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Molecular signalling towards 
mitochondrial breakdown is 
enhanced in skeletal muscle of 
patients with chronic obstructive 
pulmonary disease (COPD)
P. A. Leermakers   1, A. M. W. J. Schols1, A. E. M. Kneppers1, M. C. J. M. Kelders1, 
C. C. de Theije1, M. Lainscak2,3 & H. R. Gosker1

Loss of skeletal muscle mitochondrial oxidative capacity is well-established in patients with COPD, but 
the role of mitochondrial breakdown herein is largely unexplored. Currently, we studied if mitochondrial 
breakdown signalling is increased in skeletal muscle of COPD patients and associates with the loss 
of mitochondrial content, and whether it is affected in patients with iron deficiency (ID) or systemic 
inflammation. Therefore, mitophagy, autophagy, mitochondrial dynamics and content markers were 
analysed in vastus lateralis biopsies of COPD patients (N = 95, FEV1% predicted: 39.0 [31.0–53.6]) and 
healthy controls (N = 15, FEV1% predicted: 112.8 [107.5–125.5]). Sub-analyses were performed on 
patients stratified by ID or C-reactive protein (CRP). Compared with controls, COPD patients had lower 
muscle mitochondrial content, higher BNIP3L and lower FUNDC1 protein, and higher Parkin protein 
and gene-expression. BNIP3L and Parkin protein levels inversely correlated with mtDNA/gDNA ratio 
and FEV1% predicted. ID-COPD patients had lower BNIP3L protein and higher BNIP3 gene-expression, 
while high CRP patients had higher BNIP3 and autophagy-related protein levels. In conclusion, our data 
indicates that mitochondrial breakdown signalling is increased in skeletal muscle of COPD patients, and 
is related to disease severity and loss of mitochondrial content. Moreover, systemic inflammation is 
associated with higher BNIP3 and autophagy-related protein levels.

Skeletal muscle weakness contributes to poor clinical outcome and is associated with increased morbidity and 
mortality in patients with chronic obstructive pulmonary disease (COPD)1,2. Important drivers of muscle weak-
ness are the loss of skeletal muscle mitochondrial oxidative capacity and content, which, together with a oxidative 
to glycolytic fibre-type shift, are well-established in COPD1,3,4. Moreover, skeletal muscle mitochondria isolated 
from COPD patients were found to be functionally impaired and produce more reactive oxygen species, which 
indicates reduced mitochondrial health5.

Skeletal muscle oxidative capacity and mitochondrial quantity are mainly regulated by mitochondrial home-
ostasis, which is determined by the balance between mitochondrial biogenesis and mitochondrial breakdown6. 
Several studies have previously reported impaired skeletal muscle mitochondrial biogenesis regulation in COPD 
patients3,7,8, but data on mitochondrial breakdown is limited and its relation to the loss of oxidative capacity 
unknown.

Although individual mitochondrial proteins can be targeted for selective breakdown, bulk mitochon-
drial breakdown occurs via either autophagy-dependent (i.e. mitophagy) or autophagy-independent (i.e. 
mitochondria-derived vesicles (MDV)) lysosomal breakdown9. During mitophagy, mitochondria, or parts 
thereof, are separated from the mitochondrial network, engulfed by an autophagosomal membrane and 
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subsequently broken down by a lysosome. This pathway can roughly be divided in receptor-mediated mitophagy, 
activated by mitophagy-receptors like BCL2/Adenovirus E1B 19 kDa protein-interacting protein 3 (BNIP3), 
BNIP3-like (BNIP3L), and FUN14 domain-containing protein 1 (FUNDC1)10–12, and PINK1/Parkin-mediated 
mitophagy, initiated by stabilization and activation of PTEN-induced putative kinase 1 (PINK1) and Parkin13–15. 
During MDV formation, which also requires PINK1 and Parkin, only a small portion of the mitochondrion is 
isolated from the mitochondrial network and targeted for lysosomal breakdown independently of autophagy16,17.

Mitochondria are highly dynamic organelles, which are constantly changing in size and shape. These changes 
are mediated through mitochondrial fission and fusion events. Mitochondrial fission has been suggested to be 
play an important role in isolating mitochondria from the mitochondrial network, priming them for mitophagy9. 
Fission is regulated by master-regulator Dynamin 1 Like (DNM1L), which is also known as Dynamin-related 
protein 1 (DRP1), and proteins like Mitochondrial fission 1 (FIS1), while fusion is mainly regulated on by Optic 
atrophy 1 (OPA1), and proteins from the Mitofusin (MFN) family9.

Interestingly, Guo et al. previously showed some indications of increased mitophagy in skeletal muscle of 
COPD patients18, but the relation between the mitochondrial breakdown and mitochondrial content in the skel-
etal muscle of COPD patients remains unstudied.

