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Abstract: Transition metal dichalcogenides (TMDCs) demonstrate great potential in numerous
applications. However, these applications require a precise control of layer thickness at the atomic
scale. In this work, we present an in-situ study of the self-limiting oxidation process in MoTe2 by
ozone (O3) treatment. A precise layer-by-layer control of MoTe2 flakes can be achieved via multiple
cycles of oxidation and wet etching. The thinned MoTe2 flakes exhibit comparable optical properties
and film quality to the pristine exfoliated ones. Besides, an additional p-type doping is observed after
O3 oxidation. Such a p-doping effect converts the device properties of MoTe2 from electron-dominated
to hole-dominated ambipolar characteristics.
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1. Introduction

The past decade has witnessed a rapid development in two-dimensional (2D) materials research
with a focus on the family of transition metal dichalcogenides (TMDCs) [1–3]. Depending on polytype
and the number of transition metal d-electrons, TMDC materials exhibit a wide range of electronic
properties, from semiconducting, metallic, to superconducting [1]. These unique electrical and optical
properties are highly thickness dependent. Two-dimensional materials like MoS2, MoSe2, and their
tungsten analogs, with their indirect bandgap transformed to direct in the monolayer limit [4–6], could
be used as promising candidates for applications in electronics and optoelectronics [7–9].

The direct bandgap depends on the chalcogen species chosen in TMDCs. Compared with other
TMDC materials, monolayer MoTe2 has a direct bandgap of 1.1 eV, which is the smallest among all
semiconducting TMDCs [10,11]. MoTe2 is thought to be an ideal candidate to bridge large-bandgap
TMDCs and gapless graphene. Because its bandgap is comparable to that of silicon, MoTe2 can
potentially expand the range of TMDC optoelectronic applications beyond the visible spectrum.
In contrast to most TMDCs that exhibit indirect bandgaps in multilayer/bulk forms, MoTe2 still
preserves its direct bandgap feature in bilayers, and perhaps even in trilayers with less change in
bandgap value [12]. Furthermore, the narrow bandgap of MoTe2 facilitates the construction of n- and
p-type transistors due to low Schottky barrier heights (SBHs) for electrons and holes [13]. In this regard,
field effect transistors (FETs) built from MoTe2 have been demonstrated to display n-type, p-type, and
ambipolar behaviors [14–18].

Since the electronic properties of 2D materials are highly dependent on the layer number, a simple
and efficient method to precisely control layer thickness is a prerequisite for various applications.
So far, several strategies have been established to prepare 2D TMDCs with a certain layer thickness,
which can be generally categorized into top-down and bottom-up technologies. The top-down
methods normally involve mechanical [19] and solution-based exfoliation [20] from bulk materials.
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Exfoliation-based techniques are very common, but typically generate flakes with random sizes and
thicknesses. On the other hand, the bottom-up method usually yields 2D materials via chemical
reactions of atoms/molecules on a substrate with a large power consumption [21].

In comparison, the post-treatment of multilayer materials is an alternative route to accurately
control the layer number. Various layer-thinning technologies have been conducted, such as laser
thinning [22], thermal annealing [23], and plasma etching [24]. TMDCs are known to potentially oxidize
in ambient environments. This oxidation process is self-limiting to some degree, since the surface oxide
film hinders oxygen diffusion into the underlying layers [25]. However, higher operating/processing
temperatures enhance oxygen diffusion and accelerate the oxidation process. This leads to more layers
being oxidized simultaneously and to lack a precise control over the number of layers. Hence, a fast
reaction between the oxidizing agents and the surface layer, accompanied by a slow diffusion rate
to the underlying layers, is expected to be a promising route to achieve controlled layer-by-layer
thinning at the atomic scale. Compared with other oxidizing agents, ozone (O3) is a strong oxidant,
which is unstable and easily decomposes into molecular O2 and monatomic O when reaching a solid
surface; the latter is regarded as a main active species that vigorously reacts with TDMCs or other
2D materials [26–28]. Herein, we performed an in-situ study of O3 exposure of MoTe2 to monitor the
evolution of layer number and characterize the quality of the thinned layers. A precise layer-by-layer
control of MoTe2 layers was achieved via the cyclical processing of oxidation and subsequent removal
of the oxidized layer. The thinned MoTe2 flakes exhibited comparable optical properties to the pristine
exfoliated ones, and showed a p-type doping behavior.

