residues 921–1168 contains two anti-parallel b
strands (b7–b8) as well as seven a helices (aD, aE, aE-F, aF, aG,

aH, aI). The b7 and b8 are located at the top of the C-terminal

side bordering b structure of the N-terminal [42]. In addition, the

architecture of VEGFR-2 involves several important loop domains

including glycine-rich loop (also refers to nucleotide binding loop)

at residues 841–846, the catalytic loop at residues 1026–1033, and

the activation loop at residues 1046–1075 [42,43]. Notably, the

ATP-binding domain lies between N-terminal lobe and C-

terminal lobe of the kinase fold. This site and less conserved

surrounding sites are especially important for anti-VEGFR2 agent

design [44]. Many approved VEGFR-2 inhibitors, such as

sorafenib and sunitinib, exert their inhibitory effects through

purely or partially competing with ATP to bind with the ATP

pocket within the catalytic domain and subsequently suppressing

the receptor autophosphorylation. Particularly, through docking

analysis of present VEGFR-2 inhibitors, the active sites around the

ATP-binding domain of VEGFR-2 are hypothesized consisting of

three hydrophobic regions (Region 1–3) as well as one polar region

(region 4). The first hydrophobic pocket Region 1 contains

residues including Val846, Ala864, Val897, Val914, Phe916 and

Leu1033, adjacent to the hinge region. Larger Region 2 is

composed of residues such as Leu887, Val896, Val897, Leu1017

and Phe1047. Between the Region 1 and the Region 2, residues

Lys866, Glu883 as well as Asp1044 are also critical for receptor

activation. Region 3 contains only a few residues including Leu838

and Phe916. The unique polar region involves several residues

such as Asn921, Cys1043, Arg1030 and Asn1031 [45,46]. Our

docking results showed that ISL could bind to the residues of Glu

885, Lys 868, Asp 1046 and Cys 919 with great stability and

binding energy. These involved residues are very close to the

above stated active sites, implying that ISL could inhibit VEGFR-

2 activity by directly interacting with the ATP-binding site of

Figure 7. ISL interacted with the ATP-binding site of VEGFR-2 kinase domain. The CDOCKER module in Discovery studio (DS) 2.1 was
applied to predict the binding mode of ISL with the ATP-binding domain of VEGFR-2. The results revealed that ISL could stably bind to the ATP-
binding pocket near the hinge region. Detailed interaction mode were displayed in the upper panel, where ISL could form 2–3 potential hydrogen
bonds with the residues Glu885 and Asp1046. A p-p stacking interaction with Lys868 is also occurred. The other benzene ring of ISL could form
potential hydrogen bonds with Cys919, which benefits the balance of ISL in VEGFR-2 binding.
doi:10.1371/journal.pone.0068566.g007
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VEGFR-2. The inhibitory action of ISL on cancer angiogenesis

was summarized in Figure 8.

To evaluate the effect of ISL on in vivo tumor angiogenesis, we

built breast cancer xenografts on nude mice. The results

demonstrated that ISL could significantly inhibit breast cancer

growth, accompanied with a reduced MVD on tumor samples.

Based on the in vitro results, the reduced MVD may be due to the

inhibited VEGFR-2 activation and its induced suppression effects

on both endothelial cells and other cell types such as macrophages,

leukocytes and tumor cells, which play an important role in neo-

angiogenesis during tumor development. Our results showed that

both P-VEGFR-2 and its downstream signaling molecules

expression were significantly down-regulated in ISL treatment

tumor tissues, which were consistent with our in vitro findings.

Meanwhile, the apoptosis ratio in ISL-treated samples was

elevated, which might be due to the insufficient blood nutrients.

In addition, little significant morphological changes on normal

tissues were found out, implying that ISL is safe when consumed

in vivo.

In recent years, a great emphasis has been focused on the

development of dietary botanicals that can be consumed in daily

life as chemopreventive or chemotherapeutic agents. Flavonoids,

as common compounds widely found in fruits, vegetables, nuts,

seeds and flowers, have been reported possessing substantial anti-

carcinogenic and anti-mutagenic activities due to their antioxidant

and anti-inflammatory properties [47,48]. However, little is known

about the key molecular targets underlying their chemopreventive

or therapeutic activities against various cancers. Our findings

indicated that the dietary compound ISL might be considered as a

potent VEGFR-2 inhibitor and be chronically used as supple-

mentary agents for angiogenesis inhibition in breast cancer

therapy. However, further study is needed to evaluate the

prevention role of ISL on inhibiting angiogenesis by a carcino-

gen-induced or genetically engineered tumor model. The interac-

Figure 8. Overall scheme of the regulatory network involved in the inhibitory effect of ISL on breast cancer neoangiogenesis.
doi:10.1371/journal.pone.0068566.g008
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tion between ISL and cancer conventional therapies also requires

deep further study in the future.
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