Although it is unlikely that the COPD-related lung pathology directly regulates the activation of these mito-
chondrial breakdown-pathways in skeletal muscle, these patients usually suffer from several extra-pulmonary 
manifestations which may be implicated in the development of skeletal muscle- and mitochondrial dysfunction, 
like cigarette smoke exposure, muscle inactivity, iron deficiency, and systemic inflammation19–21. Interestingly, 
both iron deficiency and systemic inflammation, which are commonly present in COPD patients, are not only 
linked to decreased exercise performance or oxidative capacity in chronic diseases22,23, but to induction of mito-
phagy in non-skeletal muscle models as well24–26. Therefore, it is likely that these manifestations have negative 
impact on the skeletal muscle mitochondrial content in COPD patients by inducing the initiation of mitochon-
drial breakdown

In the current study, we hypothesised that mitochondrial breakdown signalling is increased in skeletal muscle 
of COPD patients and is associated with the loss of mitochondrial content. In addition, we hypothesized that iron 
deficiency (ID) or enhanced systemic inflammation result in enhanced mitochondrial breakdown signalling in 
these patients. We tested these hypotheses by assessing differences in skeletal muscle expression of molecular 
markers of mitochondrial breakdown (i.e. BNIP3, BNIP3L, FUNDC1, PINK1, PARK2), general autophagy (i.e. 
LC3B, GABRARAPL1, SQSTM1, OPTN, CALCOCO2), and mitochondrial dynamics (i.e. DNM1L, FIS1, OPA1, 
MFN1) between COPD patients and controls, and studied if the mitochondrial breakdown markers correlated 
with markers for mitochondrial content (i.e. NDUFB8, SDHB, UQCR2, MT-COI, ATP5A, mtDNA/gDNA ratio). 
Moreover, we studied differences in expression of markers in these panels between COPD patients stratified by 
either iron deficiency, or the systemic inflammation marker C-reactive protein (CRP) plasma levels.

Results
COPD patients have altered levels of mitochondrial breakdown related markers compared with 
healthy controls.  Patients had mild-to-severe COPD and were similar to control subjects with respect to 
age, sex, and body composition. In addition, patients had a different distribution of smoking status with a higher 
proportion of current- and ex-smokers compared with healthy controls. As expected, MYH7 gene-expression, a 
surrogate marker for type I fibre proportion, was lower in the patients (Table 1).

BNIP3L protein levels were higher in the vastus lateralis of COPD patients compared with controls (Fig. 1A). 
No differences were found for BNIP3 and BNIP3L gene-expression (Fig. 1B). Moreover, FUNDC1 protein levels 
were found to be lower in the patients, while there was no corresponding change in FUNDC1 gene-expression 
(Fig. 1A,B).

Microtubule associated protein 1A/1B-light chain 3B (LC3B) and γ-aminobutiric acid receptor-associated 
protein-like 1 (GABARAPL1) are autophagosomal membrane-based proteins with high affinity for respectively 
binding BNIP3/FUNDC1 and BNIP3L, which are needed for mitochondrial autophagosomal engulfment. 
Higher protein levels of the premature, cytoplasmic-based (LC3BI), but not of the mature, autophagosomal 
membrane-based (LC3BII), form of LC3B were found, resulting in a lower LC3BII/LC3BI protein ratio in COPD 
patients (Fig. 1C). Both protein levels and gene-expression of GABARAPL1, and gene-expression of LC3B were 
not different between groups (Fig. 1C,D).

Parkin protein- and gene-expression was higher in patients compared with controls (Fig. 1A,B), while 
gene-expression of PINK1 was not different (Fig. 1B). Although no differences were found in protein levels or 
gene-expression for the downstream autophagy-receptors sequestosome 1 (SQSTM1) and Calcium Binding And 
Coiled-Coil Domain 2 (CALCOCO2) (Fig. 1C,D), gene-expression of autophagy-receptor Optineurin (OPTN) 
was higher in COPD patients (Fig. 1D).

Protein levels of mitochondrial fission master regulator DNM1L were lower in vastus lateralis of COPD 
patients compared with controls (Fig. 1E). Gene-expression of mitochondrial fission or fusion markers was not 
different between the groups (Fig. 1F).

COPD patients have a lower mitochondrial quantity compared with healthy controls, and both 
mitochondrial quantity and FEV1% predicted correlate moderately with the mitochondrial 
breakdown markers.  All tested subunits of oxidative phosphorylation (OXPHOS) complexes as well as 
the mtDNA/gDNA ratio were lower in the vastus lateralis of COPD patients compared with controls (Fig. 2A,B).

Since the mtDNA/gDNA ratio is widely accepted as a solid overall marker of mitochondrial content, we stud-
ied its correlation to the protein levels of BNIP3L (ρ = −0.288, p = 0.006), BNIP3 (ρ = 0.183, p = 0.083), FUNDC1 
(ρ = 0.259, p = 0.014), and Parkin (ρ = −0.209, p = 0.049) (Supplementary Fig. 1A–D). The mtDNA/gDNA ratio 
correlated with FEV1% predicted (ρ = 0.407, p < 0.001) as well, suggesting a link between disease severity and 
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Control COPD

(N = 15) (N = 95)

Demographics

Age, years†† 65.1 (6.0) 65.0 (7.8)

Sex, % male† 60.0 66.3

Smoking status
(never, ex, current), %† 47, 47, 6 0, 28, 72***

Lung function

FEV1, % predicted††† 112.8 [107.5–125.5] 39.0 [31.0–53.6]***

FEV1/FVC, %††† 73.3 [69.3–77.8] 35.6 [28.1–46.4]***

GOLD stage (1, 2, 3, 4), %† 3, 23, 51, 23

Body composition

BMI, kg/cm2††† 23.9 [23.0–26.1] 25.6 [22.2–27.3]

Muscle composition

MYH7 mRNA expression, Arbitrary Units††† 1.043 [0.602–1.265] 0.405 [0.166–0.693]***

Table 1.  Characteristics of study population. Abbreviations: BMI, body mass index; FEV1, forced expiratory 
volume in 1 second; FVC, forced vital capacity; GOLD, Global Initiative for Chronic Obstructive Lung Disease. 
†Data presented as percentage and statistical differences were calculated with chi-squared test; ††data presented 
as mean (SD) and statistical differences were calculated with independent samples t-test; †††data presented as 
median [interquartile range] and statistical differences were calculated with Mann-Whitney U test. Statistical 
significance is depicted ***p < 0.001.