2. Materials and Methods

MoTe2 flakes were mechanically exfoliated from bulk 2H-MoTe2 crystals (2D Semiconductors,
Inc., Scottsdale, AZ, USA) and then deposited on a heavily p-doped Si substrate with a 300-nm-thick
oxide layer. The thickness of the MoTe2 flakes was first identified using an optical microscope
(VHX-600, Keyence, Inc., Itasca, IL, USA) through optical contrast and then further confirmed by atomic
force microscopy (AFM, Dimension 3100, Veeco, Inc., New York, NY, USA) and Raman spectroscopy
(Renishaw inVia, Renishaw, Inc., Gloucestershire, UK). Raman spectra were collected in a backscattering
geometry with a 633 nm laser, 100× objective, and 1800 lines/mm grating. The laser power was kept
below 0.1 mW to avoid sample damage.

Afterward, MoTe2 flakes were placed in a custom-designed container for in-situ Raman
investigation. O3 was remotely generated by electric discharge with an O3 generator (M-600, Tonglin,
Inc., Beijing, China) at an O2 pressure of 0.3 bar and then introduced to the chamber. The oxidized
samples were immersed in KOH solution to remove the surface oxide and washed with deionized
water. The chemical states of the MoTe2 specimen before/after O3 oxidization and after KOH treatment
were characterized by X-ray photoelectron spectroscopy (XPS, Thermo Scientific Escalab 250Xi, Thermo
Fisher Scientific, Inc., Waltham, MA, USA) using a monochromatic Al Kα X-ray source with a 100 µm
spot size.

For electrical characterization, a back-gated MoTe2 FET device was fabricated on a SiO2/Si substrate.
Multilayer MoTe2 was first transferred onto the substrate. The electrode patterns were defined by
standard electron-beam lithography (JBX-6300FS, JEOL, Inc., Tokyo, Japan). A bilayer stack of Cr
(5 nm)/Au (50 nm) was deposited by thermal evaporation on the flake to form source/drain electrodes.
A lift-off process was then performed in acetone and isopropanol to complete the device fabrication.
Multiple cycles of O3 oxidation and oxide layer removal were repeated on the MoTe2 channel to
achieve layer-by-layer thinning. After each thinning cycle, the same device was characterized with a
semiconductor parameter analyzer (B1500A, Agilent Inc., Santa Clara, CA, USA).

3. Results and Discussion

Figure 1a shows the optical microscope images and the corresponding AFM images of pristine
MoTe2 with different layer numbers varying from monolayer to pentalayer. The number of layers and
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the corresponding thickness were first estimated from optical contrast and then further determined by
AFM and Raman scattering. Obviously, the optical contrast of MoTe2 increases with the layer number
due to the interference effect [29]. AFM height profiles of different layers are superimposed in the AFM
images. A linear dependence of the layer thickness is observed with the layer number in Figure 1b.
The interlayer distance was approximately 0.7 nm, which is in good agreement with the bulk interlayer
spacing of MoTe2 [30]. Figure 2a shows the Raman spectra of MoTe2 flakes with several characteristic
peaks between 150 and 300 cm−1. The peaks located at ~170, 230, and 290 cm−1 correspond to the
out-of-plane mode A1g/A1

’ (A1
’ for odd layers and A1g for even layers), the in-plane mode E2g

1, and
the bulk-inactive mode B2g, respectively [31,32]. The B2g peak also vanished in monolayer (1L) but
became active in few-layer MoTe2 due to translation symmetry breaking [33]. This can be a landmark
to distinguish monolayers from few layers. Furthermore, the intensity of the B2g peak was sensitive to
the thickness. As shown in Figure 2b, the peak intensity ratio of B2g to E2g

1 consistently decreased
with the layer number. This ratio can therefore be used to identify the number of MoTe2 layers, like
the frequency difference between the A1g and E2g

1 modes utilized in MoS2. Different from MoS2, the
interlayer interactions also caused a Davydov splitting of A1g/A1

’ modes in MoTe2 at thicknesses larger
than bilayer [34].
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the O3 oxidation of MoTe2 could proceed if UV illumination were introduced [28]. This hints that 
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after oxidation. This surface oxide layer suppressed the further diffusion of the oxygen atoms into 
the flake and their oxidation of the underlying layers, even with longer exposure times. This 

Figure 1. (a) Optical images and the corresponding AFM images of monolayer (1L) to pentalayer (5L)
pristine MoTe2 flakes on SiO2/Si substrate. The regions enclosed by the red dashed lines indicate the
AFM scanned areas. The green curves are AFM height profiles taken along the white dashed lines on
the AFM images. (b) Plots of thickness of pristine and thinned MoTe2 versus layer number. Solid lines
are linear fits.