Figure 1.  Protein and mRNA expression of markers related to mitophagy and autophagy in m. vastus 
lateralis of COPD patients and representative controls. Mitophagy-associated protein levels (A) and mRNA 
expression (B) are depicted. Autophagy-associated protein levels (C) and mRNA expression (D) are depicted. 
Mitochondrial dynamics-associated protein levels (E) and mRNA expression (F) are depicted. White bars 
represent healthy controls and black bars represent COPD patients. All samples derive from the same 
experiment and gels/blots were processed in parallel. Data presented as mean ± SEM. Variables had †normal or 
††non-normal distribution and p-value of †parametric or ††non-parametric test and significant differences are 
depicted *p < 0.05, ***p < 0.001.
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mitochondrial content in COPD. Therefore, we also studied the correlation between FEV1% predicted and 
BNIP3L (ρ = −0.308, p = 0.003), BNIP3 (ρ = −0.003, p = 0.976), FUNDC1 (ρ = 0.461, p < 0.001) and Parkin 
(ρ = −0.361, p < 0.001) (Supplementary Fig. 2A–D).

Iron deficient COPD patients have altered levels of BNIP3- and BNIP3L-mediated mitophagy 
markers compared with non-iron deficient COPD patients.  To test whether muscle mitophagy is 
affected by iron deficiency in COPD patients, patients from the Golnik cohort were subdivided in ID-COPD and 
NID-COPD. Patients with ID-COPD were not different with respect to age, sex, smoking status, BMI, and plasma 
haemoglobin levels when compared with NID-COPD. However, they had a better lung function, and higher 
MYH7 gene-expression (Table 2).

BNIP3L protein levels were lower in the vastus lateralis of patients with ID-COPD compared with NID-COPD, 
while BNIP3 protein levels were not different (Fig. 3A). Although no changes in BNIP3L gene-expression were 
found, BNIP3 gene-expression was higher in ID-COPD (Fig. 3B). No differences were found for FUNDC1, 
PINK1, or Parkin (Fig. 3A,B). Although LC3B gene-expression was higher in ID-COPD (Fig. 3D), there was 

Figure 2.  Protein levels of mitochondrial content markers and mtDNA/gDNA ratio in m. vastus lateralis of 
COPD patients and representative controls. Protein levels of different mitochondrial OXPHOS subunits are 
depicted (A). NDUFB8 as a subunit of OXPHOS complex I, SDHB of complex II, UQCRC2 of complex III, 
MT-COI of complex IV, and ATP5A of complex V. mtDNA/gDNA ratio is depicted (B). White bars represent 
healthy controls and black bars represent COPD patients. All samples derive from the same experiment and 
gels/blots were processed in parallel. Data presented as mean ± SEM. Variables had †normal or ††non-normal 
distribution and p-value of †parametric or ††non-parametric test and significant differences are depicted 
*p < 0.05, **p < 0.01, ***p < 0.001.

non-iron deficient COPD iron deficient COPD

(N = 44) (N = 19)

Demographics

Age, years†† 63.8 (8.4) 67.3 (8.8)

Sex, % male† 75.0 55.6

Smoking status
(never, ex, current), %† 0, 12, 88 0, 6, 94

Lung function

FEV1, % predicted††† 32.5 [25.3–40.3] 40.0 [34.0–60.0]*

FEV1/FVC, %††† 29.8 [26.5–37.8] 37.1 [33.0–43.5]*

GOLD (1, 2, 3, 4), %† 0, 7, 57, 36 0, 32, 53, 16*

Body composition

BMI, kg/cm2†† 24.7 (3.8) 25.9 (4.9)

Iron status

Serum iron (μmol/L)†† 19.6 (6.4) 14.6 (7.0)*

Transferrin (g/L)††† 2.4 [2.2–2.7] 2.5 [2.2–2.6]

Transferrin Saturation (%)††† 31.0 [24.0–40.0] 22.0 [17.0–26.0]**

Ferritin (ng/ml)††† 222 [158–294] 78 [58–116]***

Haemoglobin (g/l)†† 147.0 (13.0) 142.1 (8.9)

Muscle composition

MYH7 mRNA expression, Arbitrary Units††† 0.179 [0.128–0.479] 0.517 [0.323–0.837]*

Table 2.  Characteristics of the subset of COPD patients stratified by iron deficiency. Abbreviations: BMI, 
body mass index; FEV1, forced expiratory volume in 1 second; FVC, forced vital capacity; GOLD, Global 
Initiative for Chronic Obstructive Lung Disease. †Data presented as percentage and statistical differences were 
calculated with chi-squared test; ††data presented as mean (SD) and statistical differences were calculated with 
independent samples t-test; †††data presented as median [interquartile range] and statistical differences were 
calculated with Mann-Whitney U test. Statistical significance is depicted *p < 0.05, **p < 0.01, ***p < 0.001.
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no change in protein levels of LC3B or LC3BII/LC3BI ratio (Fig. 3C). None of the autophagy receptors down-
stream of PINK1/Parkin-mediated mitophagy (i.e. SQSTM1, OPTN, CALCOCO2) showed differential protein- 
or gene-expression (Fig. 3C,D). Interestingly, gene-expression of the mitochondrial fusion markers OPA1 and 
MFN1 was higher in ID-COPD, while no differences were found for the mitochondrial fission-related DNM1L 
and FIS1 on either protein or mRNA level (Fig. 3E,F). No differences in mitochondrial content were found in 
patients with ID-COPD compared with NID-COPD (Fig. 4A,B).