After carefully characterizing the pristine exfoliated MoTe2, an in-situ Raman study of O3 exposure
was performed to monitor the time evolution of the Raman spectra of MoTe2 during oxidation. First,
a monolayer MoTe2 surface was exposed to the O3 for 70 s. As shown in Figure 3a,b, the peak
intensities of the A1

’ and E2g
1 modes decreased with exposure time and completely disappeared in

25 s. The absence of Raman signals after the O3 treatment indicates that MoTe2 was fully oxidized.
In contrast, under the same oxidation conditions, the A1g peak of bilayer MoTe2 became more prominent
relative to the E2g

1 mode with oxidation time (Figure 3c). Simultaneously, the characteristic B2g peak
gradually disappeared with only A1g and E2g

1 modes remaining. This suggests that bilayer MoTe2 was
transformed into monolayer. Furthermore, the A1g peak intensity reached a maximum and remained
nearly invariant after 25 s oxidation time (Figure 3d). However, the O3 oxidation of MoTe2 could
proceed if UV illumination were introduced [28]. This hints that pure O3 exposure leads to a dense
coverage of surface oxide layer on atomically thin MoTe2. The AFM images and the height profiles
in Figure 4 show that the bilayer thickness increased by 1.5 nm after oxidation. This surface oxide
layer suppressed the further diffusion of the oxygen atoms into the flake and their oxidation of the
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underlying layers, even with longer exposure times. This oxidation process was therefore self-limiting.
Notably, the time to fully oxidize the monolayer and the top layer of MoTe2 flakes was almost the same,
irrespective of layer numbers.
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In order to realize a controllable layer-by-layer thinning of multilayer flakes, the surface oxide
layer in MoTe2 needs to be removed and the underlying layer freshly exposed to provide a new
surface to be reacted with O3. Generally, base (OH−) solutions are good solvents for metal oxides.
Herein, an oxidized thick MoTe2 sample was immersed in KOH solution followed by a deionized
water rinse. Afterward, XPS analysis was conducted on the MoTe2 to investigate the evolution of the
surface chemical compositions before and after KOH solution immersion. As shown in Figure 5a, two
dominant peaks in pristine MoTe2 were assigned to the Mo4+ 3d3/2 (231.7 eV) and 3d5/2 (228.5 eV) [35].
Te2− 3d3/2 and 3d5/2 were located at 583.5 and 573.2 eV, respectively (Figure 5b). However, after O3

treatment, the binding energies of Mo4+ and Te2− peaks were both red-shifted by approximately 0.4 eV.
Meanwhile, two new peaks appeared at 235.7 and 232.6 eV, belonging to the Mo6+ 3d3/2 and 3d5/2

doublet of MoO3 [35,36]. This similar phenomenon was also found in Te 3d core level spectra. Two
emerging peaks at 586.9 and 576.5 eV were associated with TeO2 formation (Figure 5b). The shift of
binding energy is related with the Fermi level energy realignment [37]. The coverage of high work
function Mo and Te oxides aligns the Fermi level energy close to the valence band edge of MoTe2 and
thus induces redshifts of Mo4+ and Te2− peaks and p-type doping in the underlying MoTe2 [38]. After
KOH solution immersion, the XPS peaks related with oxides vanished and the Mo4+ and Te2− peaks
shifted back close to the original pristine positions. This suggests that most of MoO3 and TeO2 were
removed and the p-doping effect was reduced.
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after KOH treatment. The black curves are experimental data. The dashed curves are the Lorentzian
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We repeated multiple oxidation/oxidized layer removal cycles to perform a layer-by-layer thinning
process in large-area thick MoTe2 flakes (Figure 6a). Obviously, the optical contrast of MoTe2 flakes
changed significantly after 24 cycles. One cycle corresponded to one layer removal. Figure 6b shows
the AFM images and height profiles of the selected areas in Figure 6a. The relationship between the
layer thickness and the layer number is plotted in Figure 1b. Obviously, a linear dependence was also
found and the slope was the same as that of pristine MoTe2. This further confirms a precise control of
the layer number at the atomic scale by using a cyclical thinning process. The surface roughness of
thinned flakes was almost comparable to that of the pristine ones, with only a slight increase from
0.2 to 0.25 nm. However, the thinned layer thickness showed an overall upshift of 1.4 nm. Such a
shift may originate from the water molecules trapped between the flakes and the substrate in the wet
process [39]. Figure 2 also illustrates comparable Raman spectra between the thinned and pristine
MoTe2, and almost the same peak intensity ratio B2g/E2g