Patients with high CRP have higher levels of BNIP3-mediated mitophagy markers compared 
with patients with low CRP.  To test whether muscle mitophagy is affected by systemic inflammation in 
COPD patients, patients from the Maastricht cohort were divided in groups with high or low CRP. The groups 
were not different with respect to age, sex, smoking status, lung function, BMI, and MYH7 gene-expression 
(Table 3).

BNIP3 protein levels were higher in the vastus lateralis of patients with high CRP compared with patients 
with low CRP, while levels of other mitophagy-related proteins were not different (Fig. 5A). Interestingly, while 
LC3BII was the only measured autophagy-related protein which had significantly higher levels in the patients 
with high CRP, many other autophagy-related proteins showed similar trends (i.e. LC3BI, GABARAPL1, and 
SQSTM1) (Fig. 5C). Both mitophagy- and autophagy-related gene-expression was not different between the 
groups (Fig. 5B–D). No differences in any measured markers for mitochondrial dynamics were found (Fig. 5E,F), 
or mitochondrial content were found in patients with high compared with patients with low CRP (Fig. 6A,B). A 
schematic summary of all results is depicted in Fig. 7.

Discussion
Our data indicates that mitochondrial breakdown is increased in quadriceps muscle of patients with COPD, illus-
trated by differential expression of both markers for receptor-mediated mitophagy and PINK1/Parkin-mediated 
mitochondrial breakdown. Secondly, we show that this expression pattern is associated with the decreased 
expression of mitochondrial content markers. Moreover, both BNIP3L and Parkin protein levels are inversely 
correlated with mitochondrial content and disease severity within the group of patients. Lastly, we report dif-
ferences in the expression pattern of markers for BNIP3 and BNIP3L-mediated mitophagy in COPD patients 

Figure 3.  Protein and mRNA expression of markers related to mitophagy, autophagy, and mitochondrial 
dynamics in m. vastus lateralis of patients with NID-COPD and ID-COPD. Mitophagy-associated protein levels 
(A) and mRNA expression (B) are depicted. Autophagy-associated protein levels (C) and mRNA expression 
(D) are depicted. Mitochondrial dynamics-associated protein levels (E) and mRNA expression (F) are depicted. 
White bars represent healthy controls and black bars represent COPD patients. All samples derive from the 
same experiment and gels/blots were processed in parallel. Data presented as mean ± SEM. Dotted lines 
represent healthy controls. Variables had †normal or ††non-normal distribution and p-value of †parametric or 
††non-parametric test and significant differences are depicted *p < 0.05, **p < 0.01, ***p < 0.001.
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suffering from either iron deficiency or systemic inflammation. Although the interpretation of this differential 
expression remains difficult for ID, it suggests increased BNIP3-mediated mitophagy signalling in patients with 
systemic inflammation.

Receptor-mediated mitophagy is described as a pathway targeting mitochondria for mitophagy based on acti-
vation of specific receptors by upstream signalling10. The currently reported higher protein levels of BNIP3L are a 
clear indication towards increased levels of this type of mitophagy in skeletal muscle of COPD patients. Moreover, 
BNIP3L was found to correlate inversely with the mtDNA/gDNA ratio and FEV1% predicted, suggesting a grad-
ual increase in the level of BNIP3L-mediated mitophagy with increasing disease severity and loss of mitochon-
drial content. However, we observed a trend towards lower levels of BNIP3, which were previously found to be 
higher in skeletal muscle of COPD patients18. Since BNIP3 and BNIP3L are located on the outer mitochondrial 
membrane27–29, an increase in BNIP3 protein expression might be masked by the lower mitochondrial content in 
our COPD population.

FUNDC1 is a relatively new hypoxia-regulated mitophagy-receptor of which the activity is dependent on its 
phosphorylation state rather than its transcriptional regulation. The activation of FUNDC1 therefore results in 
decreased protein levels as a direct result of increased mitophagy30–32. Indeed, we found lower FUNDC1 protein 
levels in COPD patients, which were correlated to both the mtDNA/gDNA ratio as well as the FEV1% predicted, 
which could indicate disease severity dependent increased FUNDC1-mediated mitophagy in patients. However, 
FUNDC1 is a mitochondrial membrane-based protein as well, and lower FUNDC1 levels might therefore be 
directly caused by the lower mitochondrial quantity in COPD patients. Although acute hypoxic stress could also 

Figure 4.  Protein levels of mitochondrial content markers and mtDNA/gDNA ratio in m. vastus lateralis of 
patients with NID-COPD and ID-COPD. Protein levels of different mitochondrial OXPHOS subunits are 
depicted (A). NDUFB8 as a subunit of OXPHOS complex I, SDHB of complex II, UQCRC2 of complex III, 
MT-COI of complex IV, and ATP5A of complex V. mtDNA/gDNA ratio is depicted (B). White bars represent 
non-iron deficient COPD patients and black bars represent iron deficient COPD patients. All samples derive 
from the same experiment and gels/blots were processed in parallel. Data presented as mean ± SEM. Dotted 
lines represent healthy controls. Variables had †normal or ††non-normal distribution and p-value of †parametric 
or ††non-parametric test.

low CRP (≤3.0 mg/L) high CRP (>3.0 mg/L)

(N = 19) (N = 9)

Demographics

Age, years†† 65.1 (6.8) 66.1 (6.2)

Sex, % male† 47.0 67.0

Smoking status
(never, ex, current), %† 0, 74, 26 0, 56, 44

Lung function

FEV1, % predicted††† 62.6 [46.0–74.1] 47.9 [44.1–58.4]

FEV1/FVC, %††† 45.6 (13.3) 43.3 (6.4)

GOLD (1, 2, 3, 4), %† 16, 53, 32, 0 0, 22, 78, 0

Body composition

BMI, kg/cm2†† 24.8 (3.4) 26.7 (4.4)

Systemic inflammation

CRP (mg/L)††† 1.1 [0.9–1.5] 7.7 [3.6–21.0]***

Muscle composition

MYH7 mRNA expression, Arbitrary Units††† 0.491 [0.410–1.125] 0.573 [0.349–1.075]

Table 3.  Characteristics of the subset of COPD patients stratified by CRP levels. Abbreviations: BMI, body mass 
index; CRP, C-reactive protein; FEV1, forced expiratory volume in 1 second; FVC, forced vital capacity; GOLD, 
Global Initiative for Chronic Obstructive Lung Disease. †Data presented as percentage and statistical differences 
were calculated with chi-squared test; ††data presented as mean (SD) and statistical differences were calculated 
with independent samples t-test; †††data presented as median [interquartile range] and statistical differences 
were calculated with Mann-Whitney U test. Statistical significance is depicted ***p < 0.001.
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result in a decrease of FUNDC1 protein independently of mitophagy33, this is unlikely to be the case in our pop-
ulation due to the chronic and stable disease stage in which we obtained the biopsies.

PINK1 and Parkin have been described as major players in the mitophagy pathway, priming dysfunctional 
mitochondria for autophagosomal-lysosomal. Although the regulation and signal-transduction of PINK1 and 

Figure 5.  Protein and mRNA expression of markers related to mitophagy, autophagy, and mitochondrial 
dynamics in m. vastus lateralis of patients with low and high CRP. Mitophagy-associated protein levels (A) 
and mRNA expression (B) are depicted. Autophagy-associated protein levels (C) and mRNA expression (D) 
are depicted. Mitochondrial dynamics-associated protein levels (E) and mRNA expression (F) are depicted. 
White bars represent COPD patients with CRP ≤ 3.0 mg/L and black bars represent COPD patients with 
CRP > 3 mg/L. All samples derive from the same experiment and gels/blots were processed in parallel. Data 
presented as mean ± SEM. Dotted lines represent healthy controls. Variables had †normal or ††non-normal 
distribution and p-value of †parametric or ††non-parametric test and significant differences are depicted 
*p < 0.05, **p < 0.01.

Figure 6.  Protein levels of mitochondrial content markers and mtDNA/gDNA ratio in m. vastus lateralis of 
patients with low and high CRP. Protein levels of different mitochondrial OXPHOS subunits are depicted 
(A). NDUFB8 as a subunit of OXPHOS complex I, SDHB of complex II, UQCRC2 of complex III, MT-COI 
of complex IV, and ATP5A of complex V. mtDNA/gDNA ratio is depicted (B). White bars represent COPD 
patients with CRP ≤ 3.0 mg/L and black bars represent COPD patients with CRP > 3 mg/L. All samples derive 
from the same experiment and gels/blots were processed in parallel. Data presented as mean ± SEM. Dotted 
lines represent healthy controls. Variables had †normal or ††non-normal distribution and p-value of †parametric 
or ††non-parametric test.
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Parkin is very complex, current literature suggest that PINK1 functions as an initiation protein and Parkin as 
a signal-amplifying protein in the priming of mitochondria for mitophagy13,15. In addition to mitophagy, both 
PINK1 and Parkin have been associated with MDV formation, an autophagy-independent mitochondrial break-
down pathway16. We currently report higher gene-expression and protein levels of Parkin, suggesting increased 
Parkin-mediated mitochondrial breakdown in COPD patients. Taken together, these data, which are in concert 
with data from a previous study18, indicate increased mitochondrial priming for lysosomal breakdown via either 
mitophagy or MDVs. Moreover, since Parkin was found to correlate inversely with mtDNA/gDNA ratio and 
the FEV1% predicted, the increase in Parkin protein levels appears to be more pronounced in both more severe 
patients and in patients with increased loss of mitochondrial content.