1.
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To study the effect of layer thinning on the electrical characteristics of the MoTe2 layers, a back-gated
FET device was fabricated on a 300-nm SiO2/Si substrate. The inset of Figure 7a presents an optical image
of a device with seven pristine layers in the channel. The electrical behaviors were investigated while
thinning the MoTe2 from seven layers to monolayer by using the cyclical thinning method. Figure 7a
shows the evolution of the transfer characteristics with different layer numbers. The source–drain
voltage was fixed at 5 V. Before thinning, a typical electron-dominated ambipolar behavior was
observed in pristine exfoliated layers, where the on-state current in the n-branch (Ion,n) was one
order of magnitude larger than that in the p-branch (Ion,p). This asymmetric conduction behavior
was attributed to the unequal SBHs for electrons and holes. This was manifested by the non-linear
output characteristics measured at Vg = ±40 V in Figure 7b,c. The vacancies were found to be easily
formed in MoTe2 due to the weak bonding energy between Mo and Te atoms [40]. The presence of
chalcogen vacancies in TMDCs usually causes the Fermi level to pin near the conduction band [41,42].
Consequently, the electron SBH is lower than that of the holes, thus facilitating the electron injection.
Due to a smaller bandgap in the thick pristine MoTe2, the current on/off ratio (Ion/off) over the applied
gate voltage range was quite small, 2.1 × 104 for n-branch and 3.9 × 102 for p-branch. After cyclical
process of O3 oxidation and subsequent oxide removal, Ion,n was found to be significantly suppressed,
as exhibited in Figure 7b and it reduced with decreasing layer number (Figure 7a). Meanwhile Ion,p was
drastically increased by one order of magnitude after the first cycle (Figure 7d), that is, in the thinned
6L MoTe2, and then gradually declined with decreasing thickness. Simultaneously, Ion,p became more
linear in the output characteristics, which means a reduced hole SBH formed after the thinning process.
A remarkable increase of Ion/off in the p-type regime (Ion/off,p) was observed with decreasing layer
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number. This was mainly attributed to the suppression of off-state current from electron conduction.
These distinct transport properties between the pristine and O3 treated MoTe2 were possibly caused by
the residues of overlying oxide after KOH immersion. The above XPS analysis reveals that MoO3 and
TeO2 contributed to p-doping on the underlying MoTe2 layers. The hole carriers residing between the
MoTe2 and contact can unpin the Fermi level and lower it toward the valence band edge [38]. Hence,
the reduced hole SBH, along with the raised electron SBH made a transition of the dominant role from
electron to hole in the ambipolar MoTe2 FET. Meanwhile, as shown in Figure 7a, the oxide doping
also shifted the voltage of the charge neutral point towards the positive direction with thinning of the
MoTe2 layers. After the first thinning cycle, Ion,p exhibited a decline with decreasing layer number
in Figure 7d, which is consistent with previous observations on MoS2 and black phosphorus [43,44].
The conduction paths along the upper layers were eliminated when these layers were removed during
the thinning process. An additional access resistance was hence introduced between the electrode and
the underlying MoTe2 due to the large interlayer resistance. This access resistance increased as the
layers were thinned. Besides, another effect may exist—thinner flakes are more susceptible to Coulomb
scattering from the doping species, which leads to a reduction of carrier mobility [45].
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layer-by-layer thinning. The inset is an optical image of the as-fabricated device. (b,c) Comparison of
the output characteristics in the n- and p-type regimes before and after layer thinning. (d) Ion/off,p (left)
and Ion,p extracted at Vg = −60 V in (a) (right) plotted as a function of the number of MoTe2 layers.
The dashed line is a guide to the eye.

4. Conclusions

In summary, we demonstrated a controllable layer thinning of MoTe2 flakes with O3 treatment.
Our in-situ Raman investigation revealed that the formed oxide layer on the surface of MoTe2 led to a
self-limiting process. This process could be repeated by removal of the oxidized surface to achieve
precise layer-by-layer thinning. The thinned MoTe2 flakes showed a comparable optical quality and
surface roughness to the pristine exfoliated ones. This thinning process was also accompanied by a
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p-type doping in the MoTe2 flakes due to oxide layer coverage. The device transfer characteristics of the
MoTe2 FET exhibited a conversion from electron-dominated to hole-dominated ambipolar behavior as
the thinning cycle increased. The Ion/off was thus significantly increased at the p-branch. It is believed
that our cyclical thinning technique can be applicable to other TMDCs, and provides excellent control
in preparing TMDC sheets with well-defined thickness.
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