While DNM1L–mediated mitochondrial fission has been described as a prerequisite for mitophagy, MDV 
biogenesis could be performed independently of DNM1L9,16,34,35. Mitochondrial fission and fusion regulation 
is complex and highly integrated in muscle mass and quality control pathways9. Although we did not quantify 
actual mitochondrial fission, the reported lower DNM1L protein-, and trend towards lower gene-expression, 
suggests that mitochondrial fission regulation is marginally decreased in COPD patients. Interestingly, a previous 
study reported decreased mitochondrial numbers while mitochondrial size was unaltered in the vastus lateralis 
of COPD patients36, suggesting unaltered mitochondrial dynamics in these patients. Although we did not find 
a correlation between DNM1L protein levels and mtDNA/gDNA ratio in the current cohort of COPD patients 
(ρ = 0.108, p = 0.312), the lower DNM1L levels could be part of a physiological response to maintain the amount 

Figure 7.  Schematic overview of differences in molecular signalling in the skeletal muscle of COPD compared 
with healthy control (COPD), ID-COPD compared with NID-COPD (ID) and COPD patients with high CRP 
compared with low CRP (CRP).



www.nature.com/scientificreports/

9SCIeNTIFIC REPOrTS |  (2018) 8:15007  | DOI:10.1038/s41598-018-33471-2

of DNM1L per mitochondrion. Together with the current literature, our results are urging caution with interpre-
tation of fission and fusion related signalling data.

The currently observed lower levels of mitochondrial content markers are in line with the well-established loss 
of oxidative capacity in skeletal muscle of patients with COPD2,3,5,37, as well as with the well-described oxidative 
to glycolytic fibre-type shift, which is consistently observed in the peripheral skeletal muscle of COPD patients4. 
Although we did not determine the percentage of oxidative type I fibres immunohistochemically in our study 
population, the lower expression of the MYH7 gene (a surrogate marker for type I fibres as it encodes the type I 
myosin heavy chain isoform38) in COPD is indicative of a decreased oxidative fibre type percentage which is in 
line with literature. Although we cannot exclude that differences in fibre type distribution influenced our findings, 
the fact that we found increased levels of mitophagy-related signalling despite the lower MYH7 gene expression, 
indicative of less mitochondria-rich type I fibres, in the patients suggests that enhanced mitochondrial break-
down may indeed be involved in the loss of muscle oxidative capacity in COPD.

Interestingly, mtDNA/gDNA ratio was correlated, or showed a trend towards correlation, with BNIP3L, 
BNIP3, FUNDC1, and Parkin. Furthermore, mtDNA/gDNA ratio was also correlated with FEV1% predicted, 
which in turn was correlated with BNIP3L, FUNDC1 and Parkin. Together, these correlations show the highly 
interconnected nature of mitochondrial breakdown signalling, mitochondrial content, and disease severity.

Since it is unlikely that the COPD-related lung pathology directly regulates the activation of mitochondrial 
breakdown-pathways in skeletal muscle, we previously suggested a role for extra-pulmonary systemic manifes-
tations19. We therefore studied if iron deficiency and systemic inflammation are involved in the mitochondrial 
breakdown regulation in our COPD population.

Iron deficiency, often present but disregarded in COPD patients, has recently been shown to initiate mito-
phagy in non-skeletal muscle based models24,39. Unexpectedly, our ID-COPD patients had lower skeletal muscle 
BNIP3L protein levels than NID-COPD patients, resembling the levels of healthy controls, which could indicate 
decreased rather than increased mitophagy. However, ID-COPD patients had higher BNIP3 and LC3B gene- but 
not protein-expression, which could also indicate increased turnover of BNIP3 due to increased mitophagy. No 
differences were found in markers of either the FUNDC1- or PINK1/Parkin-mediated mitochondrial break-
down in patients stratified by iron status. This is in line with a previous report showing iron depletion results 
in PINK1/Parkin-independent mitophagy in neuroblast cells24. In conclusion, iron deficiency results in differ-
ential expression of BNIP3 and BNIP3L-related mitophagy markers, but does not seem to result in increased 
overall mitophagy in ID-COPD in our study population. Moreover, both the currently reported higher MYH7 
gene-expression, indicative of more oxidative type I fibres, and better lung function in ID-COPD patients might 
affect our results, and therefore further research is needed to elucidate the exact impact of iron deficiency on 
mitophagy and the skeletal muscle oxidative phenotype.

The mitophagy-receptors BNIP3 and BNIP3L are known to be under transcriptional control of HIF-1α40, 
which is potentially regulated by several COPD-associated manifestations such as inflammation41 and hypoxia42. 
Indeed, patients with high CRP had higher skeletal muscle BNIP3 protein levels combined with higher levels of 
down-stream autophagy-related proteins. Although previous reports have indicated PINK1 and Parkin as impor-
tant players in inflammation-mediated mitophagy both in vitro and in vivo, we report no differences in markers 
of either the FUNDC1- or PINK1/Parkin-mediated mitochondrial breakdown in patients with high CRP25,26. 
However, these studies were performed with models exposed to profound inflammatory stimuli, almost certainly 
exceeding the low-grade systemic inflammation present in our patients, and might therefore surpass clinical rel-
evance for our study population. In conclusion, we report higher BNIP3 and autophagy-related protein levels in 
patients with high systemic inflammation.

Besides iron deficiency and systemic inflammation, smoke exposure and increased muscle inactivity are 
among COPD-related extra-pulmonary manifestations which could potentially affect skeletal muscle mitochon-
drial impairments19,20. Indeed, our population of COPD patients had more current- and ex-smokers compared 
with the control population. Moreover, it is highly likely that these patients had lower physical activity levels as 
well1, albeit that available literature in which physical activity levels have been linked to muscle biopsy analyses 
in COPD suggest that inactivity is a poor determinant of the loss of muscle oxidative phenotype in this disor-
der3,43,44. Although these manifestations were not the focus of the current study, it cannot be excluded that these 
factors contributed to the currently observed modulations in mitochondrial breakdown signalling in COPD 
patients and therefore these manifestations might be interesting targets for future research.

Although we show clear differences in mitochondrial breakdown-related markers, some limitations have to 
be addressed. First, we did not fully quantify the process of mitochondrial breakdown itself. This would require 
measuring actual mitophagy and/or MDV flux, for example by repeated measurements while blocking lysosomal 
breakdown45. This is not feasible in human studies however, since lysosomal breakdown is required for long-term 
muscle maintenance. Moreover, continuous assessment of the studied parameters throughout disease progression 
would have been favourable, enabling determination of both the chronological order and the fluctuation of the 
studied processes. However, due to the invasive nature of muscle biopsies, and since they represent only one spe-
cific moment in time, we chose to study one time-point in a large heterogeneous group of patients.

In conclusion, this study shows altered expression of molecular markers for pathways of mitochondrial break-
down in skeletal muscle of COPD patients, which are related to disease severity and loss of mitochondrial quan-
tity. Moreover, we report that both systemic inflammation and iron deficiency are associated with alterations in 
molecular markers for BNIP3 and BNIP3L-mediated mitophagy, and that while we report no coherent changes 
for ID-COPD, our results show higher BNIP3 and autophagy-related protein levels in patients with increased 
systemic inflammation. Taken together, the current data supports a potential role for mitochondrial breakdown 
underlying the loss of mitochondrial content in skeletal muscle of COPD patients, and identifies systemic inflam-
mation as a possible mitophagy-inducing manifestation. This data is instrumental in understanding disturbed 
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mitochondrial homeostasis in skeletal muscle of COPD, potentially leading towards new targets for maintaining 
or enhancing mitochondrial health.

Methods
Ethical approval.  Vastus lateralis biopsies of COPD patients and healthy controls, previously gathered in two 
different cohort studies (Maastricht cohort; www.trialregister.nl: NTR1402, and Golnik cohort; www.clinicaltri-
als.gov: NCT02550808) were analysed post-hoc. The Maastricht cohort study was approved by the Maastricht 
University Medical Centre+ ethical review board (Maastricht, the Netherlands), and the Golnik cohort study was 
approved by the Slovenian National Medical Ethics Committee (Ljubljana, Slovenia). In total the studied popula-
tion consisted of 95 COPD patients with clinically stable disease (i.e. free from exacerbations in the 4 weeks prior 
to the study) and 15 healthy age-matched controls. Study protocols were in accordance with the latest version 
of the Helsinki Declaration, approved by the respective ethics committees, and written informed consent was 
obtained from all subjects prior to the start. Spirometry was performed according to the European Respiratory 
Society guidelines. Data including smoking status, calculated FEV1 percentage predicted (FEV1% predicted)46 
and disease severity, based on Global Initiative for Chronic Obstructive Lung Disease (GOLD) stage47, was avail-
able for all patients.

Muscle biopsies were obtained under local anaesthetic under resting conditions using the needle biopsy tech-
nique, snap-frozen in liquid nitrogen, and stored at −80 °C until molecular analyses as described previously3,48.

mRNA extraction and quantification.  mRNA extraction and quantification was performed as described 
previously49 with primer details shown in Supplementary Table 1. In short, tissue was homogenized with the 
Beat-Beater in presence of TRI-reagent (Sigma-Aldrich, Zwijndrecht, the Netherlands), and RNA was iso-
lated by TRI-reagent/Chloroform extraction and subsequently precipitated from the aqueous phase using 
glycogen-containing isopropanol. RNA concentrations were measured spectrophotometrically using a Nanodrop 
UV-Vis spectrophotometer (Thermo Scientific, Landsmeer, The Netherlands). 400 ng RNA was diluted in nucle-
ase free H2O and reverse transcribed to cDNA using the Tetro cDNA synthesis kit (Bioline, Waddinxveen, The 
Netherlands) according to the manufacturer’s instructions. qPCR reactions contained Sensimix SYBR & ROX 
(Bioline, Waddinxveen, The Netherlands) and primer mix and were run in a 384 well white opaque plate on a 
LightCycler 480 system (Roche, Almere, The Netherlands). Melting curves were analysed to verify specificity of 
the amplification, and relative quantity of the targets was assessed by LinRegPCR software (v2014.8.1). Three 
reference genes (RPLP0, B2M, and PPIA) were used to calculate a GeNorm correction factor, which was used 
to normalize expression of the target genes. Specific sample measurements were excluded when individual PCR 
efficiency was deviating from average PCR efficiency.

DNA extraction and quantification.  DNA was purified from the organic fraction, generated with the 
TRI-reagent/Chloroform RNA extraction, according to manufacturer’s protocol (Sigma-Aldrich, Zwijndrecht, 
the Netherlands), with the modification of centrifugation speed to 12,000 g. DNA was pelleted, and dissolved in 
TE buffer (Sigma-Aldrich, Zwijndrecht, The Netherlands). qPCR was performed as described previously49 with 
mitochondrial (COX-II) and genomic (RPL13A) specific primers (Supplementary Table 1). Data is presented as 
ratio of the relative copy number of mtDNA over gDNA.

Western Blot.  Western Blotting and quantification was performed as described previously49, with primary 
antibodies listed in Supplementary Table 2. In short, tissue was homogenized in 600 μl of Immunoprecipitation 
lysis buffer (50 mM Tris, 150 mM NaCl, 10% glycerol, 0.5% Nonidet P40, protease and phosphatase inhibitors 
(Roche, Almere, The Netherlands)) with a Polytron homogenizer (Kinematica, Eschbach, Germany) and centri-
fuged at 14,000 g at 4 °C for 30 min. 5 μg of either unheated or heated (5 min at 100 °C) protein in 1x Laemmli sam-
ple buffer (0.25 M Tris-HCL ph6.8; 8% (w/v) SDS; 40% (v/v) glycerol; 0.4 M DTT and 0.02% (w/v) Bromophenol 
Blue) was separated on a Criterion XT Precast 4–12 or 12% Bis-Tris gel (Bio-Rad Laboratories B.V., Veenendaal, 
The Netherlands) in XT MOPS or MES running buffer (Bio-Rad Laboratories B.V., Veenendaal, The Netherlands) 
by gel electrophoresis. Proteins were transferred to a nitrocellulose membrane (Bio-Rad Laboratories B.V., 
Veenendaal, The Netherlands) by electroblotting at 100 V for 60 min in transfer buffer (25 mM Tris, 192 mM 
Glycine, 20% (vol/vol) methanol).

Membranes were stained with 0.2% PonceauS in 1% acetic acid (Sigma-Aldrich, Zwijndrecht, The 
Netherlands) and imaged with the Amersham™ Imager 600 (GE Healthcare Life Sciences, Eindhoven, The 
Netherlands), to correct for protein loading. Subsequently, the membranes were blocked at room temperature 
(RT) in Tween20 Tris-buffered saline (TBST; 20 mM Tris, 137 mM NaCl, 0.1% (vol/vol) Tween20, pH 7.6) con-
taining 3% (w/v) nonfat dry milk (Campina, Zaltbommel, The Netherlands), washed in TBST, and incubated 
overnight with primary antibody diluted 1:500–1:1,000 in TBST with 3% (w/v/) BSA or non-fat dry milk at 
4 °C. Membranes were washed, incubated with a HRP-conjugated secondary antibody (Vector Laboratories, 
Amsterdam, The Netherlands), diluted 1:10,000 in 3% (w/v) non-fat dry milk in TBST, washed, incubated 
in Supersignal West PICO or FEMTO Chemiluminescent Substrate (Thermo Scientific, Landsmeer, The 
Netherlands), and imaged using the Amersham™ Imager 600. Images were quantified with Image Quant soft-
ware (GE Healthcare Life Sciences, Eindhoven, The Netherlands). Samples and protein loading reference lanes 
were randomly distributed within and between multiple gels (Supplementary Fig. 3). All samples derive from the 
same experiment and gels/blots were processed in parallel. Target protein quantity was corrected for total protein 
content, and between-gel differences, and presented as a fold change relative to the control group. Measurements 
were excluded when signs of protein deterioration were found. All original data is included in Supplementary 
Figs 4–13.

http://www.trialregister.nl
http://www.clinicaltrials.gov
http://www.clinicaltrials.gov
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Blood measurements.  Blood samples were obtained from all patients at the start of the study protocol. 
Serum ferritin levels, transferrin saturation, iron levels, and haemoglobin levels were measured in the patients 
from the Golnik cohort. Subjects were considered iron deficient (ID-COPD) when either absolute iron deficiency 
(ferritin <100 ng/ml) or functional iron deficiency (ferritin 100–300 ng/ml and transferrin saturation <20%) was 
present22. Other patients were defined as non-iron deficient (NID-COPD) patients

Serum CRP was determined as a marker for systemic inflammation with the CardioPhase® high-sensitive 
CRP kit (Siemens Healthcare Diagnostics Inc., Newark, USA) with a lower limit of detection of 0.18 mg/L, in the 
COPD patients from the Maastricht cohort50. Subjects were considered to have low CRP when CRP ≤ 3.0 mg/L 
and high CRP when CRP > 3.0 mg/L.

Statistics.  Variables were tested for normality using Shapiro-Wilk Test. Patient characteristics were presented 
in tables as percentage, mean (SD), or median [interquartile range] based on distribution of data. All molecu-
lar markers were, independently of normal distribution, presented graphically in bar charts as mean + SEM for 
coherence and clarity purposes. Statistical relevance of observed group-differences was tested with chi-squared 
test for categorized variables, Mann-Whitney U test for non-normal distributed variables, or independent 
t-test for normal distributed variables. The exact number of cases tested per variable is depicted in the tables for 
patient characteristics, and in Supplementary Table 1 and 2 for molecular markers. Correlations were tested with 
Spearman’s rho analysis’s in the combined cohorts (N = 89–94). All statistical tests were computed using IBM 
SPSS Statistics software (version 22.0, IBM Corp., Armonk, NY, USA).

Data Availability
All Western Blot Raw data generated or analysed during this study are included in this published article (and its 
Supplementary Information files). Other datasets generated during and/or analysed during the current study are 
available from the corresponding author on reasonable request.
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